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Abstract. Oil shale is a type of unconventional energy with abundant reserves.
In the in situ mining technology of oil shale, electric heating technology has
become a research hotspot due to its multiple advantages, and electric heater
is the core of this technology. Despite growing interest in electric heating for
in situ oil shale extraction, there remains a lack of comprehensive reviews that
focus specifically on the electric heater — its types, performance characteristics,
and design optimization strategies. In this paper, the oil shale electric heater
is taken as the research object. First, the four mainstream oil shale electric
heating technologies — Shell’s in situ conversion process, ExxonMobils
Electrofrac™, geothermal fuel cell, and high-voltage power frequency electric
heating technology — are analyzed, and their principles, characteristics,
and limitations are elaborated in detail. Subsequently, the research status
of electric heaters is discussed in depth, covering various types of heaters
and their performance, and existing problems are identified. The key role of
numerical simulation technology in the optimal design of electric heaters is
emphasized. In the future, structural innovation and numerical simulation
technology should be leveraged to further optimize the performance of oil
shale electric heaters, continuously improving their heat efficiency, thereby
promoting their extensive application in industrial fields.
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1. Introduction

Energy is the driving force behind social production and the advancement
of people’s lives, making it highly significant for social and economic
development. With the continuous depletion of traditional petroleum energy
reserves, the development and utilization of unconventional energy sources
have gradually gained attention [1-3]. Among them, oil shale is a type of
unconventional energy with abundant reserves. Its proven shale oil reserves
worldwide are about 457 billion tons, which is equivalent to 5.4 times the
recoverable reserves of natural crude oil. Therefore, it is also considered as
an important alternative energy source to oil [4, 5]. Through the exploitation
of oil shale, shale oil is obtained by condensation and recovery from the
retorting process [6]. Diesel and gasoline fractions can be extracted through
deep hydrogenation, which can replace part of conventional oil and natural
gas and can be directly used in ships, automobiles, and other industrial fields,
greatly alleviating the pressure on energy supply [7].

At present, conventional oil shale mining methods, both domestic and
international, are divided into above-ground retorting and in situ mining.
In above-ground, oil shale is first mined and then heated in a retorting furnace,
producing shale oil, pyrolysis oil and gas, and solid residual coke through
pyrolysis. This method presents problems such as high energy consumption,
environmental pollution, and low resource utilization [8—10]. In contrast, in
situ mining involves directly heating the underground oil shale layer to extract
oil and gas. It offers the advantages of high product quality, improved oil
recovery, a small surface footprint, and reduced environmental protection,
making it suitable for deep and thick oil shale reservoirs [11, 12].

The core of in situ mining lies in heating the oil shale reservoir. Depending
on the heating technology used, it can be divided into electric heating, fluid
heating, radiation heating, and combustion heating [13, 14]. Among these,
electric heating stands out due to its simple operation, convenient construction,
small footprint, adjustable temperature, and wide application range. It has
become the preferred solution for industrial applications [15].

Current mainstream electric heating technologies include Shell’s in situ
conversion process (ICP) [16], ExxonMobil’s Electrofrac™ [17], Independent
Energy Partners' (IEP) geothermal fuel cell (GFC) technology [18], and high-
voltage power frequency electric heating (HVF) technology [19]. These
technologies all rely on electric conduction heating to pyrolyze oil shale,
but they differ significantly in heating efficiency, operational cycles, and
engineering adaptability. Therefore, it is necessary to systematically review
their principles and limitations to clarify the future direction of electric heating
technologies. It is worth noting that, as the core component of electric heating
systems, the performance of electric heaters directly affects heating efficiency
and system stability [20]. However, existing heaters face challenges such as
local overheating, high energy consumption, and maintenance difficulties.



Oil shale electric heater optimization: a review 375

Technical breakthroughs still need to be achieved through material innovation,
structural optimization, and numerical simulation.

Although some progress has been made in the research on electric heating
technology, there is no systematic review of its core component — the electric
heater. This paper focuses on the oil shale electric heater. First, the principles,
characteristics, and limitations of four representative electric heating
technologies are analyzed. Second, the current research status and directions
for optimization of electric heaters are summarized. Finally, the supporting role
of numerical simulation in heater design is discussed to provide a theoretical
reference for the industrial application of in situ electric heating technology in
oil shale extraction.

2. Oil shale electric heating technology

2.1. Principle of electric heating technology for oil shale

The oil shale electric heating method is represented by Shell’s ICP technology,
ExxonMobil’s Electrofrac™ technology, IEP’s GFC, and the in situ HVF
technology developed by Jilin University and Tomsk University of Techno-
logy [21]. The following section analyzes the principles and limitations of
these four electric heating technologies.

