Oil Shale, Vol. 13, No. 4 pp. 265-285

ISSN 0208-198X © 1996 Institute of Chemistry Estonian Academy of Sciences

LOW-SULPHUR OIL SHALE RESEARCH AND EXPERIMENTAL PROCESSING

V. JEFIMOV S. DOILOV I. PULEMYOTOV

Oil Shale Research Institute, Kohtla-Järve, Estonia

Low-sulphur oil shales which in most cases yield paraffinic oil upon retorting have been studied. Oils obtained have high values for solidification point (25-30 °C) and a relatively low density – about 900 kg/m³. Compared to high-sulphur oils, low-sulphur ones contain more paraffins and olefins and less aromatic hydrocarbons. The content of phenols in paraffinic oils is negligible – 2-4 %.

Low-sulphur oil shales studied may be divided into two groups. The first group comprises oil shales for which 70-100 % of the total sulphur remains in the semicoke during retorting, for the second group this percentage is 50-70.

The overwhelming majority of oil shale of the world yield low-sulphur paraffinic oil upon retorting. This oil is similar to low-sulphur paraffinic petroleums in its physical and chemical properties [1]. Quite naturally such shale oil is therefore considered a good substitute for petroleum and its subsequent refining can be accomplished with traditional petrochemical methods.

The world-wide experience in processing low-sulphur shales to produce liquid fuel is quite extensive. In China, shales have been processed on an industrial scale since 1927. In the USA, large pilot-scale retorts have been in operation and they still are in Brazil. Several smaller pilot and test units are used for oil shale research in many countries of the world.

The authors' present tests have shown (Tables 1 and 2) that oil shales which yield paraffinic oil upon retorting have a relatively low density (about 900 kg/m³) and, as a rule, a low content of sulphur (Tables 3 and 4). The majority of oil shales in the world yield retort oils with higher contents of nitrogen compounds than kukersite oil (sample No. 1) produced from Estonian shale. Some oil shales contain arsenic, and the presence of arsenic compounds makes the subsequent processing of such oil more difficult since those compounds poison the catalysts used for hydrogenation.

enc	
~	
6	
-	
les	
du	
Sa	
ale	
(SF	
P	
orl	
M	
the	
of	
its	
sod	
De	
Suc	
aric	
>	
C	
ror	
S f	
lle	
ha	
5	
=	
0	
ur	
h	
Ip	
Su	
-M	
Q	
-	
000	
iles	
ert	
do.	
Pr	
1.	
2	
19	
Ta	

dices	Estonia,	Russia		Kazakhstan		Ukraine,	Byelorus,	Bulgaria	
ente pri les pri severa tind 2) relative supplu effer a pri fre ca	Estonian (kukersite)	Ukhta	Eckibastuse	Kenderlyck	Ust-Kame- nogorsk	Boltysh	Luban	Gurkovo- Nikolayev	Breznik
ili ini ili ini i i i i i i i i i i i i i i i i i	Investigated	shale sample	e number		d pa es fa				
in pi bies bies bies bies bies bies bies bie	1	2	3	4	5	9	7	8	6
scher assay product yield (shale samp	le 200 g), %								
Shale oil	1	1	3.9	1	1	1	1	2.8	T
Pyrogenetic water	1	1	1.8	1	1	1	I	3.2	1
Semicoke	1	1	86.5	1	1	1	1	91.4	I
Gas and losses (by difference)	-	1	7.8	I	1	1	1	2.6	1
scher assay oil of organic matter, %	1	T	15.5	I	I	I	1	20.7	1
h composition, %:									
SiO ₂	28.5	66.4	60.3	57.4	57.2	65.8	36.8	59.9	40.0
Fe ₂ O ₃	5.5	1.5	14.0	6.3	ANCI	8.6	5.8	8.3	7.5
Al ₂ O ₃	6.7	4.5	17.6	14.0	7 - 1.0	17.6	10.2	19.1	14.0
K20	2.1	110	1.2	1.1	177	2.6	1	1	1.9
Na ₂ O	0.4	1.0	0.6	1.6	7 7	1.7	I	1	6.0
MgO	4.4	1.3	1.3	1.3	2.9	1.5	2.8	2.0	3.8
CaO	44.8	22.8	2.1	13.4	4.9	2.1	29.4	8.4	23.1
SO ₃	6.5	1.6	0.2	3.3	2.5	Ĩ	5.0	1.6	8.8
Total	98.9	99.1	97.3	98.4	99.3	6.66	0.06	99.3	100.0

