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Hydrogenation of the light mazute at various pressures and its consecutive

stepwise hydrogenation at a constant pressure were carried out to investigate
the effect of hydrogenation duration and hydrogen pressure on the yield and

composition of hydrogenation products. The regularities in the composition
of functional groups and compound groups were investigated. It was

established that the elevation of the hydrogen initial pressure has only a

small effect on the yield and distribution of hydrogenation products, but a

significant effect on the composition of refined oil, while the time factor
significantly influences both the distribution апа composition о]
hydrogenation products but not the yield of refined oil.

Upgrading of Estonian shale oil light mazute fraction boiling between 240-

320 °C at determined hydrogenation conditions was described in [l]. The

aim of the present work was to investigate the effect of varied hydrogen
pressures and time on the yield and chemical composition of light mazute

hydrogenation products.

Experimental

Two series of hydrogenation experiments were carried out in a 0.5 dm’

autoclave at 370 °C:

. Hydrogenation at varied hydrogen pressures 70, 80 and 96 at.

2. Consecutive tri-step hydrogenation at 80 at, similarly to that described in

[2].
Characterization of the initial light mazute, methods and analysis scheme see

т [l, 3].

https://doi.org/10.3176/oil.1999.4.06
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Results and Discussion

Hydrogenation at Varied Hydrogen Pressures

The effect of hydrogen pressure on the reaction Kinetics is presented in

Fig. 1. One can see that the consumption of hydrogen is very intensive

during the first 1-1.5 h in all cases. At the final stage, during the last 30 min

the consumption of hydrogen stabilizes.

The graphs in Fig. 1 let us assume that the reserve of hydrogen in auto-

clave was sufficient in all cases and the primary hydrogenation of light
mazute takes approximately 90 min at these conditions the initial pressure of

hydrogen being 70 at. One can see that elevating the initial pressure of

hydrogen up to 96 at shortens the hydrogenation time by 30 min.

The yields of hydrogenation products obtained using different initial

pressures of hydrogen are presented in Table 1. Though the yields obtained

are close to each other, the higher the initial pressure of hydrogen the lower
the yield of refined oil and the higher the yields of water and coke, the gas
content remaining constant. These regularities were observed also on the

“diesel fraction” hydrogenation [2].

Fig. 1. Changes in the working pressure during hydrogenation ofthe light mazute at

70 (), 80 (V) and 96 (Q) at
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The characterization of changes in the composition of functional groups

of light mazute samples obtained on hydrogenation at varied pressures was

issued from mathematical interpretation of infrared spectra [2]. In Table 2

one can follow the obvious regularities: with elevating е initial hydrogen
pressure the content of aliphatic methylene and methyl groups increases, and

the content of carbonyl and carboxyl groups decreases.

The group composition of light mazute samples hydrogenated at various

hydrogen pressures was investigated by thin-layer chromatography and the

results are presented in Table 3.

Elevating the hydrogenation pressure leads to an increase in the content

of aliphatic hydrocarbons and decrease in the content of aromatic hydro-
carbons, neutral oxygen compounds and high-polar heterocompounds.

of hydrogen, at

70 89.6 29 1.7 5.8

80 89.0 29 2.3 5.8

96 87.8 2.8 3.1 6.1

Table 1. The Yield of Light Mazute Hydrogenation Products

at Varied Hydrogen Pressures

Frequency (cm™) Initial light|Light mazute hydrogenated
and corresponding mazute at initial pressure of hydrogen, at

functional group

Reduced optical densities

720 (-CHy), 0.27 0.28 0.29 0.34

745 0.38 0.41 0.43 0.50

770 CHarwmatic 0.27 0.36 0.41 0.52

815 0.33 0.35 0.36 0.27

880 0.18 0.21 0.16 0.18

1380 CH; 0.71 0.69 0.70 0.69

1600 (C=C),romatic 0.50 0.40 0.37 0.30

1720 CO 0.49 0.05 0.02 0.02

2930 CH, 1.24 1.34 1.34 1.67

2960 CH; 1.27 1.37 1.39 1.69

3020 CHaromatic 0.54 0.50 0.57 0.90

3050 0.46 0.41 0.49 0.77

3400 OH 0.38 0.09 0.08 0.07

Ratios of optical densities

2930/2960 0.97 0.97 0.98 0.97

3050/2930 0.37 0.36 0.36 0.37

Table 2. Characterization of Oils by Infrared Spectra
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Consecutive Stepwise Hydrogenation