As shown in Figure 1(a), the in situ mining technology using high-voltage,
industrial-frequency electric heating is a conduction heating method [22].
Boreholes are drilled into the oil shale reservoir, and positive and negative
electrodes are placed into separate boreholes. A high voltage is applied
between the electrodes to change and carbonize the underground pool, thereby
reducing its electrical resistance. Then, using industrial-frequency electricity,
a current is introduced into the reservoir through the pre-installed electrodes.
This current heats the oil shale through the ionophore channel formed in front
and the reduced resistance. Finally, hydrocarbons generated by pyrolysis are
extracted through a production well.

The advantages of this technology include fast heating speed, short heating
cycle, and low pollution. Compared with traditional oil shale heating and
pyrolysis technologies, this method achieves in situ heating through drilling,
eliminating the need for surface mining and processing, thereby reducing the
ecological damage caused by excavation in conventional methods, as well as
the pollution from waste gases and wastewater generated by surface pyrolysis.
The disadvantage is the short effective distance of the heating process, which
is still in the experimental development and perfection stage and requires
further research and optimization.

As shown in Fig. 1b, the ICP technology is a conduction heating
method [23]. This technology was developed by Shell Netherlands [16]. The
principle involves installing heating cables in the target heating zone of the
oil shale reservoir, setting the power and temperature of the electric heater,
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Fig. 1. Conduction heating technology: (a) high-voltage industrial-frequency electric
heating technology; (b) ICP technology [28]; (c¢) Electrofrac™ technology [28];
(d) IEP’s GFC technology.

and cracking the oily kerogen in the reservoir through conduction heating to
produce light oil shale oil and natural gas. Moreover, the pyrolysis process
simultaneously improves the permeability and porosity of the reservoir,
creating percolation channels for transporting the produced hydrocarbons
[24]. Finally, with the help of production wells, the pyrolyzed light oil and gas
are extracted from the subsurface using conventional oil recovery processes
[25]. This is one of the most mature techniques currently applied in practice.

Shell’s ICP in situ recovery technology has the advantages of high
recovery rates, a small footprint, direct heating of deep oil shale, and
adequate environmental protection compared to conventional dry distillation
technology. However, since this technology relies on heat transfer to heat
the reservoir, there are inherent limitations that lead to a long development
cycle, with a typical heating time of about two to four years and a low energy
utilization rate [26].



Oil shale electric heater optimization: a review 377

The Electrofrac™ technology (Fig. 1c) is an in situ extraction method
developed by ExxonMobil in the United States [17, 27]. It involves fracturing
the subsurface oil shale reservoir, to create a number of cracks. Then, conduc-
tive proppant is injected into the fractures to form electrically conductive
heaters within the oil shale reservoir. Using the pre-designed electric heating
wells and specified electric heating power, the reservoir is heated through
conduction [28]. As the oil shale is heated by heat transfer, the kerogen in
the pool is fractured. Eventually, the resulting light oil and natural gas are
extracted through production wells.

The advantage of this technology is that by employing fractures with
conductive proppant, a heating plane is formed, which provides a more
extensive heating range and higher heating efficiency than the linear heating
of ICP in situ extraction technology. It also requires a relatively small number
of heating wells and has less impact on the surface environment. However, a
disadvantage is that although the heating time is shorter than that of ICP, it still
involves long heating cycles and slow heat transfer. Additionally, a freeze wall
must be designed to protect the heating layer.

As shown in Figure 1d, GFC technology is an in situ extraction method
developed by the Institute for Clean and Secure Energy in the U.S. In this
method, a fuel cell is used as the heating medium. A fuel cell device is
installed in an underground oil shale reservoir, and fuel (natural gas) and air
are introduced into the reservoir to generate heat through a chemical reaction.
The oil shale is then pyrolyzed via conduction heating [18]. At the same time,
a portion of the extracted natural gas is injected into the downhole heating
unit, allowing the oil shale reservoir to continue pyrolyzing, thus enabling
energy recycling.

The advantage of this method is that it is highly environmentally friendly
and allows for energy recycling, making the cost relatively low. However,
due to certain limitations, the heating rate is slow, and the heating period is
extended.

3. Oil shale electric heater

The electric heater, as the core component of electric heating technology,
has performance directly related to the efficiency and effectiveness of in situ
mining [29].

3.1. Research status of oil shale electric heaters

Downbhole electric heaters are core equipment for in situ mining of oil shale.
Their working principle involves generating heat through resistive elements
inside the electric heater, converting electrical energy into thermal energy,
which then heats the surrounding reservoir via thermal conduction, thereby
achieving efficient extraction of oil shale [30, 31]. Previous studies have
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Fig. 2. Y-type electric heater [33].

primarily focused on the impact of different structural configurations of
heaters on performance.

