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The temperature dependence of the kinematic viscosity for the solid heat

carrier (SHC) process kukersite shale oils is described by a fundamental
formula known for hydrocarbon oils. A viscosity matrix for the SHC process
shale oils has been compiled. The evaluation of the kinematic viscosity of
SHC process shale oil binary blends is discussed. It is shown that the

viscosity of SHC process “gas turbine” oil fraction — commercial fuel oil

blends can be evaluated by the standard blending calculation technique.
Contrary to this, when “gas turbine” oil fraction or commercial fuel oil are

blended with heavy SHC process shale oils (SES A and SEF B oils), the

experimental values of blend kinematic viscosity are always higher than the

calculated ones. For evaluation the difference between the experimental and

calculated values ofkinematic viscosity a simple equation can be used.

Estonian kukersite shale oil originated fuel oils are gaining more attention in

both Estonia and abroad as effective diluents for residual petroleum oils.

The chemical group composition of petroleum and Estonian kukersite

shale oils is fundamentally different: petroleum originated oils are princi-
pally made up of hydrocarbons, whereas shale oils are for the most part
made up of oxygen compounds, especially of resorcinol series phenols,
ketones and ethers. Due to the specific composition, associates (H-bond
complexes) form between phenolic compounds as proton donors and

ketones/ethers as proton acceptors.
Compared to conventional petroleum-originated fuel oils, the Estonian

kukersite shale oil distillates have a very low vanadium content, a low pour

point, good pumpability and a moderate sulfur content.

Nowadays there are two types of equipment employed for commercial

processing of kukersite oil shale. Direct (internal) heated vertical shaft

retorts (the Kiviter process) is a retort type to process large particle shale. As

the heat carrier the process gas combustion products are used, being diluted
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with cold semicoking gas. A special process, the SHC process (otherwise
known as the Galoter process), has been developed for retorting shale fines.

The SHC retort ils a rotary kiln type retort. As the heat carrier the shale ash is

used.

In the condensation (01l recovery) system of Kiviter retorts the shale oil

produced is separated into two fractions — light-middle and heavy oils. The

crude oil 1s diluted with its gasoline fraction and washed with water to

remove water-soluble phenols, solid particles and corrosive salts (chlorides),
and thereupon distilled into fractions. Ordinarily, the Kiviter shale oil

distillation unit produces three distillate fractions: light “diesel oil” fraction

(boiling range 180-230 °C), light gas oil fraction (boiling range 230-320 °C)
and heavy gas oil fraction (boiling range 320-360 °C). Distillation residue is

usually a coking feedstock.

The oil recovery system of SHC retorts is equipped with a special
fractionating column, and redistillation of recovered 01l is not used.

Ordinarily, the following fractions are produced: gasoline fraction, “gas
turbine” oil fraction, middle oil fraction and heavy oil fraction.

Shale oil originated commercial fuel oils are produced by blending
redistilled (the Kiviter process oils) or recovered (the SHC process oils)
fractions. Due to different conditions of oil recovery and fractionation, the

chemical composition and standard distillation characteristics of oil fractions

and their blends from the Kiviter and the SHC processes are also different.

In our previous paper [l], it was shown that for the kukersite shale oil

distillates from the Kiviter process the temperature dependence of the

kinematic viscosity 1s described with great accuracy by a fundamental

formula accepted for hydrocarbon oil blends [2, 3]:

loglogZ=A-BlogT

where Z is a function of the kinematic viscosity v (mm?/s);
T is the temperature (K);
A and B are the viscosity characterization constants, whose values

vary from one oil fraction to another.

If the kinematic viscosity exceeds 2.0 mm?/s, one can approximate that

Z= v+ 0.7 (mm?s)

When v > 0.9 mm?s, the function Z would accurately be represented as

follows:

Z=v+o7+C-D

where C = exp(-1.14883 - 2.65868y);

D = exp(-0.0038138 -12.5645v).

Equations (1)—(3) hold true in spite of the fact that shale oils are not made

up of hydrocarbons.
A viscosity matrix for shale oil distillates was also compiled.
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In paper (4], it was shown that the kinematic viscosity of shale distillate

oil blends from the Kiviter process can be evaluated by the standard blending
calculation technique, accepted for hydrocarbon oil blends. There is only one

exception: when the low-viscosity component is the light “diesel oil”

fraction, the experimental values of blend kinematic viscosity are always
higher than the calculated ones. In this event, the difference (A) between the

logarithms of experimental (v.,) and calculated (v..) values of blend

kinematic viscosity depends on the volume fraction (¢) of component oils (H
and L) а$ well as оп v, This dependence may be expressed by a simple
equation

A=Popup + OPP Verp

—И аР, Q 10gv.,,
PuPL

where P and Q are constants that depend on the chemical nature of the

component oils, but do not depend on component 01l proportion.
This phenomenon was explained as a result of different chemical group

composition of light “diesel oil” fraction and fractions with a boiling range

above 230 °C.

