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Abstract. Oil shale in large basins undergoes multiple evolutionary stages,
limiting the applicability of a single logging-based prediction model. This
study focuses on the oil shale of the Qingshankou Formation in the Songliao
Basin, using gamma ray (GR), deep resistivity (LLD), acoustic travel time
(DT), neutron porosity (CNL), density (DEN), and depth data as input features.
The XGBoost algorithm is employed to develop predictive models for total
organic carbon (TOC) content, free hydrocarbon (S ), pyrolyzable hydrocarbon
(S,), and maximum pyrolysis peak temperature (T, ). TOC predictions
are further stratified for low-maturity, mature, and high-maturity oil shale
intervals. The results show that S, achieves the highest prediction accuracy
(R? = 0.91), due to its strong correlation with hydrogen index (HI) driven
by thermal evolution. TOC prediction accuracy (R> = 0.75) is influenced by
combined changes in porosity and organic matter evolution. T, prediction
(R’ = 0.74) depends mainly on depth and CNL. S, correlates weakly with all
well logs, yielding the lowest accuracy (R? = 029) Shale maturity plays a
critical role in determining the reliability of TOC prediction models. Low-
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maturity oil shale exhibits the best TOC accuracy (R? = 0.83), as wellpreserved
organic matter and high porosity correlate closely with LLD, DT, CNL, and
DEN. In mature oil shale, retained hydrocarbon and reduced porosity weaken
logging signals, lowering accuracy to R?* = 0.63. In high-maturity intervals,
hydrocarbon expulsion and porosity rebound improve accuracy (R?> = 0.69).
Our approach provides a cost-effective, continuous method for evaluating
lacustrine oil shale resources. It is particularly applicable to the evaluation
of uncored wells.

Keywords: oil shale, prediction models, logging responses, machine learning,
Songliao Basin.

1. Introduction

Unconventional oil and gas research increasingly leverages big data and
artificial intelligence. Integrating high-resolution well log data with machine
learning and optimized logging technologies significantly improves evaluation
accuracy [1, 2]. This approach not only aligns with current developmental
trends but also represents the future direction of the field. Logging data, with
its continuity, accuracy, and high resolution, contain rich information that
can effectively reveal the geochemical characteristics of oil and gas [3, 4].
Consequently, it supports the secondary development of uncored wells and
helps reduce exploration and production costs.

Conventional logging techniques, including gamma ray (GR), resistivity
(RT), acoustic travel time (DT), neutron porosity (CNL), and density (DEN),
are widely used in oil and gas exploration and development [5-7]. Oil
shale differs from surrounding formations in terms of mineral composition,
structural characteristics, reservoir properties, and organic matter content,
resulting in distinct logging responses [8, 9]. Typical logging responses for
oil shale include high GR, high RT, high DT, high CNL, and low DEN values
[10-15]. Consequently, various methods have been developed to identify oil
shale, such as calculating total organic carbon (TOC) content [10—12], Rock-
Eval parameters (S, S,, T_ ) [13-15], oil saturation [16], kerogen type [17],
thermal maturity [5, 18], and reservoir properties [3, 6, 7, 18, 19].

Currently, common methods for predicting organic geochemical parameters
include the ALogR method [11] and its various improvements [20-22],
multiple regression methods [23—-25], and machine learning approaches
[25-30]. The ALogR method calculates TOC content by determining the
amplitude difference between the DT and RT curves, effectively eliminating
the influence of porosity on organic carbon content [11]. However, this method
involves fewer variables, and the selection of the baseline is susceptible to
human manipulation, requiring careful well section selection and segmentation
[11, 20-22]. Multiple regression methods establish relationships between
several logging curves and organic geochemical parameters, which can
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significantly improve predictive correlation. However, these formulas need
to be manually derived and are not universally applicable across different
regions. Machine learning approaches, on the other hand, improve algorithm
performance through data-driven training, essentially replacing manual
derivation in multiple regression with intelligent algorithms [23-25].

