Oil shale electric heater and its optimization: a review

Xiaoliang Zhao^{(a,b)*}, Shuang Liang^(c), Yi Pan^(c), Zhance Yang^(a)

- (a) Department of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102200, China
- (b) State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102200, China
- ^(c) College of Oil and Gas Engineering, Liaoning Petrochemical University, Fushun 113001, China

Received 3 May 2025, accepted 15 October 2025, available online 20 October 2025

Abstract. Oil shale is a type of unconventional energy with abundant reserves. In the in situ mining technology of oil shale, electric heating technology has become a research hotspot due to its multiple advantages, and electric heater is the core of this technology. Despite growing interest in electric heating for in situ oil shale extraction, there remains a lack of comprehensive reviews that *focus specifically on the electric heater – its types, performance characteristics,* and design optimization strategies. In this paper, the oil shale electric heater is taken as the research object. First, the four mainstream oil shale electric heating technologies – Shell's in situ conversion process, ExxonMobil's ElectrofracTM, geothermal fuel cell, and high-voltage power frequency electric heating technology – are analyzed, and their principles, characteristics, and limitations are elaborated in detail. Subsequently, the research status of electric heaters is discussed in depth, covering various types of heaters and their performance, and existing problems are identified. The key role of numerical simulation technology in the optimal design of electric heaters is emphasized. In the future, structural innovation and numerical simulation technology should be leveraged to further optimize the performance of oil shale electric heaters, continuously improving their heat efficiency, thereby promoting their extensive application in industrial fields.

Keywords: oil shale electric heater, in situ mining, electric heating technology, numerical simulation.

^{*} Corresponding author, shiyou_nengyuan@163.com

^{© 2025} Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0).

1. Introduction

Energy is the driving force behind social production and the advancement of people's lives, making it highly significant for social and economic development. With the continuous depletion of traditional petroleum energy reserves, the development and utilization of unconventional energy sources have gradually gained attention [1–3]. Among them, oil shale is a type of unconventional energy with abundant reserves. Its proven shale oil reserves worldwide are about 457 billion tons, which is equivalent to 5.4 times the recoverable reserves of natural crude oil. Therefore, it is also considered as an important alternative energy source to oil [4, 5]. Through the exploitation of oil shale, shale oil is obtained by condensation and recovery from the retorting process [6]. Diesel and gasoline fractions can be extracted through deep hydrogenation, which can replace part of conventional oil and natural gas and can be directly used in ships, automobiles, and other industrial fields, greatly alleviating the pressure on energy supply [7].

At present, conventional oil shale mining methods, both domestic and international, are divided into above-ground retorting and in situ mining. In above-ground, oil shale is first mined and then heated in a retorting furnace, producing shale oil, pyrolysis oil and gas, and solid residual coke through pyrolysis. This method presents problems such as high energy consumption, environmental pollution, and low resource utilization [8–10]. In contrast, in situ mining involves directly heating the underground oil shale layer to extract oil and gas. It offers the advantages of high product quality, improved oil recovery, a small surface footprint, and reduced environmental protection, making it suitable for deep and thick oil shale reservoirs [11, 12].

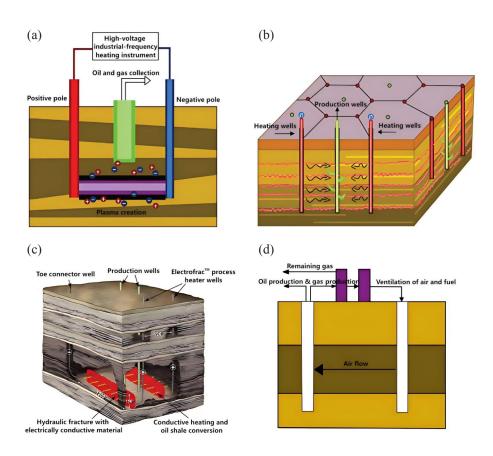
The core of in situ mining lies in heating the oil shale reservoir. Depending on the heating technology used, it can be divided into electric heating, fluid heating, radiation heating, and combustion heating [13, 14]. Among these, electric heating stands out due to its simple operation, convenient construction, small footprint, adjustable temperature, and wide application range. It has become the preferred solution for industrial applications [15].

Current mainstream electric heating technologies include Shell's in situ conversion process (ICP) [16], ExxonMobil's Electrofrac™ [17], Independent Energy Partners' (IEP) geothermal fuel cell (GFC) technology [18], and high-voltage power frequency electric heating (HVF) technology [19]. These technologies all rely on electric conduction heating to pyrolyze oil shale, but they differ significantly in heating efficiency, operational cycles, and engineering adaptability. Therefore, it is necessary to systematically review their principles and limitations to clarify the future direction of electric heating technologies. It is worth noting that, as the core component of electric heating systems, the performance of electric heaters directly affects heating efficiency and system stability [20]. However, existing heaters face challenges such as local overheating, high energy consumption, and maintenance difficulties.

