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Abstract. Oil shale in large basins undergoes multiple evolutionary stages, 
limiting the applicability of a single logging-based prediction model. This 
study focuses on the oil shale of the Qingshankou Formation in the Songliao 
Basin, using gamma ray (GR), deep resistivity (LLD), acoustic travel time 
(DT), neutron porosity (CNL), density (DEN), and depth data as input features.  
The XGBoost algorithm is employed to develop predictive models for total 
organic carbon (TOC) content, free hydrocarbon (S1), pyrolyzable hydrocarbon 
(S2), and maximum pyrolysis peak temperature (Tmax). TOC predictions 
are further stratified for low-maturity, mature, and high-maturity oil shale 
intervals. The results show that S2 achieves the highest prediction accuracy  
(R² = 0.91), due to its strong correlation with hydrogen index (HI) driven 
by thermal evolution. TOC prediction accuracy (R² = 0.75) is influenced by 
combined changes in porosity and organic matter evolution. Tmax prediction  
(R² = 0.74) depends mainly on depth and CNL. S1 correlates weakly with all 
well logs, yielding the lowest accuracy (R² = 0.29).  Shale maturity plays a 
critical role in determining the reliability of TOC prediction models. Low-
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maturity oil shale exhibits the best TOC accuracy (R² = 0.83), as wellpreserved 
organic matter and high porosity correlate closely with LLD, DT, CNL, and 
DEN. In mature oil shale, retained hydrocarbon and reduced porosity weaken 
logging signals, lowering accuracy to R² = 0.63. In high-maturity intervals, 
hydrocarbon expulsion and porosity rebound improve accuracy (R² = 0.69). 
Our approach provides a cost-effective, continuous method for evaluating 
lacustrine oil shale resources. It is particularly applicable to the evaluation 
of uncored wells.

Keywords: oil shale, prediction models, logging responses, machine learning, 
Songliao Basin.

1. Introduction

Unconventional oil and gas research increasingly leverages big data and 
artificial intelligence. Integrating high‑resolution well log data with machine 
learning and optimized logging technologies significantly improves evaluation 
accuracy [1, 2]. This approach not only aligns with current developmental 
trends but also represents the future direction of the field. Logging data, with 
its continuity, accuracy, and high resolution, contain rich information that 
can effectively reveal the geochemical characteristics of oil and gas [3, 4]. 
Consequently, it supports the secondary development of uncored wells and 
helps reduce exploration and production costs.

Conventional logging techniques, including gamma ray (GR), resistivity 
(RT), acoustic travel time (DT), neutron porosity (CNL), and density (DEN), 
are widely used in oil and gas exploration and development [5–7]. Oil 
shale differs from surrounding formations in terms of mineral composition, 
structural characteristics, reservoir properties, and organic matter content, 
resulting in distinct logging responses [8, 9].  Typical logging responses for 
oil shale include high GR, high RT, high DT, high CNL, and low DEN values 
[10–15]. Consequently, various methods have been developed to identify oil 
shale, such as calculating total organic carbon (TOC) content [10–12], Rock-
Eval parameters (S1, S2, Tmax) [13–15], oil saturation [16], kerogen type [17], 
thermal maturity [5, 18], and reservoir properties [3, 6, 7, 18, 19].

Currently, common methods for predicting organic geochemical parameters 
include the ΔLogR method [11] and its various improvements [20–22], 
multiple regression methods [23–25], and machine learning approaches  
[25–30]. The ΔLogR method calculates TOC content by determining the 
amplitude difference between the DT and RT curves, effectively eliminating 
the influence of porosity on organic carbon content [11]. However, this method 
involves fewer variables, and the selection of the baseline is susceptible to 
human manipulation, requiring careful well section selection and segmentation 
[11, 20–22]. Multiple regression methods establish relationships between 
several logging curves and organic geochemical parameters, which can 
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significantly improve predictive correlation. However, these formulas need 
to be manually derived and are not universally applicable across different 
regions. Machine learning approaches, on the other hand, improve algorithm 
performance through data-driven training, essentially replacing manual 
derivation in multiple regression with intelligent algorithms [23–25]. 