Indices		Russia	0.5	Kazabhetan	0.1	2.3			28
TARTINGS STREET STREET STREET	Estonia,	picchyi		INAZANJISIAJI	# Renard Stor	Ukraine,	Byelorus,	bulgaria	
Milling value (bomb culorimeter),	Estonian (kukersite)	Ukhta	Eckibastuse	Kenderlyck	Ust-Kame- nogorsk	Boltysh	Luban	Gurkovo- Nikolayev	Breznik
(Pythe (by difference)	Investigated	shale samp.	le number	Control Inc.	gTe No	0.88	1	1.0	5 0.03
Support Instructure	1	2	3	4	5	6	7	8	9
Moisture of oil shale tested	0.02		From P	1 01					
in experimental retort, %	5.1	i	7.3	2.8	1.0	4.4	1.2	10.7	0.7
Carbon dioxide $(CO_2)^d$	20.8	13.0	4.0	5.5	3.3	0.5	1 17.0	1 43	140
Ash Ad	46.2	75.5	70.9	57.4	74.7	57.5	67.0	82.2	66.5
Organic matter*	33.0	11.5	25.1	37.1	22.0	42.0	16.0	13.5	18.6
Total sulphur S_t^d	1.90	0.39	1.32	2.1	1.0	1.40	1.6	0.38	2.47
Including.	0.05	10.2		20					
Sulphate Pvrite	0.0 0.1	1.1	0.01			0.12	0.1	- 0.21	0.08
Organic (by difference)	0.55	I	0.23	0.64	1	0.17	0.4	10.0	0 12
Heating value (bomb calorimeter),		shule smith	Tudanun 5						
MJ/kg	12.43	3.56	7.58	12.94	16.2	12.73	5.65	3.27	7.12
Fischer assay product yield (standard 1	retort), %:						neibil		- Statute
Shale oil	21.8	4.6	5.2	19.8	10.9	17.5	8.8	5.3	1 97
Pyrogenetic water	2.4	0.4	2.1	2.1	0.5	3.9	1.2	1.4	2.4
Semicoke	70.2	93.3	87.8	71.9	83.3	72.9	86.6	90.7	83.5
Gas and losses (by difference)	5.6	1.7	4.9	6.2	5.3	5.7	3.4	2.6	4.4
Fischer assay oil of organic matter, %	66.1	40.0	20.7	53.4	49.5	41.7	55.0	39.3	52.1

Low-Sulphur Oil Shale Research and Experimental Processing

Table 2. Properties of Low-Sulphur	Oil Shale	s from Var	ious Depos	sits of the V	Vorld (Shale	e Samples 1	(61-0			
Indices	USA, Green	Brazil, Par oil shale	aiba valley	Yugoslavia, Aleksinac	Roumania, Anin	Thailand, Mae Sot	Australia, Stuart	China	202	60 L 60 Z
hidloogynta org harton wens, huognor Ango (enuigang - hitler	River	papery	lump sized	R. 168	0.01			Hua- dian	Fu- shun	Mao- ming
Heating value (boup calorimeter).	Investigate	d shale sam	ple number							
LAURS Properties	10	11	12	13	14	15	16	17	18	19
Moisture of oil shale tested in experimental retort, %		3.	2	2.5	1.5		1	1	I	-I
Content (dry basis), $\%$: Carbon dioxide (CO ₃) ^d _A	17.3	0.2	0.3	6.6	3.8	10.5	1.8	5.4	3.9	1.0
Ash Ad	68.3	60.3	82.3	75.2	74.4	60.5	78.9	62.4	81.4	73.2
Organic matter*	14.4	39.5	17.4	18.2	21.8	29.0	19.3	32.2	14.7	25.8
Total sulphur S_t^d	0.65	1.28	1.60	2.78	0.67	0.87	1.0	1.2	0.78	1.22
Including:	000	0.16	210	0.05	-					
Sulphate Pvrife	0.35	0.10	0.54	co.0 02.5	0.51	0.056	1 1	1 1	0.55	0.16
Organic (by difference)	0.28	0.57	0.89	0.23	0.16	0.28	1	I	0.12	0.08
Heating value (bomb calorimeter),	17	10			1 NOBOUSA			1 Martin	and a state	1
MJ/kg	5.36	13.27	3.68	6.32	5.32	11.26	5.48	11.64	3.68	7.68
Fischer assay product yield (standard ru	etort), %:									1
Shale oil	9.7	21.1	4.0	8.4*	4.8	18.5	6.9	15.9	3.8	10.3
Pyrogenetic water	1.2	4.2	3.9	2.7	0.7	2.3	3.3	3.7	1.8	2.8
Semicoke	86.7	71.7	89.4	85.2	88.0	74.7	85.6	74.6	89.9	83.5
Gas and losses (by difference)	2.4	3.0	2.7	3.7	6.5	4.5	4.2	5.8	4.5	3.4
Fischer assay oil of organic matter, %	67.4	53.5	23.0	46.2	22.0	63.8	35.7	49.4	25.8	39.9