The Y-type electric heater is shown in Figure 2. Shell applied this electric
heater in the experimental project of in situ electric heating extraction
technology for oil shale (E-ICP) in 2006, laying the foundation for the
subsequent development of oil shale electric heaters [32].

Wang et al. [33] designed U-type and LU-type electric heaters based on the
Y-type electric heater, as shown in Figure 3a and b. U-type heaters are suitable
for extracting thin-layer oil shale, but this type of heater requires drilling
multiple horizontal and directional wells during implementation, resulting
in high construction costs and significant complexity. The LU-type electric
heater uses a linear arrangement of three heaters, electrically connected to the
surface and horizontal wells through wires and contact elements, forming a
tripartite structure. This design provides more flexible and diverse electrical
connection options, significantly reducing construction difficulty. However,
its linear arrangement has inherent drawbacks when heating oil shale layers,
resulting in suboptimal thermal efficiency.
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Fig. 3. (a) U-type electric heater; (b) LU-type electric heater [33].

Figure 4a and b illustrate two types of downhole electric heaters developed
by Ojeda and Parman [34]: the mineral insulated (MI) electric heater and
the constant wattage (CW) electric heater. The MI electric heater exhibits
high-temperature resistance and strong corrosion resistance, making it an
ideal choice for deep well environments with high temperatures and strong
corrosion, but its manufacturing cost is relatively high. The CW electric
heater is specifically designed for geothermal decomposition reactions in
medium-deep (burial depth >350 m) low-permeability tight rock formations,
serving as an optimal solution for medium-deep low-permeability oil and gas
reservoirs under geologically stable, moderately corrosive, and explosion-
proof conditions. However, it features a complex structure, high installation
difficulty, requires periodic replacement of seals, and carries a risk of scaling.
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Fig. 4. (a) MI electric heater; (b) CW electric heater [34].

Xie [35] designed an electromagnetic induction heater for downhole
applications. Its core principle involves first converting electrical energy
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into electromagnetic energy using an intermediate-frequency power supply,
then transforming the electromagnetic energy into thermal energy via heating
elements, ultimately generating high-temperature steam.

The conventional segmental baffle electric heater is widely used and has
a simple structure, but there is a flow dead zone on the leeward side of the
segmental baffle, resulting in poor overall performance [36, 37]. To overcome
this defect, Lutcha and Nemcansky [38] successfully developed a helical
baffle structure. This design effectively eliminates the flow dead zone, causing
the fluid in the shell side to exhibit a nearly plug flow pattern, significantly
improving heat transfer efficiency and achieving flow uniformity, thereby
greatly enhancing overall performance.

The helical baffle electric heater uses electric heating rods as the heat
source, heating the shell-side air to a high-temperature state through an
enhanced heat transfer structure and injecting it into the formation. The helical
baftle can strengthen the shell-side heat transfer capability of the enhanced
heat exchange structure by increasing the shell-side turbulence effect and
prolong the heater’s lifespan [39]. Guo et al. [40] were the first to successfully
apply a heat transfer structure with continuous helical baffles to the in situ
pyrolysis of oil shale. Through experiments and numerical simulations, they
found that compared to traditional segmental baffle structures, the continuous
helical baffle structure achieves more uniform shell-side flow and higher
heating efficiency. Therefore, in terms of long-term operational stability, the
continuous helical baffle heater is more suitable for downhole heating.

By introducing a continuous helical baffle structure, the heat transfer
efficiency and heating uniformity of the electric heater are significantly
improved. Additionally, a design incorporating a double-shell structure can
further enhance heating efficiency and effectively reduce heat loss [41]. Wang
et al. [42] developed a double-shell downhole electric heater (DS-DEH) with
continuous helical baffles. This heater directs air to flow sequentially through
the inner and outer shell channels, not only reducing the heat loss associated
with single-shell electric heaters but also recycling the heat to preheat the
incoming air. They compared its performance with that of a single-shell heater
through experiments. The results show that the double-shell structure reduces
total heat loss by 87.16-96.41%, increases heating efficiency by 1.06-1.17
times, and effectively improves overall heating performance.

Liu et al. [43] further conducted numerical simulations to analyze the
performance of downhole electric heaters with continuous helical baffles.
First, they constructed separate physical models for the downhole heater
and oil shale heating process. Then, numerical simulations of these models
were performed using Fluent software. The results show that the heater
achieves optimal performance at a power of 10 kW and a mass flow rate
of 0.01624 kg/s. Among the tested configurations, Model IV exhibited the
shortest heating time, the fastest oil production rate, and the lowest cumulative
power consumption.
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Chen et al. [44] proposed an innovative design for a downhole electric
tubular resistive heater. This heater features a novel structure in which the
heating fluid flows through multiple parallel tubes, and enhances heat transfer
performance by optimizing parameters such as the inner diameter, length,
and inlet flow rate of the heating tubes. This design provides a more efficient
solution for in situ oil shale extraction.