There are various types of machine learning algorithms, each with its
strengths, weaknesses, and suitable conditions [12, 13, 25-30]. For example,
support vector machine (SVM) is suitable for small datasets and nonlinear
problems, excelling in binary classification, but it is inefficient when dealing
with large datasets [12, 13, 27]. Random forest (RF) performs well on
highdimensional classification tasks but is less effective for regression tasks
and on small datasets [27]. Artificial neural networks (ANN) can handle
complex nonlinear relationships but require large datasets [15, 28, 29].
Extreme gradient boosting (XGBoost) is a powerful and efficient algorithm,
widely used for both classification and regression tasks due to its high accuracy
and flexibility [30]. Nevertheless, its application in the geological field is still
relatively limited.

It is important to note that previous studies on predicting organic
geochemical parameters have predominantly been conducted under similar
maturity conditions. In basins with significant depth variations, the evolution
of organic matter must be considered, as it can limit the applicability of
logging-based prediction models. Moreover, research on logging-based
predictions of S, S, and T__ is limited. This study focuses on the oil shale
of the Qingshankou Formation (Fm) in the Songliao Basin, applying the
XGBoost algorithm to predict the TOC content of oil shale at different maturity
stages. A TOC estimation system was established, and efforts were made
to predict S, S,, and T__, along with an analysis of the factors influencing
these predictions. This research provides valuable insights for the secondary
development of legacy wells and has significant implications for oil and gas
basins transitioning to unconventional oil and gas exploitation.

2. Regional setting

The Songliao Basin, located in northeastern China, is a major terrestrial oil
and gas basin, and a significant area for unconventional resource exploration.
Spanning approximately 820 km north—south and 350 km east—west, the basin
covers an area of 2.6 x 10° km? [31, 32]. It is divided into six tectonic units:
the western slope, northern plunge, central depression, and three uplift zones
(Fig. 1a) [31-40]. The basin has a rift-sag composite structure, shaped by both
extensional and compressional forces. Its tectonic evolution includes stages
of mantle uplift, continental rifting, thermal subsidence, and compressional
inversion [33].
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Fig. 1. Regional geological setting of the Songliao Basin [31, 33].
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The basin’s basement consists of Precambrian and Paleozoic strata,
which are overlain by thick Mesozoic deposits [31-33]. The basin exhibits
a thin margin and a thick central section, indicative of long-term lacustrine
sedimentation [31]. The Jurassic, Cretaceous, and Paleogene deposits can
exceed 10 km in thickness, with the Cretaceous deposits reaching up to 7 km.
The Cretaceous stratigraphy is subdivided into lower (Huoshiling, Shahezi,
Yingcheng, Denglouku, Quantou) and upper (Qingshankou, Yaojia, Nenjiang,

Sifangtai, Mingshui) formations (Fig. 1b) [31-33].

The Qingshankou Fm, a primary source rock, ranges from 260 to 500 m
in thickness (Fig. 1c) [33]. Deposition occurred in semi-deep to deep lake
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settings in the central basin, characterized by dark shale, siltstone, and thin
carbonate layers, with shallow lake and deltaic deposits at the margins [31-40].
The Qingshankou Fm exhibits high organic richness, overpressure, and
significant hydrocarbon potential, making it a key focus for commercial shale
oil and gas development [31].

3. Materials and methods

3.1. Materials

We collected organic geochemical data and logging data from the Qingshankou
Fm in the central depression of the Songliao Basin. The dataset includes 1,240
TOC values and 520 Rock-Eval values (S,, S, T ), along with corresponding
logging data, such as GR, deep resistivity (LLD), DT, CNL, and DEN values
(Fig. 2). These data were obtained from wells located within the same region
but at varying depths.
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Fig. 2. Logging curves of oil shale at different maturity stages [34—40].