V. Yefimov et al.

Table 2. Properties of Low-	-Sulphu	r Oil Shale	s from Va	rious Depo	sits of the W	Vorld (Shale	e Samples	10-19) (end)	104		
Indices		USA, Green	Brazil, Pa oil shale	uraiba valley	Yugoslavia, Aleksinac	Roumania, Anin	Thailand, Mae Sot	Australia, Stuart	China	17.6	171
		River	papery	lump sized			- And	1.027	Hua- dian	Fu- shun	Mao- ming
		Investigate	d shale san	nple number	1 10 10 10		0 44	1.02	1 20 -	15 20 - 1	132
		10	11	12	13	14	15	16	17	18	19
Ash comnosition %.	(Crous		11 N.					S later		NA SHO	C.N.O.N.
SiO2		44.3	55.0	58.0	53.9	50.8	46.2	65.8	53.1	60.5	58.1
Fe ₂ O ₃		5.5	10.2	}32.5	9.5	4.3	8.2	8.0	7.8	12.0	9.8
K ₂ O3		2.8	0.02	0.01	1.5		1.21	-	1.6	3.0	1 - 1
Na ₂ O		3.5 30	}3.2	}2.9	1.3	1	}1.5	1	0.3	2.3	}J.4
MgO		7.4	2.9	3.2	2.3	1.2	7.8	2.8	2.0	1.8	2.0
CaO		20.5	6.0	1.6	9.4	1.3	15.4	1.7	12.9	1.7	1.4
SO ₃		2.4	1.1	1.3	7.9	1	2.4	0.8	3.8	9.0	0.3
L	otal	99.2	6.66	99.5	99.2	89.7**	100.0	93.8	98.3	100.0	9.66

Table 3. Properties of Fischer Assay Products from Low-Sulphur Oil Shales of Various Deposits of the World (Shale Samples 1-9)

Indices	Investigate	d shale sampl	e number (see	e Table 1)					
	I	2	3	4	5	6	7	8	9
To obtain the semicoking products t Fischer retort was applied with shale sample, g	the oil 20	20	200	20	20	20	20	200	20
			Shal	e 0i1					
Density at 20 °C, kg/m ³	968	975	915	923	906	898	925	878	934
Molecular mass	276	-	188	-		1	294	1	q
Heating value (bomb calorimeter),									1 412 1
MJ/kg	40.19	39.35	42.08	41.66	42.83	42.70	41.45	43.54	42.83
Elemental composition (dry basis), %:									They a
C	83.12	83.1	85.30	85.0	84.5	84.66	84.4	86.78	84.57
Н	10.13	9.6	11.34	11.3	12.0	11.95	11.2	12.20	11.09
S	0.84	0.6	0.44	1.0	0.8	0.82	2.0	0.46	1.35
N	0.20	1.8	0.63	0.5	1.6	0.64	0.6	Ln sk	1.75
O (by difference)	5.71	4.6	2.29	2.2	1.1	1.93	1.8	00.02	1.24
			Sem	icoke					
Content (dry basis), %:									
Carbon dioxide $(CO_2)^d_M$	28.1	13.6	0.9	6.9	2.8	0.3	19.4	4.7	17.1
Ash A ^d	64.8	82.6	79.6	80.1	89.3	81.6	76.4	88.7	76.2
Carbon C ^d	7.6	3.5	14.3	10.2	6.4	10.5	4.2	4.0	6.5
Total sulphur S_t^d	1.5	0.3	1.34	2.35	1.0	1.3	1.1	0.4	1.7
Heating value (bomb calorimeter), MJ/kg	2.64	1.34	5.32	4.60	2.72	4.98	1.46	1.38	2.60

Table 4. Properties of Fischer Assay Products from Low-Sulphur Oil Shales of Various Deposits of the World (Shale Samples 10-19)