Technical breakthroughs still need to be achieved through material innovation, structural optimization, and numerical simulation.

Although some progress has been made in the research on electric heating technology, there is no systematic review of its core component – the electric heater. This paper focuses on the oil shale electric heater. First, the principles, characteristics, and limitations of four representative electric heating technologies are analyzed. Second, the current research status and directions for optimization of electric heaters are summarized. Finally, the supporting role of numerical simulation in heater design is discussed to provide a theoretical reference for the industrial application of in situ electric heating technology in oil shale extraction.

2. Oil shale electric heating technology


2.1. Principle of electric heating technology for oil shale

The oil shale electric heating method is represented by Shell's ICP technology, ExxonMobil's Electrofrac[™] technology, IEP's GFC, and the in situ HVF technology developed by Jilin University and Tomsk University of Technology [21]. The following section analyzes the principles and limitations of these four electric heating technologies.

As shown in Figure 1(a), the in situ mining technology using high-voltage, industrial-frequency electric heating is a conduction heating method [22]. Boreholes are drilled into the oil shale reservoir, and positive and negative electrodes are placed into separate boreholes. A high voltage is applied between the electrodes to change and carbonize the underground pool, thereby reducing its electrical resistance. Then, using industrial-frequency electricity, a current is introduced into the reservoir through the pre-installed electrodes. This current heats the oil shale through the ionophore channel formed in front and the reduced resistance. Finally, hydrocarbons generated by pyrolysis are extracted through a production well.

The advantages of this technology include fast heating speed, short heating cycle, and low pollution. Compared with traditional oil shale heating and pyrolysis technologies, this method achieves in situ heating through drilling, eliminating the need for surface mining and processing, thereby reducing the ecological damage caused by excavation in conventional methods, as well as the pollution from waste gases and wastewater generated by surface pyrolysis. The disadvantage is the short effective distance of the heating process, which is still in the experimental development and perfection stage and requires further research and optimization.

As shown in Fig. 1b, the ICP technology is a conduction heating method [23]. This technology was developed by Shell Netherlands [16]. The principle involves installing heating cables in the target heating zone of the oil shale reservoir, setting the power and temperature of the electric heater,

Fig. 1. Conduction heating technology: (a) high-voltage industrial-frequency electric heating technology; (b) ICP technology [28]; (c) Electrofrac[™] technology [28]; (d) IEP's GFC technology.

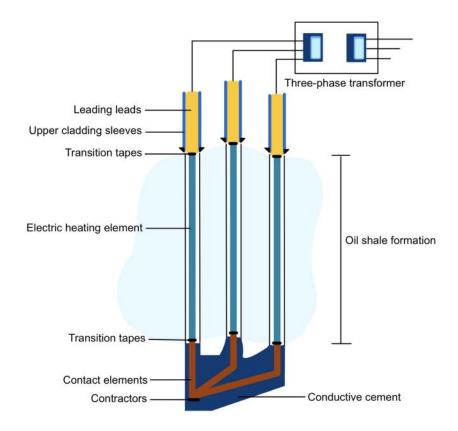
and cracking the oily kerogen in the reservoir through conduction heating to produce light oil shale oil and natural gas. Moreover, the pyrolysis process simultaneously improves the permeability and porosity of the reservoir, creating percolation channels for transporting the produced hydrocarbons [24]. Finally, with the help of production wells, the pyrolyzed light oil and gas are extracted from the subsurface using conventional oil recovery processes [25]. This is one of the most mature techniques currently applied in practice.

Shell's ICP in situ recovery technology has the advantages of high recovery rates, a small footprint, direct heating of deep oil shale, and adequate environmental protection compared to conventional dry distillation technology. However, since this technology relies on heat transfer to heat the reservoir, there are inherent limitations that lead to a long development cycle, with a typical heating time of about two to four years and a low energy utilization rate [26].

The ElectrofracTM technology (Fig. 1c) is an in situ extraction method developed by ExxonMobil in the United States [17, 27]. It involves fracturing the subsurface oil shale reservoir, to create a number of cracks. Then, conductive proppant is injected into the fractures to form electrically conductive heaters within the oil shale reservoir. Using the pre-designed electric heating wells and specified electric heating power, the reservoir is heated through conduction [28]. As the oil shale is heated by heat transfer, the kerogen in the pool is fractured. Eventually, the resulting light oil and natural gas are extracted through production wells.

