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Results of 100 MHz 'H NMR study of melt condensation ofortho- and para-
methylolphenol mixture in different catalytic conditions and in the presence

of phenol are presented. Reaction rate and chemical composition of
intermediates and polvcondensates are the main points highlighted. Two

different mechanisms for alkali-catalyzed condensation and for conden-

sations in other catalytic conditions have been ascertained. The co-

condensation rate is dependent mainly on methylolphenol reactivity and

catalyst, and is similar in reactions with phenol and with the most abundant

component ofoil shale alkylresorcinols-5-methylresorcinol.

Introduction

Phenol-formaldehyde reaction proceeds through the first-step formation of

methylolphenols [l]. The product obtained in the resin synthesis practice
contains all possible five methylol derivatives and a certain amount of

precondensate. Monofunctionalized derivatives are the major species in this

mixture. However, the synthesis for the preparation of pure methylol
compounds proceeds by more convenient methods.

Co-condensation rate of synthesised methylolphenols with resorcinol and

with typical components of oil shale alkylresorcinols (5-methylresorcinol,
2,5-dimethylresorcinol) was evaluated by the first-order rate constants with

respect to methylol content [2, 3]. Phenolic precondensates can be charac-
terized by different NMR techniques ([4] with references). The identification

of co-condensates with different resorcinols [s] and with additional phenol
[6] by methylene 'H chemical shifts was successful in most cases.

The greater reactivity of resorcinols gives no possibility to the parallel
self-condensation of methylolphenols. Hence, е co-condensation

mechanism, independently of catalysis conditions, includes direct

substitution with ortho- and para-methylolphenol, mostly as 4 and 4,6-sub-
stitution n resorcinolic ring [2]. In case оЁ self-condensation оЁ

https://doi.org/10.3176/oil.1999.4.10

https://doi.org/10.3176/oil.1999.4.10


P. Christjanson et al.370

methylolphenols and homo-condensation with phenol, the direct substitution

т free ortho- and para-positions of methylol compound or phenol
predominates only in alkali-catalyzed reactions [6].

In other catalytic conditions the formation of dimethylene ether and

hemiformal intermediates according to the second-order kinetics precedes
the following methylene coupling of phenolic rings. The mechanism

accepted generally proposes the formaldehyde departure from dimethylene
ether [e.g. 7] with subsequent methylolation. It 1s not possible to support this

concept. The final isomeric distribution of methylenes enables to conclude

that the cleavage of ethers by unsubstituted ortho- and para-aromatic
positions (phenolysis) is the predominant coupling mechanism.

In this paper the results of condensation in systems containing
obligatorily both monomethylolphenols are presented. In some experiments
the phenol as an additional component was used. This enables to compare

the results of co-condensation with different phenolic substrates including
the main components of oil shale diatomic phenols.

Experimental

Used reagents: Ortho- and para-methylolphenol (o-MP; p-MP) were

synthesized and purified as described previously [2] and characterized by
their melting points (84 °C and 124 °C, correspondingly) and by 'H NMR

spectrum. Reagent-grade vacuum-redistilled phenol (P) was recrystallized
twice from n-hexane (m.p. 40.9 °C).
Studied systems: Three series of reactions in the melt at 120 °C were carried

out:

o The uncatalytic condensation of mixture o-MP/p-MP with molar ratio

2/1; 1/1; 1/2.

e — The condensation of o-MP/p-MP eguimolar mixture in the presence of

0.1 mole of NaOH, 0.02 mole of zinc acetate, and 0.1 mole of benzoic

acid.

o The condensation of o-MP/p-MP equimolar mixture with phenol (1/1/2)
in the presence of 0.1 mole of NaOH, 0.02 mole of zinc acetate, and 0.1

mole of benzoic acid.

Analysis: 100 MHz 'H NMR spectra were recorded to follow the reaction

rate and to determine the product composition. 'H chemical shifts for 20-

25 % solutions of samples in pyridine-ds were measured from internal

hexamethyldisiloxane and expressed in ppm from tetramethylsilane (TMS).
Quantitative changes in molar concentrations of components during the

reaction were calculated from the averages of integral intensities of

corresponding methylene proton signals. The molar concentrations of

methylols can be determined separately in the mixture by 'H methylene
signals for o-MP (5.16 ppm) and for p-MP (4.81 ppm).
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Results and Discussion

Some results characterizing the reaction course in different conditions are

presented in Table. The alkaline catalyst promotes the direct substitution in

free ortho- and para-positions of phenolic ring. In other conditions the

dimethylene ether formation 1$ е factor determining the rate and

constitution. The peculiarity of o-MP/p-MP condensation in comparison
with the condensation of individual methylol compound lies in the formation

of unsymmetrically substituted dimethylene ether. Two 'H methylene signals
of equal intensity at 4.86 and 4.58 ppm belong to o,p-ether. The same

signals for 0,0~ and p,p'-dimethylene ethers with different 'H chemical shifts

(4.95 and 4.47 ppm, respectively) can be assigned. Ether formation is, to

some extent, accompanied with hemiformal formation (5.31 and 4.92 ppm in

ortho- and para-position, respectively). The purpose was not in obtaining the

maximum methylene content. Hence, the methylene distribution shows that

in the products a random and different conversion step has taken place.