There are various types of machine learning algorithms, each with its 
strengths, weaknesses, and suitable conditions [12, 13, 25–30]. For example, 
support vector machine (SVM) is suitable for small datasets and nonlinear 
problems, excelling in binary classification, but it is inefficient when dealing 
with large datasets [12, 13, 27]. Random forest (RF) performs well on 
highdimensional classification tasks but is less effective for regression tasks 
and on small datasets [27]. Artificial neural networks (ANN) can handle 
complex nonlinear relationships but require large datasets [15, 28, 29]. 
Extreme gradient boosting (XGBoost) is a powerful and efficient algorithm, 
widely used for both classification and regression tasks due to its high accuracy 
and flexibility [30]. Nevertheless, its application in the geological field is still 
relatively limited.

It is important to note that previous studies on predicting organic 
geochemical parameters have predominantly been conducted under similar 
maturity conditions. In basins with significant depth variations, the evolution 
of organic matter must be considered, as it can limit the applicability of 
logging-based prediction models. Moreover, research on logging-based 
predictions of S1, S2, and Tmax is limited. This study focuses on the oil shale 
of the Qingshankou Formation (Fm) in the Songliao Basin, applying the 
XGBoost algorithm to predict the TOC content of oil shale at different maturity 
stages. A TOC estimation system was established, and efforts were made 
to predict S1, S2, and Tmax, along with an analysis of the factors influencing 
these predictions. This research provides valuable insights for the secondary 
development of legacy wells and has significant implications for oil and gas 
basins transitioning to unconventional oil and gas exploitation.

2. Regional setting

The Songliao Basin, located in northeastern China, is a major terrestrial oil 
and gas basin, and a significant area for unconventional resource exploration. 
Spanning approximately 820 km north–south and 350 km east–west, the basin 
covers an area of 2.6 × 105 km² [31, 32]. It is divided into six tectonic units: 
the western slope, northern plunge, central depression, and three uplift zones 
(Fig. 1a) [31–40]. The basin has a rift–sag composite structure, shaped by both 
extensional and compressional forces. Its tectonic evolution includes stages 
of mantle uplift, continental rifting, thermal subsidence, and compressional 
inversion [33].
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Fig. 1. Regional geological setting of the Songliao Basin [31, 33].

The basin’s basement consists of Precambrian and Paleozoic strata, 
which are overlain by thick Mesozoic deposits [31–33]. The basin exhibits 
a thin margin and a thick central section, indicative of long-term lacustrine 
sedimentation [31]. The Jurassic, Cretaceous, and Paleogene deposits can 
exceed 10 km in thickness, with the Cretaceous deposits reaching up to 7 km. 
The Cretaceous stratigraphy is subdivided into lower (Huoshiling, Shahezi, 
Yingcheng, Denglouku, Quantou) and upper (Qingshankou, Yaojia, Nenjiang, 
Sifangtai, Mingshui) formations (Fig. 1b) [31–33].

The Qingshankou Fm, a primary source rock, ranges from 260 to 500 m 
in thickness (Fig. 1c) [33]. Deposition occurred in semi-deep to deep lake 

(a)

(c)

(b)
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settings in the central basin, characterized by dark shale, siltstone, and thin 
carbonate layers, with shallow lake and deltaic deposits at the margins [31–40].  
The Qingshankou Fm exhibits high organic richness, overpressure, and 
significant hydrocarbon potential, making it a key focus for commercial shale 
oil and gas development [31].

3. Materials and methods

3.1. Materials

We collected organic geochemical data and logging data from the Qingshankou 
Fm in the central depression of the Songliao Basin. The dataset includes 1,240 
TOC values and 520 Rock-Eval values (S1, S2, Tmax), along with corresponding 
logging data, such as GR, deep resistivity (LLD), DT, CNL, and DEN values 
(Fig. 2). These data were obtained from wells located within the same region 
but at varying depths. 