The advantage of this technology is that by employing fractures with conductive proppant, a heating plane is formed, which provides a more extensive heating range and higher heating efficiency than the linear heating of ICP in situ extraction technology. It also requires a relatively small number of heating wells and has less impact on the surface environment. However, a disadvantage is that although the heating time is shorter than that of ICP, it still involves long heating cycles and slow heat transfer. Additionally, a freeze wall must be designed to protect the heating layer.

As shown in Figure 1d, GFC technology is an in situ extraction method developed by the Institute for Clean and Secure Energy in the U.S. In this method, a fuel cell is used as the heating medium. A fuel cell device is installed in an underground oil shale reservoir, and fuel (natural gas) and air are introduced into the reservoir to generate heat through a chemical reaction. The oil shale is then pyrolyzed via conduction heating [18]. At the same time, a portion of the extracted natural gas is injected into the downhole heating unit, allowing the oil shale reservoir to continue pyrolyzing, thus enabling energy recycling.


The advantage of this method is that it is highly environmentally friendly and allows for energy recycling, making the cost relatively low. However, due to certain limitations, the heating rate is slow, and the heating period is extended.

3. Oil shale electric heater

The electric heater, as the core component of electric heating technology, has performance directly related to the efficiency and effectiveness of in situ mining [29].

3.1. Research status of oil shale electric heaters

Downhole electric heaters are core equipment for in situ mining of oil shale. Their working principle involves generating heat through resistive elements inside the electric heater, converting electrical energy into thermal energy, which then heats the surrounding reservoir via thermal conduction, thereby achieving efficient extraction of oil shale [30, 31]. Previous studies have

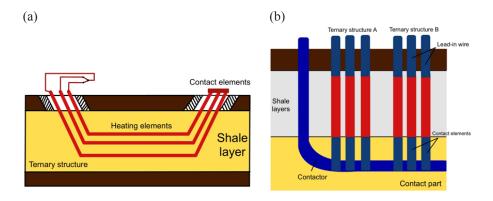
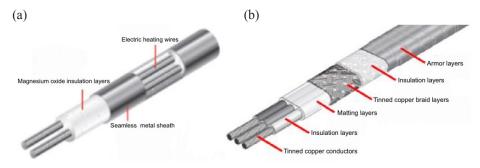


Fig. 2. Y-type electric heater [33].

primarily focused on the impact of different structural configurations of heaters on performance.


The Y-type electric heater is shown in Figure 2. Shell applied this electric heater in the experimental project of in situ electric heating extraction technology for oil shale (E-ICP) in 2006, laying the foundation for the subsequent development of oil shale electric heaters [32].

Wang et al. [33] designed U-type and LU-type electric heaters based on the Y-type electric heater, as shown in Figure 3a and b. U-type heaters are suitable for extracting thin-layer oil shale, but this type of heater requires drilling multiple horizontal and directional wells during implementation, resulting in high construction costs and significant complexity. The LU-type electric heater uses a linear arrangement of three heaters, electrically connected to the surface and horizontal wells through wires and contact elements, forming a tripartite structure. This design provides more flexible and diverse electrical connection options, significantly reducing construction difficulty. However, its linear arrangement has inherent drawbacks when heating oil shale layers, resulting in suboptimal thermal efficiency.

Fig. 3. (a) U-type electric heater; (b) LU-type electric heater [33].

Figure 4a and b illustrate two types of downhole electric heaters developed by Ojeda and Parman [34]: the mineral insulated (MI) electric heater and the constant wattage (CW) electric heater. The MI electric heater exhibits high-temperature resistance and strong corrosion resistance, making it an ideal choice for deep well environments with high temperatures and strong corrosion, but its manufacturing cost is relatively high. The CW electric heater is specifically designed for geothermal decomposition reactions in medium-deep (burial depth >350 m) low-permeability tight rock formations, serving as an optimal solution for medium-deep low-permeability oil and gas reservoirs under geologically stable, moderately corrosive, and explosion-proof conditions. However, it features a complex structure, high installation difficulty, requires periodic replacement of seals, and carries a risk of scaling.

Fig. 4. (a) MI electric heater; (b) CW electric heater [34].

Xie [35] designed an electromagnetic induction heater for downhole applications. Its core principle involves first converting electrical energy

into electromagnetic energy using an intermediate-frequency power supply, then transforming the electromagnetic energy into thermal energy via heating elements, ultimately generating high-temperature steam.