Uncatalyzed o-MP/p-MP Condensation

The condensation proceeds through the formation of dimethylene ethers

(Table). The favored formation of ether from o-MP is not so accentuated as

in case of individual condensation of o-MP in comparison with p-MP [6].
The maximum amount of o,p'-dimethylene ether ils quite constant. The ratio

ofo-MP/p-MP influences mainly the maximum content of 0,0~ and p,p'-di-
methylene ether. The hemiformal is formed preferably from p-MP. In case of

unequimolar mixture the methylol т shortage is expended entirely for

dimethylene ether formation, and the mixture contains the hemiformal

formed only from methylol in excess. The condensation course (example in

Fig. 1) is directed to the accumulation of ethers, as in uncatalytic conditions

the further reactions with participation of ethers occur slowly. No

formaldehyde release from ethers causing the change in the initial

ortho/para ratio is observed.

Fig. 1. Time dependence of molar composition of reaction mixture

о-МР/р-МР 1/1: | - 0-MP; 2 - p-MP; 3 - dimethylene ether; 4 - hemiformal;
5 - methylene
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Differently from p-MP condensation [6], in o-MP/p-MP condensation

there appears the possibility for the most preferred variant of phenolysis of

p,p-dimethylene ether by the free p-position of o-MP. It causes the change
in the isomeric composition of methylenes. The condensation rate of p-MP

in comparison with o-MP (1/1) by
second order Kinetics is more than

two times higher (examples in Fig.
2). The half-lives of methylol are

not very sensitive to the change in

the initial molar ratio of methylols.
So, the complicated kinetics of the

condensation, consisting of several

parallel and consequent reactions,

should rather be approximated to the

first order.

0-MP/p-MP Condensation in the Presence of Catalysts

The presence of an alkali catalyst causes a great change in condensation of

p-MP п the mixture with o-MP as compared to that of individual p-MP. The

reaction. of p-MP according to the first-order kinetics (Fig. 3) proceeds
through p-position of o-MP and o-positions of both methylol compounds
leaving no chance to p,p’-dimethylene ether formation with subsequent
formaldehyde release [6]. 0-MP reacts preferably with the same p-position
according to the first-order kinetics. The formation of o,0"-methylene
becomes more essential only after the occupation of the free p-position.
Alkali catalyst promotes the condensation of p-methylol in comparison with

o-methylol, and that is expressed in an increased ratio of corresponding rate

constants as compared to uncatalytic condensation (Table).
In other catalytic conditions reactions proceed through dimethylene ether

intermediate. The reduced maximum amount of dimethylene ethers 15 caused

by the increased rate of subsequent phenolysis reactions. Acid and especially
zinc acetate promote the phenolysis of p,p™-ether by para-position of o-MP.

The first order in case of o-MP condensation in the presence of zinc acetate

(Fig. 3) can be explained with a special ortho-directing role of this catalyst.
Intramolecular Zn-co-ordination bond system reveals as the rate-determining
factor. It is not essential whether there occur the self-condensation or

homocondensation with P [6], ог со-геаспоп with p-MP. Zinc acetate

promotes also the phenolysis of oo,o'-ether by ortho-position which reveals 10

a greater amount of 0,0-methylenes and in preferred acceleration of the

Fig. 2. Time dependence of molar

content —of methylol groups:

o-MP/p-MP 2/1 (I - o-MP; 2 -

p-MP), and o-MP/p-MP 1/2 (3 -

о-МР; 4 - р-МР)
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геаспоп оЁ о-МР in comparison with p-MP. Despite different condensation

mechanisms т the presence of NaOH and benzoic acid, both catalysts
promote the condensation of p-MP as compared to o-MP.