3.2. Methods

3.2.1. Correlation analysis

The organic carbon content in oil shale demonstrates a linear relationship with 
various logging curves. Specifically, as TOC increases, logging responses 
show systematic increases or decreases depending on curve type. The Pearson 

Fig. 2. Logging curves of oil shale at different maturity stages [34–40].
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correlation coefficient is employed to quantify the linear correlation between 
variables. For two variables (X and Y), the Pearson correlation coefficient 
(ρ(X,Y) = cov  (X,Y)/(σX σY) = E[(X – μX)(Y – μY)]/(σX σY)) is defined as the 
covariance divided by the product of their standard deviations; it ranges from 
–1 to +1. A coefficient less than 0 indicates a negative correlation, while a value 
greater than 0 suggests a positive correlation. The closer the absolute value is 
to 1, the stronger the correlation. A coefficient of 0 indicates no correlation.   
We use the Pearson correlation coefficient to assess linear relationships 
between organic geochemical parameters and logging curves.

3.2.2. Model environment setup

In this study, Python is utilized as the development environment for model 
construction, leveraging its powerful third-party libraries to support all 
necessary model-building functionalities. Pandas and NumPy are core li
braries for data analysis, providing efficient tools for data manipulation, 
cleaning, transformation, and computation, thereby enabling rapid data 
processing. Pandas is employed to read and preprocess the data, facilitating the 
calculation of correlations between various organic geochemical parameters 
and well log curves. Matplotlib, a widely used plotting library, is used to 
generate visualizations such as learning curves and scatter plots of model 
predictions, offering an intuitive means to assess model performance. Scikit-
learn (Sklearn), the most widely adopted machine learning library, provides a 
comprehensive suite of algorithms, along with modules for feature extraction, 
data preprocessing, and model evaluation. In this study, we employ the 
XGBoost implementation from Scikit-learn, leveraging its efficient gradient 
boosting decision tree algorithm for predictive modeling.

3.2.3. Model tuning

XGBoost is an ensemble learning algorithm based on gradient-boosted deci
sion trees. It enhances model performance by iteratively optimizing the second-
order derivative of the loss function and incorporating regularization terms to 
reduce model complexity and mitigate overfitting. Moreover, its parallelized 
design significantly improves training efficiency [30]. The hyperparameters 
of the XGBoost algorithm are categorized into general parameters, booster 
parameters, and task parameters [30]. General parameters determine the weak 
learners used in the ensemble, with decision trees selected as the booster 
in this study. The number of trees is controlled by the number of iterations  
(n_estimators). An excessive number of trees may lead to overfitting, while 
too few trees may result in insufficient learning capacity. Therefore, selecting 
an appropriate number of iterations is crucial for model training. 

During the hyperparameter tuning process, the number of iterations 
is optimized first. Booster parameters correspond to the decision trees 
and include hyperparameters that significantly affect model performance.  
In this study, we tune the following hyperparameters: max_depth, sub_sample, 

Logging‑based XGBoost prediction of oil shale geochemistry
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learning_rate, and gamma, due to their significant impact on performance. 
max_depth controls the maximum depth of the tree. Larger depths may lead 
to overfitting. Given the six features, max_depth is set within the range of  
[1, 6]. sub_sample controls the fraction of training instances used to build each 
tree. While it helps prevent overfitting, a value that is too small may cause 
underfitting. Its range is [0, 1]. learning_rate controls the step size of each 
iteration. Smaller learning rates improve the model’s generalization ability, 
with a range of [0, 1]. gamma serves as a penalty term for tree complexity, 
controlling the minimum information gain required for a tree split. Larger 
gamma values reduce the risk of overfitting, with its range set to [0, +∞]. 

Task parameters specify the learning task and evaluation metrics. We use 
the default squarederror objective for regression.

4. Results and discussion

4.1. Data preparation

Based on Ro, the Qingshankou Fm oil shale is classified into low-maturity 
(Ro < 0.7%), mature (Ro = 0.7–1.2%), and high-maturity (Ro > 1.2%). TOC 
predictions were conducted for each maturity stage, and the TOC, S1, S2, and 
Tmax data are summarized in Table 1.