3.2. Methods
3.2.1. Correlation analysis

The organic carbon content in oil shale demonstrates a linear relationship with
various logging curves. Specifically, as TOC increases, logging responses
show systematic increases or decreases depending on curve type. The Pearson
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correlation coefficient is employed to quantify the linear correlation between
variables. For two variables (X and Y), the Pearson correlation coefficient
(p(XY) = cov (X, V)/(cX o)) = E[(X — uX)(Y — uY)]/(6X ¢¥)) is defined as the
covariance divided by the product of their standard deviations; it ranges from
—1 to+1. A coefficient less than 0 indicates a negative correlation, while a value
greater than 0 suggests a positive correlation. The closer the absolute value is
to 1, the stronger the correlation. A coefficient of 0 indicates no correlation.
We use the Pearson correlation coefficient to assess linear relationships
between organic geochemical parameters and logging curves.

3.2.2. Model environment setup

In this study, Python is utilized as the development environment for model
construction, leveraging its powerful third-party libraries to support all
necessary model-building functionalities. Pandas and NumPy are core li-
braries for data analysis, providing efficient tools for data manipulation,
cleaning, transformation, and computation, thereby enabling rapid data
processing. Pandas is employed to read and preprocess the data, facilitating the
calculation of correlations between various organic geochemical parameters
and well log curves. Matplotlib, a widely used plotting library, is used to
generate visualizations such as learning curves and scatter plots of model
predictions, offering an intuitive means to assess model performance. Scikit-
learn (Sklearn), the most widely adopted machine learning library, provides a
comprehensive suite of algorithms, along with modules for feature extraction,
data preprocessing, and model evaluation. In this study, we employ the
XGBoost implementation from Scikit-learn, leveraging its efficient gradient
boosting decision tree algorithm for predictive modeling.

3.2.3. Model tuning

XGBoost is an ensemble learning algorithm based on gradient-boosted deci-
sion trees. It enhances model performance by iteratively optimizing the second-
order derivative of the loss function and incorporating regularization terms to
reduce model complexity and mitigate overfitting. Moreover, its parallelized
design significantly improves training efficiency [30]. The hyperparameters
of the XGBoost algorithm are categorized into general parameters, booster
parameters, and task parameters [30]. General parameters determine the weak
learners used in the ensemble, with decision trees selected as the booster
in this study. The number of trees is controlled by the number of iterations
(n_estimators). An excessive number of trees may lead to overfitting, while
too few trees may result in insufficient learning capacity. Therefore, selecting
an appropriate number of iterations is crucial for model training.

During the hyperparameter tuning process, the number of iterations
is optimized first. Booster parameters correspond to the decision trees
and include hyperparameters that significantly affect model performance.
In this study, we tune the following hyperparameters: max_depth, sub_sample,
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learning rate, and gamma, due to their significant impact on performance.
max_depth controls the maximum depth of the tree. Larger depths may lead
to overfitting. Given the six features, max_depth is set within the range of
[1, 6]. sub_sample controls the fraction of training instances used to build each
tree. While it helps prevent overfitting, a value that is too small may cause
underfitting. Its range is [0, 1]. learning rate controls the step size of each
iteration. Smaller learning rates improve the model’s generalization ability,
with a range of [0, 1]. gamma serves as a penalty term for tree complexity,
controlling the minimum information gain required for a tree split. Larger
gamma values reduce the risk of overfitting, with its range set to [0, +o0].

Task parameters specify the learning task and evaluation metrics. We use
the default squarederror objective for regression.

4. Results and discussion

4.1. Data preparation

Based on R, the Qingshankou Fm oil shale is classified into low-maturity
(R, < 0.7%), mature (R = 0.7-1.2%), and high-maturity (R > 1.2%). TOC
predictions were conducted for each maturity stage, and the TOC, S, S,, and
T, data are summarized in Table 1.