00-MP/p-MP Condensation with Phenol

In the resin practice, resolic phenol-formaldehyde prepolymers and phenol-
resorcinol(alkylresorcinol)-formaldehyde co-condensates are synthesized
predominantly in the presence of alkaline catalysts. The condensation is

controlled by the first order kinetics with respect to methylol concentration

in all cases (Examples in Fig 3). It gives a good possibility for comparison of

condensation of o-MP/p-MP mixture with different substrates. The

condensation rate with phenol (Table) is not much smaller as compared with

resorcinol (28.3/133.3- 10° min') апа with S-methyl-resorcinol
(28.0/106.7- 107 min™") [2]. By that the reaction with resorcinols occurs as a

pure co-condensation independently of conditions. The reaction with phenol
in the presence of an alkaline catalyst becomes simpler because of direct

substitution.

The predominant occurrence of methylene 'H signals at 3.80 and 4.35

ppm (Fig. 4) shows that alkali promotes the reaction with ortho- and para-

positions of phenol in comparison with these positions of methylolphenols.
Alkaline catalyst has little influence on the reaction rate of o-MP (Table).
Otherwise, the effect of this catalyst on the reactivity of p-MP is very great
promoting first of all the formation of p,p-methylenes. As the o0,0"-me-
thylene is the most unfavoured methylene isomer in the presence of an

alkaline catalyst, slow condensation of o-MP leads preferably to е

o,p"-methylene.

Fig. 3. Time dependence of molar content of methylol groups:

o-MP/p-MP/P/NaOH 1/1/2/0.1 (I - о-МР; 2 - р-МР);
o-MP/p-MP/ZnAc 1/1/0.02 (3 - 0-MP), and o-MP/p-MP/NaOH
1/1/0.1 (4 - 0-MP; 5 - p-MP)
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The presence of phenol does not change the

mechanism of condensation through
dimethylene ethers in other conditions. Two

signs showing the participation of free aromatic

positions of phenol and methylol compound
both т the condensation can be stressed. -The

signal in the upper field (3.77 ppm) is the result

of the p,p-methylene formation in the reaction

with para-position of o-MP (Fig 4). 0,0-
Methylene compounds give 'H signals at 4.36-

440 ppm and 4.26-4.28 ppm because of

different substituent effects in compounds with

phenol and methylolphenols. Zinc acetate is a

catalyst clearly increasing the amount of 0,0

methylenes m products. It should be mentioned

that zinc acetate promotes the formation of p,p-methylenes as well, and

therefore o,p"-methylenes are most unfavoured in the case of this catalyst.
The low rate of p-MP reaction in uncatalyzed conden-sation (Table)

enforces a part of p-MP (about 30 %) to react with higher rate by a direct

reaction (Fig. 5), аб which the formation of o,p’-methylenes prevails. At the

same time the phenolysis occurs

predominantly as the cleavage of

p,p-di-methylene ether by the

free aromatic para-position.
Zinc acetate promotes the high-
rate condensation of both

methylols, whereas the o-

methylol follows the first order

kinetics. The аса catalyst
enhances preferably the

condensation rate of p-MP
(Table). In case of o-MP the

presence of phenol retards the

reaction rate similarly to that

observed in condensation of

individual o-MP in phenol [6].

Fig. 4. Methylene region of 'H NMR spectra of final

co-condensates in pyridine-ds: o-MP/p-MP/P 1/1/2

(A - without catalyst; B - NaOH 0.1 ;C - ZnAc 0.02;

D - benzoic acid 0.1)

Fig. 5. Time dependence of molar content of

methylol groups: o-MP/p-MP/P 1/1/2 (I -

p-MP; 2 - о-МР); o-MP/p-MP/P/ZnAc
1/1/2/0.02 (3 - p-MP); o-MP/p-MP/P/benzoic
acid 1/1/2/0.1 (4 - p-MP; 5 - о-МР)
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Conclusions

1. Reaction rate and chemical structure of intermediates and

polycondensates were determined by 100 MHz '"H NMR spectra in melt

condensation of ortho- and para-methylolphenol mixture in different

catalytic conditions and in the presence of phenol.
2. The alkaline catalyst promotes the direct condensation reaction between

methylol and aromatic ortho- and para-position with favored p,p’- апа

o,p-methylene formation. A similar reaction rate and ratio of

р-МР/о-МР disappearance rate (3.8-4.7) is obtained in condensation

with different substrates (phenol, resorcinol, S-methylresorcinol).
3. In other catalytic conditions the formation of dimethylene ether and

hemiformal with subsequent phenolysis was ascertained whereas in the

studied case the formation of unsymmetrically substituted dimethylene
ether was peculiar to the process.

4. Alkaline and acid catalysts further p-MP condensation in comparison
with 0-MP. Zinc acetate promotes the condensation of both methylols
whereas the most unfavoured is the formation of o,p’-methylene.

5. Free aromatic positions of phenol and methylol compounds are both

active 1n condensation, whereas the alkali catalyst promotes е

participation of phenol in condensation.
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