The conventional segmental baffle electric heater is widely used and has a simple structure, but there is a flow dead zone on the leeward side of the segmental baffle, resulting in poor overall performance [36, 37]. To overcome this defect, Lutcha and Nemcansky [38] successfully developed a helical baffle structure. This design effectively eliminates the flow dead zone, causing the fluid in the shell side to exhibit a nearly plug flow pattern, significantly improving heat transfer efficiency and achieving flow uniformity, thereby greatly enhancing overall performance.

The helical baffle electric heater uses electric heating rods as the heat source, heating the shell-side air to a high-temperature state through an enhanced heat transfer structure and injecting it into the formation. The helical baffle can strengthen the shell-side heat transfer capability of the enhanced heat exchange structure by increasing the shell-side turbulence effect and prolong the heater's lifespan [39]. Guo et al. [40] were the first to successfully apply a heat transfer structure with continuous helical baffles to the in situ pyrolysis of oil shale. Through experiments and numerical simulations, they found that compared to traditional segmental baffle structures, the continuous helical baffle structure achieves more uniform shell-side flow and higher heating efficiency. Therefore, in terms of long-term operational stability, the continuous helical baffle heater is more suitable for downhole heating.

By introducing a continuous helical baffle structure, the heat transfer efficiency and heating uniformity of the electric heater are significantly improved. Additionally, a design incorporating a double-shell structure can further enhance heating efficiency and effectively reduce heat loss [41]. Wang et al. [42] developed a double-shell downhole electric heater (DS-DEH) with continuous helical baffles. This heater directs air to flow sequentially through the inner and outer shell channels, not only reducing the heat loss associated with single-shell electric heaters but also recycling the heat to preheat the incoming air. They compared its performance with that of a single-shell heater through experiments. The results show that the double-shell structure reduces total heat loss by 87.16–96.41%, increases heating efficiency by 1.06–1.17 times, and effectively improves overall heating performance.

Liu et al. [43] further conducted numerical simulations to analyze the performance of downhole electric heaters with continuous helical baffles. First, they constructed separate physical models for the downhole heater and oil shale heating process. Then, numerical simulations of these models were performed using Fluent software. The results show that the heater achieves optimal performance at a power of 10 kW and a mass flow rate of 0.01624 kg/s. Among the tested configurations, Model IV exhibited the shortest heating time, the fastest oil production rate, and the lowest cumulative power consumption.

Table 1. Classification, heating method, efficiency, cost, complexity, and field applicability of some oil shale electric heaters

Field applicability	Applicable to thick oil shale layers	Applicable to thin-layer oil shale	Moderate adaptability to oil shale formations	Suitable for deep wells with high temperatures and highly corrosive environments	Applicable to unconventional resource development in medium-deep formations
Complexity	Complex structure requiring multi-well collaborative construction; difficult to repair	Compact structure; requires multiple horizontal and directional wells, making implementation complex	Structurally diverse; low implementation difficulty	Simple structure; long service life; extremely low structural risk	Complex structure; requires regular seal maintenance; moderate scaling risk
Cost	Moderate equipment cost; relatively high energy consumption expenses	High construction cost; energy-efficient operation with good long-term economic performance	High construction cost; low operation and maintenance expenses	High initial cost; low operation and maintenance expenses	Moderate equipment cost
Efficiency	Relatively low thermal conductivity efficiency due to electrical resistance	High thermal efficiency due to large contact area and uniform heat distribution	Relatively low heating efficiency due to linear arrangement and uneven heat distribution	High thermal efficiency; insulation reduces heat loss	Thermal efficiency >90%
Heating	Conduction	Conduction	Conduction	Conduction	Forced convection heating
Electric heater	Y-type electric heater	U-type electric heater	LU-type electric heater	MI electric heater	CW electric heater

Table 1 (continued)

Field applicability	Applicable to vertical wells; not applicable to horizontal wells	Widely used in industrial heat exchange applications	Suitable for high-viscosity fluids (e.g., crude oil); reduces scaling and vibration	Suitable for high-temperature heat injection in underground wells; reduces heat loss	Outlet temperature up to 900 °C; suitable for complex downhole conditions
Complexity	Easy installation; requires customized temperature control system	Simple construction; no complex processes involved	Complex tube bundle assembly; pitch design affects flow field optimization	Complex double-casing structure; requires coordinated flow field optimization with packers	Simple structure without enhanced components
Cost	High equipment cost, energy-saving rate up to 48%	Low manufacturing cost due to simple structure	Higher processing and manufacturing costs	5–10% higher cost than that of single-shell heaters, saves 20–30% heat exchange area	Moderate initial cost; 5% saving in heating materials; >10-year service life
Efficiency	Thermal efficiency ≥98%	Lower heat exchange efficiency compared to helical baffle design	Higher heat transfer coefficient and improved overall performance vs. segmental design	Heating efficiency 1.06–1.17 times that of single-shell heaters	Thermal efficiency >90%; performance improved by 40%
Heating method	Radiation	Forced convection heating	Forced convection heating	Forced convection + radiation heating	Conduction
Electric heater	Downhole electro- magnetic heater	Segmental baffle electric heater	Helical baffle electric heater	DS-DEH (double- shell downhole electric heater)	Innovative downhole electric tubular resistive heater by Chen et al. [44]