The TOC values of the Qingshankou Fm oil shale are generally high
but decrease with increasing maturity (Fig. 3). The Rock-Eval parameters
indicate that the S, value initially increases and then decreases as maturity
increases, while the S, value decreases consistently, reflecting the processes of
hydrocarbon generation and expulsion during burial (Fig. 3). The T __ values
clearly distinguish oil shales at different maturity stages. Due to the influence
of low S, values on T__, samples with S, values less than 0.5 mg/g were
excluded from the T _ analysis [41].

In this study, the data were neither normalized nor subjected to outlier
elimination using the three-sigma method [25, 28]. XGBoost, a tree-based
algorithm capable of handling both classification and regression tasks, is
relatively insensitive to parameter scaling [30], eliminating the need for
normalization. The three-sigma method, commonly used to remove outliers

Table 1. Statistics of organic geochemical parameters [34—40]

TOC, | Low-maturity Mature High-maturity S, S, e
% TOC, % TOC, % TOC, % mg/g | mg/g °C
Min 0.09 0.26 0.59 0.09 0.19 6.8 4295
Max | 15.25 15.25 7.67 5.23 512 | 137.39 | 554
Average | 2.45 3.65 2.49 1.74 1.42 | 4834 | 452
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from normally distributed data, was not applied because geochemical
parameters such as TOC in oil shale do not follow a normal distribution.
Instead, the dataset was expanded, additional predictive variables were
introduced, and hyperparameters were optimally tuned, allowing the machine
learning model to fully exploit its strengths.

4.2. Correlation analysis

Given the substantial depth variation in the study area, well log values are
impacted by burial depth. Therefore, depth was included as a feature variable
in the correlation analysis (Table 2). Specifically, TOC is negatively correlated
with depth, positively correlated with LLD, CNL, and DT, and weakly
correlated with GR and DEN. The S, value shows weak correlations with
all well logs, with only a slight correlation with GR and DT. The S, value
is negatively correlated with depth, positively correlated with LLD, DT, and
CNL, and weakly correlated with GR and DEN. The S| + S, correlation pattern
closely matches that of S,. T is strongly correlated with depth, negatively
correlated with CNL, and shows negligible correlations with other logs. These
findings indicate that TOC, S,, S, +S ,and T__ can be reliably predicted using
well logs, while predicting S, proves to be more challenging.

The analysis further reveals that the correlation between well log values
and TOC varies significantly with maturity. For low-maturity oil shale, TOC
is strongly correlated with LLD, DT, CNL, and DEN, suggesting that TOC
in low-maturity oil shale can be reliably predicted using well logs. In mature
oil shale, the correlation between TOC and most well logs is generally weak,
with only LLD and depth showing stronger correlations, which may result in

Table 2. Pearson correlation coefficients between organic geochemical parameters and
logging curve data (bold font indicates Pearson correlation coefficients >0.3)

Depth, GR, LLD, DT, CNL, DEN,

m API Q'm us/ft f g/cm?

TOC ~0.501 0.126 0.396 0.436 0.520 0283

Low-maturity | -, ;5 0.162 0.642 0.451 0.530 ~0.486
TOC

Mature TOC | —0.311 0.249 0.354 0.251 0.171 ~0.022

High-maturity | o 50 | 185 | 0059 | 0.434 0.531 ~0.249
TOC

s, 0.018 0108 | —0.084 | 0114 0.034 0.038

s, —0.821 0.262 0.414 0.320 0.645 ~0.157

S, +5, ~0.804 0.246 0.398 0.327 0.637 ~0.150

0.735 | —0073 | -0.104 | -0179 | —0.399 0.042
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lower prediction accuracy. For high-maturity oil shale, TOC exhibits stronger
correlations with DT, CNL, and depth, but shows a weak correlation with
GR and DEN, and no correlation with LLD. The correlation patterns between
TOC and well logs vary significantly across different maturities, which may
lead to substantial differences in the prediction results.