Tri-step hydrogenation of light mazute was proceeded to issue the effect of

hydrogen availability to its consumption depending on time and also to

determine the changes in the composition of refined oil. As seen in Fig. 2,
the most intensive consumption of hydrogen is observed during the first

phase of hydrogenation while only low consumption of hydrogen during the

first hour of the second phase and practically no consumption of hydrogen
during the last hour of the second phase of hydrogenation as well as during
the whole period of the third hydrogenation phase takes place. Thus it could

be concluded that the accomplished hydrogenation of the light mazute at

370 °C and 80 at takes in maximum no more than 3 hours.

Fig. 2. Changes in the working pressure during tri-step hydrogenation of light
mazute: O - Ist step of hydrogenation, V - 2nd step of hydrogenation, Q - 3rd step
of hydrogenation

Compounds Yield, wt.%, hydrogenation pressure, at

вОВО
Aliphatic hydrocarbons 35.6 50.8 78.1

Monocyclic aromatic hydrocarbons 8.3 13.0 9.1

Polycyclic aromatic hydrocarbons 43.0 26.6 17.6

Neutral oxygen compounds 6.4 3.6 2.0

High-polar heterocompounds 6.7 6.0 3.2

Table 3. The Composition of Hydrogenisates
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The yields of hydrogenation products obtained on the stepwise hydro-
genation are presented in Table 4.

Data in Table 4 confirm the conclusion made above that an almost

complete hydrogenation occurs during the first phase of hydrogenation, and

as a result, oil losses including gas, water and coke are 11 %. In the second

and third phases of hydrogenation no water was formed, gas and coke yields
being negligible. During the last two phases of hydrogenation the loss in oil

weight was only 2 % and therefore we may conclude that the influence of

hydrogen on the product yield is very small.

The chemical group composition of oils obtained by stepwise hydro-
genation was investigated using thin-layer chromatography and the results

are presented in Table 5.

One can see that with lengthening the time of hydrogenisation and/or

with increasing the amount of available hydrogen in autoclave the content of

aromatic compounds, neutral oxygen compounds and high-polar compounds
significantly decreases while е content оЁ aliphatic compounds
significantly increases. Hydrogenate 3 consists mostly of nonaromatic

hydrocarbons (90.8 %) and is very poor in neutral oxygen compounds and

high-polar hydrocarbons typical for the initial sample (1 and 20.9 %,

respectively).

Product Yield, wt.%

Hydrogenation 1 |Hydrogenation 2|Hydrogenation 3

Refined oil 89.0 97.9 98.9

Gas 2.9 1.4 0.9

Water 2.3 0 0

Coke 5.8 0.7 0.2

Table 4. The Yield of Hydrogenation Products

Hydrogenation 1 | Hydrogenation 2| Hydrogenation 3

Aliphatic hydrocarbons 50.8 80.7 90.8

Aromatic hydrocarbons 39.6 15.0 8.2

monocyclic 13.0 8.9 39

polycyclic 26.6 6.1 2.3

Neutral oxygen compounds 3.6 2,7 0.5

High-polarheterocompounds 6.0 1.6 0.5

Table 5. The Composition of Hydrogenisates
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Conclusion

e The higher the initial pressure of hydrogen on hydrogenation of light
mazute, the higher the velocity of decomposition of heteroatomic

compounds and the higher the content of hydrocarbons in refined oils

obtained.

e Hydrogenation time (hydrogen reserve being sufficient) has only a small

effect on the yield of hydrogenation products but influences significantly
the composition of refined oil.

e Similar tendencies for “diesel fraction” and light mazute hydrogenation
were noticed, so it seems to be expedient to perform co-hydrogenation of

both Estonian shale oil fractions under the same conditions realizing it

through one-step hydrogenation of the fraction boiling at 180-320 °C

without its distillation into two fractions prior to hydrogenation.
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