Chen et al. [44] proposed an innovative design for a downhole electric tubular resistive heater. This heater features a novel structure in which the heating fluid flows through multiple parallel tubes, and enhances heat transfer performance by optimizing parameters such as the inner diameter, length, and inlet flow rate of the heating tubes. This design provides a more efficient solution for in situ oil shale extraction.

Oil shale electric heaters are evolving toward higher efficiency and lower energy consumption (Table 1). Structural optimizations (such as helical baffle and double-shell designs) and the application of new technologies are key to enhancing heating performance. Numerical simulations play a crucial role in optimizing design and operational parameters. Future research should continue to focus on developing more efficient, stable, and geologically adaptable electric heaters to advance the industrialization of in situ oil shale extraction via electric heating technology.

3.2. Optimizing electric heaters with numerical simulation

In the ongoing development of electric heating extraction technology for oil shale, the electric heater, as the core equipment, must be continually optimized. Although traditional experimental research methods can provide valuable data, they are often costly, time-consuming, and ill-suited for thoroughly exploring the effects of various factors under complex conditions. With advances in computer technology, numerical simulation plays an increasingly important role in optimizing the design of electric heaters [45]. It can quickly and flexibly adjust and analyze various parameters in a virtual environment, providing strong technical support for improving the performance of electric heaters.

Yang et al. [29] used the Partial Differential Equation (PDE) of MATLAB to simulate the temperature distribution of electric heaters and concluded that heat production, density, and heat capacity have a significant impact on temperature distribution, whereas the effect of thermal conductivity can be ignored. Heater temperature rises significantly with increasing heat production and heater radius, while higher heat capacity uniformly lowers overall temperature. In addition, they identified copper and stainless steel as preferred heating materials. The optimal design of the heater was found to be an axisymmetric U-tube equipped with a vacuum heating tube.

Zeng et al. [46] used the PDE toolbox of MATLAB to simulate the temperature distribution of electric heaters. They analyzed the effects of key parameters such as thermal conductivity, heat source density, density, specific heat capacity, and heater size on the thermal effect, aiming to provide a basis for optimizing the design of electric heaters. The research results showed that using materials with lower heat density can improve the heating efficiency of the heater; the effect of thermal conductivity on temperature is relatively small; the higher the specific heat capacity, the lower the overall temperature of the heater; and the temperature of the heater will significantly rise with the

increase of heat source density. Through orthogonal experimental analysis, it was found that heat source density, density, and specific heat capacity have a significant effect on the temperature distribution of the heater, while the effect of thermal conductivity is smaller. In addition, the temperature of the heater rises with the increase of the radius.

Bu et al. [47] conducted a numerical heat transfer simulation on large-scale spiral baffle underground heaters, and the results showed that the gas heating process of the heater can be divided into three stages: rapid heating, stable heating, and overheating, determined by the temperature distribution and temperature change on the surface of the heating rod. Due to the large volume of the heater, a larger volume and area can be used for heating the heating rod, thereby enhancing the heating performance of the heater.

Numerical simulation provides a new perspective and an efficient means for the optimization of oil shale electric heaters. Through simulation analysis of different parameters, researchers can gain a deeper understanding of the influence mechanisms of various factors on the performance of electric heaters, thereby providing a scientific basis for designing more efficient, stable, and energy-saving electric heaters.

4. Conclusions

Although mainstream electric heating technologies have introduced new possibilities for in situ oil shale extraction, the industrialization process remains constrained by bottlenecks in the energy efficiency and stability of electric heating equipment. This paper presents an in-depth exploration of the structural types, performance characteristics, and numerical simulation applications of electric heaters, drawing the following conclusions:

- 1. Optimizing the performance of electric heaters is the key breakthrough for enhancing heating efficiency. Current mainstream electric heating technologies (ICP, ElectrofracTM, GFC, and HVF) differ in heating mechanisms but commonly face challenges such as slow heating rates, long heating cycles, and limited geological adaptability. Future breakthroughs need to focus on the electric heater itself: first, by improving heat transfer uniformity and energy utilization through structural innovation; second, by developing high-performance materials and new heating modes to withstand the high-temperature, high-pressure environments of deep reservoirs, thus achieving a synergistic improvement in heating efficiency and equipment lifespan.
- 2. Numerical simulation is driving electric heater design toward refinement and intelligence. Through multi-parameter coupling analysis (thermal conductivity, heat source density, material property parameters), numerical simulation technology accurately quantifies the influence of various factors on temperature field distribution and heat transfer

efficiency, becoming a crucial tool for optimizing electric heater design. With the integration of multi-physics coupling simulations and machine learning algorithms, numerical simulation will accelerate performance improvements in electric heaters, promoting a leap forward in the development of high-efficiency, intelligent in situ oil shale extraction technologies.