This study deals with viscosity properties of shale oil fractions and their

blends that are produced by retorting of the kukersite oil shale fines in SHC

retorts.

Experimental

The temperature dependence of kinematic viscosity for shale oil fractions

produced in SHC retorts and their blends was studied. Oil blends were

attained by blending of fractions produced at Estonian Power Plant (the town

of Narva).
The kinematic viscosity of the oils was determined in glass capillary

viscometers as established by generally accepted standard specifications
[5, 6]. For each oil fraction or blend the viscosity was measured, as

minimum, at 6-8 various temperatures.
For calculation of blend’s “theoretical” viscosity, the Wright standard

method [2, 3] was used. Viscosities found using a computer technique [4],
similar to that described by Huggins [7], are further interpreted as

“calculated” values (v.), contrary to the experimental ones (V.y,) measured

in laboratory. Compatibility of component oils and stability of blends were

evaluated by standardspot test procedure [B].

Viscosity of the SHC process shale oils. It was found that for the kukersite

shale oil produced in SHC retorts the temperature dependence of kinematic

viscosity can be described by a fundamental Equation (1). If the kinematic
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viscosity exceeds 2.0 mm’/s, function Z can be calculated by Equation (2).
When v > 0.9 mm’/s, the function Z would accurately be represented by
Equation (3).

Based on their own experiments, the authors have compiled a viscosity
matrix for SHC shale oils. The latter includes the area from 5.0 mm”s at

20 °C (from 3.0 mm?s at 40 °C) to 180 mm’/s at 50 °C, i.e. excluding the

SHC process heavy oil fraction that has a high content of solid particles.
The matrix contains 25 base oils (from No. 5 to No. 29) whose viscosity

characterization constants, A and B, are presented in Table 1.

Constants B characterize how drastically the viscosity of the oil depends
on temperature. The greater the value for B the more the viscosity depends
on temperature.

Constants B for shale oil fractions are, as a rule, greater than those of

petroleum originated oils having the same viscosity а{ а standard

temperature. In contrast to petroleum originated oils, the value of B for SHC

process shale oils does not icrease monotonously upon transition from one

base oil to another. B attains its minimum value in the case of base olil

No. 16, when at 50 °C the viscosity is 20 mm?s. For the Kiviter process

shale oil distillates in [l] it was found that B attains its maximum value in

the case of base oil No. 10.

The authors attribute this repugnance between the Kiviter and the SHC

process oils to the different conditions of oil recovery and fractionation.

In the Kiviter process distillate oils the concentration of resorcinol series

Base |Nominal A | Base |Nominal [A

oil No.| viscosity* oil No.|viscosity*

00 17 25.00 9.77336| 3.83524

01 18 30.00 ]10.19996| 3.99601

02 19 35.00 |10.54502 |4.12606

03 20 40.00 |10.83315|4.23464
04 21 50.00 |11.29396(4.40831

05 3.00 |10.59973 |4.34547 22 60.00 |11.65272|4.54352

06 4.00 |10.37814|4.22747 123 70.00 |11.85507| 4.61784

07 6.00 — |10.10616 |4.08259 124 80.00 ° |12.01819 |4.67755

08 8.00 9.63646| 3.99220125 100.0 112.28050| 4.77357

09 10.00 9.815993.92804|26 120.0 |12.48593|4.84876

10 12.00 9.7239413.87901| 27 140.0 |12.65381|4.91022
11 10.00 9.65668| 3.84318|28 160.0 |12.79518| 4.96196

12 12.00 9.56661 | 3.79521 129 180.0 ° |12.916911|5.00652

13 14.00 9.49443 |3.75676|30

14 16.00 9.43460|3.72490| 31

15 18.00 9.38377|3.69783|32

16 20.00 9.33976| 3.67439

* For base oils Nos. 05-10 the nominal viscosity is given at 40 °С ап for base oils

Nos. 11-29 at 50 °C.