The TOC values of the  Qingshankou Fm oil shale are generally high 
but decrease with increasing maturity (Fig. 3). The Rock-Eval parameters 
indicate that the S1 value initially increases and then decreases as maturity 
increases, while the S2 value decreases consistently, reflecting the processes of 
hydrocarbon generation and expulsion during burial (Fig. 3). The Tmax values 
clearly distinguish oil shales at different maturity stages. Due to the influence 
of low S2 values on Tmax, samples with S2 values less than 0.5 mg/g were 
excluded from the Tmax analysis [41].

In this study, the data were neither normalized nor subjected to outlier 
elimination using the three-sigma method [25, 28]. XGBoost, a tree-based 
algorithm capable of handling both classification and regression tasks, is 
relatively insensitive to parameter scaling [30], eliminating the need for 
normalization. The three-sigma method, commonly used to remove outliers 

Table 1. Statistics of organic geochemical parameters [34–40]

TOC,  
%

Low-maturity  
TOC, %

Mature  
TOC, %

High-maturity  
TOC, %

S1,  
mg/g

S2,  
mg/g

Tmax,  
°C

Min 0.09 0.26 0.59 0.09 0.19 6.8 429.5

Max 15.25 15.25 7.67 5.23 5.12 137.39 554

Average 2.45 3.65 2.49 1.74 1.42 48.34 452
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from normally distributed data, was not applied because geochemical 
parameters such as TOC in oil shale do not follow a normal distribution. 
Instead, the dataset was expanded, additional predictive variables were 
introduced, and hyperparameters were optimally tuned, allowing the machine 
learning model to fully exploit its strengths.

4.2. Correlation analysis

Given the substantial depth variation in the study area, well log values are 
impacted by burial depth. Therefore, depth was included as a feature variable 
in the correlation analysis (Table 2). Specifically, TOC is negatively correlated 
with depth, positively correlated with LLD, CNL, and DT, and weakly 
correlated with GR and DEN. The S1 value shows weak correlations with 
all well logs, with only a slight correlation with GR and DT. The S2 value 
is negatively correlated with depth, positively correlated with LLD, DT, and 
CNL, and weakly correlated with GR and DEN. The S1 + S2 correlation pattern 
closely matches that of S2. Tmax is strongly correlated with depth, negatively 
correlated with CNL, and shows negligible correlations with other logs. These 
findings indicate that TOC, S2, S1 + S2, and Tmax can be reliably predicted using 
well logs, while predicting S1 proves to be more challenging.

The analysis further reveals that the correlation between well log values 
and TOC varies significantly with maturity. For low-maturity oil shale, TOC 
is strongly correlated with LLD, DT, CNL, and DEN, suggesting that TOC 
in low-maturity oil shale can be reliably predicted using well logs. In mature 
oil shale, the correlation between TOC and most well logs is generally weak, 
with only LLD and depth showing stronger correlations, which may result in 

Table 2. Pearson correlation coefficients between organic geochemical parameters and 
logging curve data (bold font indicates Pearson correlation coefficients >0.3)

﻿ Depth,  
m

GR,  
API

LLD,  
Ω·m

DT,  
us/ft

CNL,  
f

DEN,  
g/cm3

TOC –0.501 0.126 0.396 0.436 0.520 –0.283

Low-maturity 
TOC –0.251 0.162 0.642 0.451 0.530 –0.486

Mature TOC –0.311 0.249 0.354 0.251 0.171 –0.022

High-maturity 
TOC –0.427 –0.185 –0.059 0.434 0.531 –0.249

S1 0.018 –0.108 –0.084 0.114 0.034 0.038

S2 –0.821 0.262 0.414 0.320 0.645 –0.157

 S1 + S2 –0.804 0.246 0.398 0.327 0.637 –0.150

Tmax 0.735 –0.073 –0.104 –0.179 –0.399 0.042
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lower prediction accuracy. For high-maturity oil shale, TOC exhibits stronger 
correlations with DT, CNL, and depth, but shows a weak correlation with 
GR and DEN, and no correlation with LLD. The correlation patterns between 
TOC and well logs vary significantly across different maturities, which may 
lead to substantial differences in the prediction results.