Data availability statement

No new data were generated or analyzed in support of this review.

Acknowledgments

Xiaoliang Zhao contributed to conceptualization and funding acquisition; Shuang Liang was responsible for data curation and formal analysis; Zhance Yang contributed to validation and visualization. Yi Pan handled inspection and proofreading. Together, they completed the writing and final drafting of this manuscript. This work was supported by the National Natural Science Foundation of China (grant No. 52474060) – Microscopic scale shale oil startup mechanical mechanism. The publication costs of this article were partially covered by the Estonian Academy of Sciences.

References

- 1. Li, Y., Chiu, Y.-H., Lin, T.-Y. Research on new and traditional energy sources in OECD countries. *International Journal of Environmental Research and Public Health*, 2019, **16**(7), 1122–1143. http://dx.doi.org/10.3390/ijerph16071122
- Alvarez, G. E., Marcovecchio, M. G., Aguirre, P. A. Optimization of the integration among traditional fossil fuels, clean energies, renewable sources, and energy storages: an MILP model for the coupled electric power, hydraulic, and natural gas systems. *Computers & Industrial Engineering*, 2020, 139, 106141. https://doi.org/10.1016/j.cie.2019.106141
- 3. Xiao, D., Gao, Y., Peng, S., Wang, M., Wang, M., Lu, S. Classification and control factors of pore-throat systems in hybrid sedimentary rocks of Jimusar Sag, Junggar Basin, NW China. *Petroleum Exploration and Development*, 2021, **48**(4), 835–849. https://doi.org/10.1016/S1876-3804(21)60070-8
- 4. Lu, H. Development prospect on retorting technology in fluencing factors and industry of oil shale. *Chemical Engineer*, 2012, **8**, 42–45. https://doi.org/10.16247/j.cnki.23-1171/tq.2012.08.013
- 5. Xu, Z., Zhu, J., Dong, Q., Sun, P. Oil shale resources in China and their utilization. *Global Geology*, 2016, **19**(1), 48–54.

6. Bunger, J. B., Crawford, P. M., Johnson, H. R. Is oil shale America's answer to peak-oil challenge. *Oil & Gas Journal*, 2004, **8**, 16–24.