Oil shale electric heaters are evolving toward higher efficiency and lower
energy consumption (Table 1). Structural optimizations (such as helical baffle
and double-shell designs) and the application of new technologies are key
to enhancing heating performance. Numerical simulations play a crucial role
in optimizing design and operational parameters. Future research should
continue to focus on developing more efficient, stable, and geologically
adaptable electric heaters to advance the industrialization of in situ oil shale
extraction via electric heating technology.

3.2. Optimizing electric heaters with numerical simulation

In the ongoing development of electric heating extraction technology for oil
shale, the electric heater, as the core equipment, must be continually optimized.
Although traditional experimental research methods can provide valuable
data, they are often costly, time-consuming, and ill-suited for thoroughly
exploring the effects of various factors under complex conditions. With
advances in computer technology, numerical simulation plays an increasingly
important role in optimizing the design of electric heaters [45]. It can quickly
and flexibly adjust and analyze various parameters in a virtual environment,
providing strong technical support for improving the performance of electric
heaters.

Yang et al. [29] used the Partial Differential Equation (PDE) of MATLAB
to simulate the temperature distribution of electric heaters and concluded
that heat production, density, and heat capacity have a significant impact
on temperature distribution, whereas the effect of thermal conductivity
can be ignored. Heater temperature rises significantly with increasing heat
production and heater radius, while higher heat capacity uniformly lowers
overall temperature. In addition, they identified copper and stainless steel as
preferred heating materials. The optimal design of the heater was found to be
an axisymmetric U-tube equipped with a vacuum heating tube.

Zeng et al. [46] used the PDE toolbox of MATLAB to simulate the
temperature distribution of electric heaters. They analyzed the effects of key
parameters such as thermal conductivity, heat source density, density, specific
heat capacity, and heater size on the thermal effect, aiming to provide a basis
for optimizing the design of electric heaters. The research results showed that
using materials with lower heat density can improve the heating efficiency
of the heater; the effect of thermal conductivity on temperature is relatively
small; the higher the specific heat capacity, the lower the overall temperature
of the heater; and the temperature of the heater will significantly rise with the
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increase of heat source density. Through orthogonal experimental analysis, it
was found that heat source density, density, and specific heat capacity have a
significant effect on the temperature distribution of the heater, while the effect
of thermal conductivity is smaller. In addition, the temperature of the heater
rises with the increase of the radius.

Bu et al. [47] conducted a numerical heat transfer simulation on large-scale
spiral baffle underground heaters, and the results showed that the gas heating
process of the heater can be divided into three stages: rapid heating, stable
heating, and overheating, determined by the temperature distribution and
temperature change on the surface of the heating rod. Due to the large volume
of the heater, a larger volume and area can be used for heating the heating rod,
thereby enhancing the heating performance of the heater.

Numerical simulation provides a new perspective and an efficient means
for the optimization of oil shale electric heaters. Through simulation analysis
of different parameters, researchers can gain a deeper understanding of the
influence mechanisms of various factors on the performance of electric heaters,
thereby providing a scientific basis for designing more efficient, stable, and
energy-saving electric heaters.

4. Conclusions

Although mainstream electric heating technologies have introduced new
possibilities for in situ oil shale extraction, the industrialization process
remains constrained by bottlenecks in the energy efficiency and stability of
electric heating equipment. This paper presents an in-depth exploration of
the structural types, performance characteristics, and numerical simulation
applications of electric heaters, drawing the following conclusions:

1. Optimizing the performance of electric heaters is the key breakthrough
for enhancing heating efficiency. Current mainstream electric heating
technologies (ICP, Electrofrac™, GFC, and HVF) differ in heating
mechanisms but commonly face challenges such as slow heating rates, long
heating cycles, and limited geological adaptability. Future breakthroughs
need to focus on the electric heater itself: first, by improving heat transfer
uniformity and energy utilization through structural innovation; second,
by developing high-performance materials and new heating modes to
withstand the high-temperature, high-pressure environments of deep
reservoirs, thus achieving a synergistic improvement in heating efficiency
and equipment lifespan.

2. Numerical simulation is driving electric heater design toward refinement
and intelligence. Through multi-parameter coupling analysis (thermal
conductivity, heat source density, material property parameters),
numerical simulation technology accurately quantifies the influence
of various factors on temperature field distribution and heat transfer
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efficiency, becoming a crucial tool for optimizing electric heater design.
With the integration of multi-physics coupling simulations and machine
learning algorithms, numerical simulation will accelerate performance
improvements in electric heaters, promoting a leap forward in the
development of high-efficiency, intelligent in situ oil shale extraction
technologies.
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