4.3. Model training and prediction results

XGBoost models are highly sensitive to hyperparameters, necessitating careful 
tuning to achieve optimal performance. Parameter tuning is a critical aspect 
of model training, as the choice of hyperparameters significantly influences 
model performance. Since XGBoost employs an ensemble of decision trees, 
the number of trees (i.e., the number of boosting iterations) directly affects 
prediction outcomes. Consequently, we first optimize the number of boosting 
iterations (0 to 300) via cross‑validation to maximize the average R² (Fig. 4).

Fig. 4. Optimization of the number of boosting iterations (0–300) using cross-
validation.

Grid search is employed to tune the remaining hyperparameters. This 
method exhaustively explores all possible combinations of predefined 
parameter ranges and step sizes, selecting the best set of parameters based on 
cross-validation results. The parameter settings, including value ranges and 
step sizes, are detailed in Table 3.

The optimized XGBoost model is then applied to prediction. The dataset 
is split into training and test sets at a 7:3 ratio. The input feature variables 
include six well log parameters: GR, LLD, DT, CNL, DEN, and depth. For 
each target parameter (TOC, S1, S2, Tmax), 70% of the data are used for training 
and 30% for testing. We train the model on the training set and evaluate on the 
test set using R² (coefficient of determination) as the metric.

Logging‑based XGBoost prediction of oil shale geochemistry
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The results demonstrate strong predictive performance for TOC, S2, and 
Tmax, with R² values of 0.75, 0.91, and 0.74, respectively. However, prediction 
of S1 is less accurate, yielding an R² of 0.29 (Figs 5–7).

In predicting TOC in oil shale at various maturities, the best results are 
obtained for low-maturity oil shale, with an R² of 0.83. The worst prediction 
accuracy is observed for mature oil shale, with an R² of 0.63, while the R² 
value for high-maturity oil shale is 0.69 (Figs 5 and 7). 

Fig. 5. TOC prediction results for oil shale at different maturity stages.

Table 3. Ranges and steps of hyperparameters

Hyperparameter Value range Step size

max_depth [1,6] 1

sub_sample [0,1] 0.01

learning_rate [0,1] 0.01

gamma [0,1] 0.01
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Fig. 6. Prediction results for S1, S2, S1 + S2, and Tmax.

Fig. 7. Comparison of measured and predicted results for the test set.

Logging‑based XGBoost prediction of oil shale geochemistry
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The predictive performance of TOC using thermal maturity-stratified  
models was lower than expected, particularly for mature oil shales. One 
contributing factor is that machine learning models typically require large 
datasets for effective training. In this study, dividing the dataset into three 
subsets based on maturity stage substantially reduced the number of samples 
available for each model, resulting in insufficient training for each subset. 
Another factor is the sensitivity of R² values to outliers. When high TOC 
values from low-maturity samples and low TOC values from high-maturity 
samples are combined in a single training set, R² can be inflated even if the 
overall prediction accuracy remains low. Moreover, these results are consistent 
with the findings of the correlation analysis. Therefore, prediction accuracy 
primarily depends on the strength of the correlation between geochemical 
parameters and logging curves. During diagenesis, organic matter and porosity 
in oil shale undergo significant changes, which weakens their correlation with 
logging responses.

4.4. Factors influencing prediction results

The relationship between organic matter content in oil shale and well log data 
is significant, with various organic geochemical parameters showing distinct 
correlations with well log curves (Fig. 3 and Table 2).  High TOC values are 
generally associated with high GR, LLD, DT, and CNL values, and with low 
DEN values. While S2 values exhibit a similar pattern, their correlations with 
depth and CNL are notably stronger, due to the significant influence of thermal 
evolution on organic matter. Neutron logging reflects the hydrogen index  
(HI = S2/TOC) of rock layers [6, 9]. As hydrocarbon generation and expulsion 
occur during burial, the hydrocarbon generation potential of organic matter 
declines, leading to a reduction in HI [42]. This results in a strong correlation 
between CNL and S2 values, yielding the highest prediction accuracy for S2. 
Tmax follows a similar trend but correlates only with depth and CNL. In con  - 
t rast, S1 values show weak correlations with well log curves. 

Oil shale undergoes various transformations during deep burial, including 
 porosity evolution, organic matter maturation, and hydrocarbon generation 
and expulsion [43, 44]. These changes result in distinct logging responses and 
prediction outcomes for oil shales at different maturity stages.