Table 1. Viscosity Characterization Constants A and B

for SHC Process Shale Oils
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phenols, a specific group component of kukersite shale oil, has a maximum

value for fractions, the B for which is the greatest. The SHC process oils

have a minimum concentration of oxygen compounds, if the viscosity at

50 °C is 16-20 mm?s. If the viscosity does not exceed 16 mm?s, oxygen

compounds of SHC process oils are mainly made up of hydroxybenzene
series phenols and ketones. Resorcinol series phenols consist in SHC process
oils which have the viscosity higher than 20-24 mm?/s.

Concentration of resorcin series phenols in the SHC process oils having
high viscosity increases with increase of viscosity.

By using constants A and B from Table 1, it is possible to evaluate the

kinematic viscosity of the SHC process shale oils in a wide temperature
range (Table 2).

With the exception of the upper right hand corner of the table, which is

sectioned off by a dotted dividing line, the values of viscosity in Table 2

have been calculated using Equation (2) for function Z. In the area above the

dividing line, where v < 2, function Z has to be expressed by Equation (3).
For the area in the lower left hand of the table, separated by a dotted line,

experimental data do not exist. Therefore, the values of viscosity in this area

о1 No.

0sP0 381390 —243 202 171 147
06 |103 5200 400 318 259 216: |84

08 |1600 1104 800 604 472 379 311

14 |5654 3488 2299 16.00 1165 880 686

18 |1560 8241 4785 30.00 20.03 14.09 10.34
19 |2087 1042 |5787 3500 2270 1559 1123

23 |7941! 3041 1368— 70.00 39.72 2451 16.18

125| 1545 = 5209 :2118 100053233120 1977
26 |2181— — 6874 {2650 1200 6178 3526 2187

28 |3779 1068 i3781 160.0 7808 4271 2561
29 |4741— 1281 i4374 180.0 8591 46.17 2730

Table 2. Viscosity ofSHC Process Shale Oils
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of the table have been attained by extrapolation on Equations (1) and (2)
without experimental verifications.

Viscosity of the SHC process shale oil binary blends. Oil blends were

prepared by blending of SHC shale oil fractions produced commercially at

Estonian Power Plant (Table 3).

Fig. 1. Experimental (v,)
and calculated (v.,.) values

о? kinematic viscosity
(mm?/s) for “gas turbine” oil

fraction — commercial fuel

oil binary blends.

Volume fraction high

viscosity oil py: / — 0.10, 2 —

0.20, 3 — 0.29, 4 — 0.40, 5 —

0.60, 6 — 0.80

“Gas turbine”|Commercial|SES A oil|SEF B oilEер
Density at 20 °C, kg/m3 901.4 972.5 1019.8 1049.0

Flash point (closed cup), °C 55 26* 29 150*

Pour point, °C -58 -34 -17 0

Water, % 0.27 0.43 0.52 0.68

Ash, % 0.02 0.35 0.81 0.14

Sulfur, % 0.90 0.81 0.86 0.58

Sediment, % : 0 0 0.22 0.24

Constants of Eq. (1):
A ’ 10.66901 ! 9.32334 \ 11.67640 l 12.92720

B 4.38238 3.66564 4.55244| 5.01029

Kinematic viscosity, mm?/s:
20 °C 4.547 79.64 611.5 4834
40 °C 2.760 30.60 115.1 4429
50 °C 2.249 30.82 60.75 181.8

80 °C 1.381 8.475 14.93 27.44

Distillation, °C:
IBP 150 85

10 % 203 128

50 % 228 310

90 % 290 —

FBP 330 (98 %) | 365 (80 %)

* Орепсир.

Table 3. The SHC Process Shale Oil Fractions Used for Blending
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From results obtained it follows that the kinematic viscosity of “gas
turbine” oil fraction blends with commercial fuel oil can be evaluated by the

standard blending calculation technique, accepted for hydrocarbon oil blends

(Fig. 1). At all events, the differences between the experimental and

calculated values of blend viscosity are not so essential that the standard

calculation technique needs to be abandoned.

Contrary to this, for “gas turbine” oil fraction blends with SES A and

SEF B oils, as well as for blends of commercial fuel oil with SES A and

SEF B oils, the experimental values of kinematic viscosity are always higher
than the calculated ones (Fig. 2).

This phenomenon can be explained as a result of different group

composition, on the one hand, of “gas turbine” oil fraction and commercial

fuel oil, and, on the other hand, of SES A and SEF B oils. The formers are

more similar to petroleum originated hydrocarbon oils than to a typical shale

oil, whereas SES A and SEF B oils are mainly made up of oxygen

compounds, especially of resorcinol series phenols, ketones and ethers.