4.3. Model training and prediction results

XGBoost models are highly sensitive to hyperparameters, necessitating careful
tuning to achieve optimal performance. Parameter tuning is a critical aspect
of model training, as the choice of hyperparameters significantly influences
model performance. Since XGBoost employs an ensemble of decision trees,
the number of trees (i.e., the number of boosting iterations) directly affects
prediction outcomes. Consequently, we first optimize the number of boosting
iterations (0 to 300) via cross-validation to maximize the average R* (Fig. 4).

0.75810 [

0.75805

0.75800 |

0.75795 |

0.75790

Average R?

0.75785 |

0.75780 |

0.75775 |

50 100 150 200 250 300

Fig. 4. Optimization of the number of boosting iterations (0—300) using cross-
validation.

Grid search is employed to tune the remaining hyperparameters. This
method exhaustively explores all possible combinations of predefined
parameter ranges and step sizes, selecting the best set of parameters based on
cross-validation results. The parameter settings, including value ranges and
step sizes, are detailed in Table 3.

The optimized XGBoost model is then applied to prediction. The dataset
is split into training and test sets at a 7:3 ratio. The input feature variables
include six well log parameters: GR, LLD, DT, CNL, DEN, and depth. For
each target parameter (TOC, S, S, T ), 70% of the data are used for training
and 30% for testing. We train the model on the training set and evaluate on the
test set using R? (coefficient of determination) as the metric.
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Table 3. Ranges and steps of hyperparameters

Hyperparameter Value range Step size
max_depth [1,6] 1
sub_sample [0,1] 0.01
learning rate [0,1] 0.01
gamma [0,1] 0.01

The results demonstrate strong predictive performance for TOC, S,, and
T .. with R? values of 0.75, 0.91, and 0.74, respectively. However, prediction

of S, is less accurate, yielding an R* of 0.29 (Figs 5-7).

In predicting TOC in oil shale at various maturities, the best results are
obtained for low-maturity oil shale, with an R? of 0.83. The worst prediction
accuracy is observed for mature oil shale, with an R? of 0.63, while the R?

value for high-maturity oil shale is 0.69 (Figs 5 and 7).
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The predictive performance of TOC using thermal maturity-stratified
models was lower than expected, particularly for mature oil shales. One
contributing factor is that machine learning models typically require large
datasets for effective training. In this study, dividing the dataset into three
subsets based on maturity stage substantially reduced the number of samples
available for each model, resulting in insufficient training for each subset.
Another factor is the sensitivity of R? values to outliers. When high TOC
values from low-maturity samples and low TOC values from high-maturity
samples are combined in a single training set, R? can be inflated even if the
overall prediction accuracy remains low. Moreover, these results are consistent
with the findings of the correlation analysis. Therefore, prediction accuracy
primarily depends on the strength of the correlation between geochemical
parameters and logging curves. During diagenesis, organic matter and porosity
in oil shale undergo significant changes, which weakens their correlation with
logging responses.

4.4. Factors influencing prediction results

The relationship between organic matter content in oil shale and well log data
is significant, with various organic geochemical parameters showing distinct
correlations with well log curves (Fig. 3 and Table 2). High TOC values are
generally associated with high GR, LLD, DT, and CNL values, and with low
DEN values. While S, values exhibit a similar pattern, their correlations with
depth and CNL are notably stronger, due to the significant influence of thermal
evolution on organic matter. Neutron logging reflects the hydrogen index
(HI=S,/TOC) of rock layers [6, 9]. As hydrocarbon generation and expulsion
occur during burial, the hydrocarbon generation potential of organic matter
declines, leading to a reduction in HI [42]. This results in a strong correlation
between CNL and S, values, yielding the highest prediction accuracy for S..
T . follows a similar trend but correlates only with depth and CNL. In con-
trast, S, values show weak correlations with well log curves.

Oil shale undergoes various transformations during deep burial, including
porosity evolution, organic matter maturation, and hydrocarbon generation
and expulsion [43, 44]. These changes result in distinct logging responses and
prediction outcomes for oil shales at different maturity stages.