- Kang, Z. Q., Zhao, Y. S., Yang, D., Zhao, J., Wang, L. Pilot test of in-situ steam injection for oil and gas production from oil shale and applicability of multimode in-situ thermal recovery technology. *Acta Petrolei Sinica*, 2021, 42(11), 1458–1468. https://doi.org/10.7623/syxb202111005
- 8. Zhong, S., Tao, Y., Li, C., Li, T., Zhang, F., Sun, Y. Simulation and assessment of shale oil leakage during in situ oil shale mining. *Oil Shale*, 2014, **31**(4), 337–350. https://doi.org/10.3176/oil.2014.4.03
- Väizene, V., Valgma, I., Karu, V., Orru, M. Environmental impact of oil shale mining. *Environmental Earth Sciences*, 2016, 75, 1201. https://doi.org/10.1007/ s12665-016-5996-4
- Hiiemaa, H., Mustasaar, M., Kohv, M., Hang, T., Jõeleht, A., Lasberg, K. et al. Geological settings of the protected Selisoo mire (northeastern Estonia) threatened by oil shale mining. *Estonian Journal of Earth Sciences*, 2014, 63(2), 97–107. http://dx.doi.org/10.3176/earth.2014.09
- 11. Liu, D. X., Wang, H. Y., Zheng, D. W. Advances in in-situ exploitation of oil shale in the world. *Natural Gas Industry*, 2009, **5**(5), 128–132.
- 12. Feng, X. W., Chen, C., Chen, D. Y. New development of oil shale in-situ technology. *China Mining Magazine*, 2011, **20**(6), 84–87.
- 13. Li, N. Y., Wang, Y., Chen, F., Han, Y. L., Chen, W., Kang, J. Development status and prospects of in-situ conversion technology in oil shale. *Special Oil & Gas Reservoirs*, 2022, **29**(3), 1–8. https://doi.org/10.3969/j.issn.1006-6535.2022.03.001
- 14. Zhang, C., Meng, Q., Tang, X. Current situation and prospect of oil shale mining technology. *Mineral Exploration*, 2021, **12**(8), 1798–1805. https://doi.org/10.3969/j.issn.1674-7801.2021.08.012
- 15. Pan, Y., Fan, X. Research progress on electric heating technology for oil shale in situ mining. *Oil Shale*, 2024, **41**(4), 273–288. https://doi.org/10.3176/oil.2024.4.03
- 16. Vinegar, H. J. Shell's in-situ conversion process. In: *26th Oil Shale Symposium*, October 16–18, 2006, Colorado School of Mines, Golden, Colorado.
- 17. Tanaka, P. L., Yeakel, J. D., Symington, W. A., Spiecker, P. M., Del Pico, M., Thomas, M. M. et al. Plan to test ExxonMobil's in situ oil shale technology on a proposed RD& D lease. In: *31st Annual Oil Shale Symposium*, October 17–19, 2011, Colorado School of Mines, Golden, Colorado.
- 18. Dammer, A. R., Killen, J. J., Biglarbigi, K., Crawford, P. M., Johnson, H. Secure Fuels from Domestic Resources: The Continuing Evolution of America's Oil Shale and Tar Sands Industries. A report by Institute for Clean and Secure Energy to the United States Department of Energy, 2007.
- 19. Li, J. S. Experimental Study on Resistance and Electrode Materials with Oil Shale In-situ Pyrolysis by High Voltage-Power Frequency Electric Heating. Master's thesis. Jilin University, 2014.
- 20. Pan, Y., Fan, X., Yang, S., Hu, Z., Yan, Y. Oil shale pyrolysis and electric heating

- in situ mining technology improvements. *Oil Shale*, 2024, **41**(4), 257–272. http://dx.doi.org/10.3176/oil.2024.4.02
- 21. Li, L. L., Zhang, F. Current situation and suggestion of oil shale in-situ exploitation technology. *Chemical Engineering*, 2023, **37**(8), 71–75. https://doi.org/10.16247/j.cnki.23-1171/tq.20230871
- 22. Li, J. S., Sun, Y. H., Guo, W., Li, Q., Deng. S. H. Laboratory test of oil shale pyrolysis by high voltage-power frequency electric heating and the analysis on oxygen driving effect. *Drilling Engineering*, 2018, **45**(5), 13–17.
- Fowler, T. D., Vinegar, H. J. Oil shale ICP Colorado field pilots. SPE Western Regional Meeting, March 2009, San Jose, California. https://doi. org/10.2118/121164-MS
- Shell Frontier Oil and Gas Inc. E-ICP Test Project, Oil Shale Research and Development Project. Prepared for Bureau of Land Management, Houston, USA, 2006.
- 25. Brandt, A. R. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process. *Environmental Science & Technology*, 2008, **42**(19), 7489–7495. https://doi.org/10.1021/es800531f
- Liu, Z., Meng, Q., Dong, Q., Zhu, J., Guo, W., Ye, S. et al. Characteristics and resource potential of oil shale in China. *Oil Shale*, 2017, 34(1), 15–41. http:// dx.doi.org/10.3176/oil.2017.1.02
- 27. Soeder, D. J. The successful development of gas and oil resources from shales in North America. *Journal of Petroleum Science and Engineering*, 2018, **163**, 399–420. https://doi.org/10.1016/j.petrol.2017.12.084
- 28. Wang, Y. P., Wang, Y. W., Meng, X. L., Su, J. Z., Li, F. X., Li, Z. T. Enlightenment of American-s oil shale in-situ retorting technology. *Oil Drilling & Production Technology*, 2013, **35**(6), 55–59.
- 29. Yang, H., Gao, X. Q., Xiong, F. S., Zhang, J. L., Li, Y. J. Temperature distribution simulation and optimization design of electric heater for in-situ oil shale heating. *Oil Shale*, 2014, **31**(2), 105–120. http://dx.doi.org/10.3176/oil.2014.2.02
- 30. Gao, D. Some research advances in well engineering technology for unconventional hydrocarbon. *Natural Gas Industry B*, 2021, **9**(1), 41–50. https://doi.org/10.1016/j.ngib.2021.08.016
- 31. Wang, Z., Duan, Z., Yang, F., Ma, L. Downhole heaters for in-situ pyrolysis of tar-rich coals: a review and prospects. *Coal Geology & Exploration*, 2024, **52**(7), 35–45. https://doi.org/10.12363/issn.1001-1986.24.01.0009
- 32. Van Meurs, P., De Rouffignac, E. P., Vinegar, H. J., Lucid, M. F. *Conductively Heating a Subterranean Oil Shale to Create Permeability and Subsequently Produce Oil.* Patent CN87100890A, 1988.
- 33. Wang, S., Liu, D., Wang, H., Zhao, Q., Fang, C., Zheng, D. The current situation and development direction of electric heating technology of in-situ oil shale. *Natural Gas Industry*, 2011, **31**(2), 114–118. https://doi.org/10.3787/j.issn.1000-0976.2011.02.029
- 34. Ojeda, S. S., Parman, D. G. Use of electric downhole heaters to improve production and recovery of heavy, viscous oil in California and Venezuela. In:

SPE Kuwait Oil and Gas Show and Conference, October 8–10, 2013, Kuwait City, Kuwait. https://doi.org/10.2118/167347-MS

- 35. Xie, X. Theoretical Analysis and Experimental Study of Downhole Electromagnetic Induction Heater. Master's thesis. Southwest Petroleum University, 2017.
- 36. von Gaddis, E. S., Vogelpohl, A. On the effectiveness and the mean temperature difference of shell and tube heat exchangers with segmental baffles and two tube passes. *Chemical Engineering and Processing: Process Intensification*, 1984, **18**(5), 269–273. https://doi.org/10.1016/0255-2701(84)80010-0
- 37. Roetzel, W., Lee, D. Experimental investigation of leakage in shell-and-tube heat exchangers with segmental baffles. *International Journal of Heat and Mass Transfer*, 1993, **36**(15), 3765–3771. https://doi.org/10.1016/0017-9310(93)90057-D
- 38. Lutcha, J., Nemcansky, J. Performance improvement of tubular heat exchangers by helical baffles. *Chemical Engineering Research & Design*, 1990, **68**(A3), 263–270.
- 39. Guo, W., Sun, Y. H., Li, Q., Deng, S. H., Bai, F. T., Chen, C. et al. Oil shale insitu conversion technology triggered by topochemical reaction method and pilot test project in Songliao Basin. *Acta Petrolei Sinica*, 2024, **45**(7), 1104–1121, 1129. https://doi.org/10.7623/syxb202407006
- 40. Guo, W., Wang, Z., Sun, Z., Sun, Y., Lü, X., Deng, S. et al. Experimental investigation on performance of downhole electric heaters with continuous helical baffles used in oil shale in-situ pyrolysis. *Applied Thermal Engineering*, 2019, **147**, 1024–1035. https://doi.org/10.1016/j.applthermaleng.2018.11.013
- 41. Wang, Z. Study on Heat Transfer Performance and Heating Efficiency of Electric Heater with Continuous Helical Baffles for Oil Shale In-situ Conversion. PhD thesis. Jilin University, 2021.
- 42. Wang, Z., Lü, X., Li, Q., Sun, Y., Wang, Y., Deng, S. et al. Downhole electric heater with high heating efficiency for oil shale exploitation based on a double-shell structure. *Energy*, 2020, **211**, 118539. https://doi.org/10.1016/j.energy.2020.118539
- 43. Liu, H., Sun, T., Zhang, Y., Wu, B., Wang, Z., Fan, Y. Design of oil shale in-situ extraction heater structure and numerical simulation of the fracturing process. *Chemistry and Technology of Fuels and Oils*, 2023, **58**(6), 990–1004. http://dx.doi.org/10.1007/s10553-023-01481-0
- 44. Chen, Y., Zeng, H., Wang, J., Chen, H., Zhu, J. Heat transfer performance of a downhole electric tubular resistive heater. *Applied Sciences*, 2022, **12**(19), 9508. https://doi.org/10.3390/app12199508
- 45. Bai, Y., Shu, Y., Dang, H., Yun, Y., Tu, X., Zhang, L. et al. A review on the application of numerical simulation of oil shale electrical heating technology. *Chemistry and Technology of Fuels and Oils*, 2024, **60**(1), 69–79. http://dx.doi.org/10.1007/s10553-024-01658-1
- 46. Zeng, G., Wang, C., Yang, H. Simulation and design optimization of temperature distribution of in-situ heating electric heater for oil shale. *Oil Drilling &*

- *Production Technology*, **36**(5), 84–89. https://doi.org/10.13639/j. odpt.2014.05.020
- 47. Bu, Q., Li, Q., Li, X. Numerical heat transfer simulation of oil shale large-size downhole heater. *Applied Sciences*, 2024, **14**(6), 2235. http://dx.doi.org/10.3390/app14062235