Fig. 2. Experimental (v.,) and calculated () values of kinematic viscosity
(mm?/s)for (a) “gas turbine” oil fraction — SEF B, and (b) commercial fuel oil —

SES A oil binary blends.

Volume fraction high viscosity oil ¢y: a: 1 —0.20, 2 -0.40, 3 - 0.60, 4 - 0.80; b:

1 - 0.40, 2 — 0.60, 3 - 0.80

Low viscosity High viscosity|P 5" I

component component

“Gas turbine” oil fraction| SES A ail 0.100 £0.024 [0.214 £ 0.028|0.065| 42

The same SEF B oil 0.152 +0.023 |0.341 +0.020|0.047 | 28
Commercial fuel oil SES Aoil = [-0.672 +0.049|0.573 + 0.030|0.045| 21

The same SEFBoil ]|-0.068 + 0.035|0.206 + 0.025|0.045| 28

*
)= 41/(]) HP L

= Numberofexperimental values ofblend viscosity.

Table 4. Constants P and Q for SHC Process Shale Oil Binary Blends
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Therefore the latters exhibit viscosity properties as a solution of associates

(“polymers”), i.e. make contribution to the blend’s viscosity according to

their degree of association.

For these blends the difference A between the logarithms of vy, and v,

can be approximated by Equation (4). Constants P and Q were estimated for

each blend oil (Table 4) by the least squares method as regression
coefficients of Equation (5).

On the other hand, for each component oil proportion constants

p = Реонф,

g = OPuPL

were calculated, using experimental values of viscosity that at every value of

¢y were measured at 68 different temperatures.
Comparison of results obtained by these two ways certifies that the

dependence of p and g on volume fraction of components can in fact be

expressed by Equations (6) and (7) (Fig. 3).

Fig. 3. Dependence of g on ¢y for (a) “gas turbine” oil fraction — SEF B and (b)
commercial fuel oil — SEF B oil binary blends.

Curves — calculated, using constants P and Q from Table 4. Points — calculated,

using at each ¢y value experimental values of v, at 6-8 various temperatures

Fig. 4. Experimental (v, апа

“corrected” calculated (v,..,.) values of

kinematic viscosity (mm?/s) for “gas
turbine” oil fraction — SES A oil

blends.

Volume fraction high viscosity oil

oy varies from 0.09 to 0.80
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Using values of P and Q from Table 4, the “corrected” calculated values

of blend kinematic viscosity (v.q.) were obtained. Comparison of these

values with the experimental ones confirms that for all blends a good
accordance of vy, and v, has been reached (Figs 4 and 5).

It must be also mentioned that all binary blends that are produced by
blending of SHC process shale oils are stable at every ratio.

Conclusions

1. The kinematic viscosity of shale oils produced by retorting of the

kukersite oil shale in SHC retorts is studied. It is shown that the

temperature dependence of viscosity for all oil fractions can be described

with great accuracy by a fundamental formula known for hydrocarbon
oils.

Fig. 5. Experimental (v.,) and “corrected” calculated (v..,.) values of kinematic

viscosity ‘(mmz/s) for (a) “gas turbine” oil fraction — SEF B, (b) commercial fuel oil

— SES A, and (¢) commercial fuel oil — SEF B oil blends.

Volume fraction high viscosity oil ¢y varies from 0.20 to 0.80 for а апа с. апа

from 0.40 to 0.80 for b
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2. A viscosity matrix for the SHC process shale oils is compiled. By using
the viscosity characterization constants for matrix base oils, it is possible
to predict the viscosity of the oils in a wide temperature range.

3. The kinematic viscosity for SHC process “gas turbine” oil fraction —

commercial fuel oil binary blends can be evaluated by standard blending
calculation technique, accepted for hydrocarbon oil blends. Contrary to

this, when “gas turbine” oil fraction is blended with SES A oil or with

SEF B oil, as well as when commercial fuel oil is blended with SES A oil

or with SEF B oil, the experimental values of blend kinematic viscosity

(Vexp) are always higher than calculated ones () that are obtained by
the standard calculation technique.

4. А simple equation describing е dependence of the difference A =

= logVexy — logviue on the component oil proportion as well as on the

experimental values of viscosity, can be used. Using this approach, the

kinematic viscosity of SHC process shale oil binary blends can be

evaluated with great accuracy.
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