In low-maturity oil shale, only a small amount of hydrocarbons is ex-
pelled [45]. TOC and S, values are typically high, while S, values remain low,
reflecting well-preserved organic matter. Consequently, TOC values exhibit
a strong correlation with LLD. Furthermore, low-maturity oil shale is less
affected by compaction, resulting in higher porosity [43, 45], which enhances
the correlation between TOC and DT as well as CNL. Due to minimal impacts
from compaction, dissolution, cementation, and hydrocarbon generation, the
correlation between TOC and DEN is also significant [46]. As a result, TOC
prediction for low-maturity oil shale demonstrates high accuracy.
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In mature oil shale, S, values increase significantly, while S, and TOC
values decrease, reflecting extensive hydrocarbon generation and expulsion
[45, 47]. This transformation weakens the correlation between TOC and LLD.
Organic matter exerts an adsorptive effect on radioactive elements, but the
complex interplay between clay minerals, organic matter, and radioactive
elements remains unclear. Consequently, the correlation between TOC and
GR increases slightly in mature oil shale, but remains weak in both low- and
high-maturity oil shale, suggesting that elevated S, values influence the GR
response.

During hydrocarbon generation, organic acids form dissolution pores,
while the expulsion and retention of hydrocarbons, coupled with the strong
sealing properties of shale, lead to abnormal pressure and increased porosity
[48, 49]. However, these pores are simultaneously reduced by compaction
and cementation, resulting in lower porosity in mature oil shale [49, 50].
As a result, correlations between TOC and CNL, DT, and DEN are weak.
The complex interplay among hydrocarbon generation, pore system evolution,
and elevated S, collectively weakens correlations between TOC and well log
curves, thus explaining the lower prediction accuracy for mature oil shale.

In high-maturity oil shale, organic matter has largely lost its hydrocarbon
generation potential [42, 51], resulting in low S, content. Most of the organic
matter has been expelled, leading to a negligible correlation between TOC and
LLD. The correlation with DEN also remains weak, potentially influenced
by residual light oil. At this stage, the shrinkage of organic matter following
hydrocarbon generation, combined with increased organic acids, produces
numerous organic matter and dissolution pores [46, 48]. This increase in
porosity strengthens the correlations between TOC and both CNL and DT.
Notably, TOC exhibits a weak negative correlation with GR, suggesting that
expelled hydrocarbons are the primary factor influencing GR responses.
Overall, TOC prediction for highmaturity oil shale is primarily controlled by
porosity, yielding better prediction accuracy compared to mature oil shale.

5. Conclusion

Conventional logging curves (GR, RT, DT, CNL, DEN) combined with depth
data enable effective prediction of TOC, S,, and T__ in the Qingshankou
Fm. S, achieves the highest prediction accuracy (R* = 0.91), primarily due
to its strong correlation with thermal evolution-driven variations in the HI.
TOC prediction accuracy (R* = 0.75) is influenced by the combined effects
of porosity and organic matter evolution, while T__ prediction (R* = 0.74)
primarily depends on depth and CNL. S, prediction remains challenging, with
lower accuracy (R? = 0.29) due to its weak correlations with logging curves.
Shale maturity significantly impacts TOC prediction accuracy. Low-
maturity oil shale exhibits the highest accuracy (R* = 0.83), owing to well-
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preserved organic matter and high porosity that correlate strongly with logging
responses. In mature oil shale, hydrocarbon retention and reduced porosity
obscure logging signals, decreasing model accuracy (R?> = 0.63). High-
maturity shale shows improved accuracy (R? = 0.69), following hydrocarbon
expulsion and porosity rebound.

This model offers a low-cost, continuous approach for predicting parameters
in lacustrine oil shale resource evaluation, which is particularly beneficial for
assessing uncored wells. However, its generalizability is currently limited to
the Qingshankou Fm in the Songliao Basin, necessitating further validation
for application in other basins or formations.
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