In low-maturity oil shale, only a small amount of hydrocarbons is ex
pelled [45]. TOC and S2 values are typically high, while S1 values remain low, 
reflect  ing well-preserved organic matter. Consequently, TOC values exhibit 
a strong correlation with LLD. Furthermore, low-maturity oil shale is less 
affected by compaction, resulting in higher porosity [43, 45], which enhances 
the correlation between TOC and DT as well as CNL. Due to minimal impacts 
from compaction, dissolution, cementation, and hydrocarbon generation, the 
correlation between TOC and DEN is also significant [46]. As a result, TOC 
prediction for low-maturity oil shale demonstrates high accuracy.
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In mature oil shale, S1 values increase significantly, while S2 and TOC 
values decrease, reflecting extensive hydrocarbon generation and expulsion 
[45, 47]. This transformation weakens the correlation between TOC and LLD. 
Organic matter exerts an adsorptive effect on radioactive elements, but the 
complex interplay between clay minerals, organic matter, and radioactive 
elements remains unclear. Consequently, the correlation between TOC and 
GR increases slightly in mature oil shale, but remains weak in both low- and 
high-maturity oil shale, suggesting that elevated S1 values influence the GR 
response. 

During hydrocarbon generation, organic acids form dissolution pores, 
while the expulsion and retention of hydrocarbons, coupled with the strong 
sealing properties of shale, lead to abnormal pressure and increased porosity 
[48, 49]. However, these pores are simultaneously reduced by compaction 
and cementation, resulting in lower porosity in mature oil shale [49, 50].  
As a result, correlations between TOC and CNL, DT, and DEN are weak.  
The complex interplay among hydrocarbon generation, pore system evolution, 
and elevated S1 collectively weakens correlations between TOC and well log 
curves, thus explaining the lower prediction accuracy for mature oil shale.

In high-maturity oil shale, organic matter has largely lost its hydrocarbon 
generation potential [42, 51], resulting in low S1 content. Most of the organic 
matter has been expelled, leading to a negligible correlation between TOC and 
LLD. The correlation with DEN also remains weak, potentially influenced 
by residual light oil.   At this stage, the shrinkage of organic matter following 
hydrocarbon generation, combined with increased organic acids, produces 
numerous organic matter and dissolution pores [46, 48]. This increase in 
porosity strengthens the correlations between TOC and both CNL and DT. 
Notably, TOC exhibits a weak negative correlation with GR, suggesting that 
expelled hydrocarbons are the primary factor influencing GR responses. 
Overall, TOC prediction for highmaturity oil shale is primarily controlled by 
porosity, yielding better prediction accuracy compared to mature oil shale.

 5. Conclusion

 Conventional logging curves (GR, RT, DT, CNL, DEN) combined with depth 
data enable effective prediction of TOC, S2, and Tmax in the Qingshankou 
Fm. S2 achieves the highest prediction accuracy (R² = 0.91), primarily due 
to its strong correlation with thermal evolution-driven variations in the HI. 
TOC prediction accuracy (R² = 0.75) is influenced by the combined effects 
of porosity and organic matter evolution, while Tmax prediction (R² = 0.74) 
primarily depends on depth and CNL. S1 prediction remains challenging, with 
lower accuracy (R² = 0.29) due to its weak correlations with logging curves.

Shale maturity significantly impacts TOC prediction accuracy. Low-
maturity oil shale exhibits the highest accuracy (R² = 0.83), owing to well-

Logging‑based XGBoost prediction of oil shale geochemistry
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preserved organic matter and high porosity that correlate strongly with logging 
responses. In mature oil shale, hydrocarbon retention and reduced porosity 
obscure logging signals, decreasing model accuracy (R² = 0.63). High-
maturity shale shows improved accuracy (R² = 0.69), following hydrocarbon 
expulsion and porosity rebound.

 This model offers a low-cost, continuous approach for predicting parameters 
in lacustrine oil shale resource evaluation, which is particularly beneficial for 
assessing uncored wells. However, its generalizability is currently limited to 
the Qingshankou Fm in the Songliao Basin, necessitating further validation 
for application in other basins or formations.
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