Indices	Investigate	ed shale sam	iple number	(see Table 2	2)					
minutas henzinis	10	11	12	13	14	15	16	17	18	19
To obtain the semicoking products the			20 . 01	an at	D	4	3.3 1/2	d1 2 10	10	6.1
Fischer retort was applied with oil shale sample, g	20	20	20	200	20	50	50	50	50	50
		51	S	hale Oil			·····		·····	
Density at 20 °C, kg/m ³	927	910	920	908	913	889	897	899	893	606
Molecular mass	233	9	1	230	1	278	234	236	+	1
Heating value (bomb calorimeter),		and .	1.21	4 · 12-8			5	11	103	
MJ/kg	42.58	43.21	41.66	42.91	43.84	44.00	42.91	42.83	43.75	45.80
Elemental composition (dry basis), %:		2	200			0		2013 11	24.2	
C	83.89	85.7	85.5	83.15	87.0	84.14	83.2	80.19	85.37	83.04
Н	11.87	11.9	11.6	11.31	12.3	12.04	11.5	11.42	12.20	12.01
S	0.84	1.1	2.3	1.75	0.5	09.0	0.6	0.43	0.48	0.31
N O	1.30	}13	30.6	· 1.21	10.2	1.81	0.7	0.10	1.32	0.61
O (by difference)	2.10			2.58	4:0	1.41	4.0	7.86	0.63	4.03
			S	emicoke						30.0
Content (dry basis), %:										
Carbon dioxide $(CO_2)^d_M$	19.5	0.3	0.1	7.1	1.1	13.8	1.1	7.9	2.2	1.4
Ash A ^d	78.2	84.3	90.8	86.9	84.4	6.61	91.3	80.6	88.9	85.3
Carbon C ^d	2.7	9.8	4.5	5.3	8.2	6.0	7.6	9.6	4.9	6.8
Total sulphur S_t^d	0.4	1.3	1.3	2.29	0.75	69.0	1.0	1.1	0.74	1.28
Heating value (bomb calorimeter),		inet in the	History Oh	STORE TROOPS	Server-weer		Stor OL AR	Gone Debe	1	
MJ/kg	0.92	3.56	1.46	2.43	3.18	1.97	2.34	3.81	1.67	2.39
Continent of the Scinet	1 007									

Table 5. Yield and Characteristics of the World (Shale Samples 1-9)	of Gas* Obt	ained in the	Fischer Re	etort from I	ow-Sulphur	Oil Shales	of Various I	Deposits	
Cathon Ca	12	9.8	2.4	212				0.0	0.0
Indices	Investigated	shale sample	e number (se	e Table 1)	844				82.8
Coursein (qu' puere)" &	I	2	3	4	5	6	7	8	9
Specific gas yield, m ³ /t	38.2	17.0	38.1	35.2	33.1	51.0	22.0	22.7	30.0
Content of components, vol.%:		113	1000101	1 2002	203	No. INT.	87	20.0 A	\$0.4×8 -
CO ₂	23.7	24.2	50.5	19.5	18.8	25.3	26.7	17.5	13.5
H ₂ S	14.6	5.0	0.0	2.8	0.8	4.3	9.3	0.4	25.7
H ₂	5.3	34.9	12.1	25.0	44.5	24.4	23.2	40.7	20.5
CO CO	4.2	5.0	2.1	7.7	9.9	8.9	2.2	2.5	3.4
C _n H _{2n+2}	35.6	26.6	28.5	34.3	21.0	28.4	26.3	24.3	29.3
Including:		10.28		Elit park	4 24 64	11.00	01 10 43 8		1 #2.80
CH4	14.7	17.2	18.1	17.2	9.7	13.3	11.2	10.5	15.9
C ₂ H ₆	8.6	6.4	5.9	9.4	6.4	10.1	7.3	7.4	6.4
C ₃ H ₈	5.6	2.2	2.4	4.7	2.8	3.0	4.7	3.5	4.9
C4H10:				110 -11					
<i>n</i> -butane	2.0	9.0	0.0	2.0	1.4	1.3	1.9	1.3	1.4
iso-butane	0.0	0.1	0.1	0.1	0.1	1	1	0.3	21
C ₅ H ₁₂ : Common and	10								
n-pentane	3.0	0.1	0.6	6.0	9.0	0.7	1.2	1.0	0.7
iso-pentane	0.8	-	0.1		-	ľ	1	0.3	1
C ₆ H ₁₄ :						and the	and the second		
n-hexane	INVC-IEBIC	ala - ann	0.4	ap Table-2)	1	1	1		-
* Here and later on all characteristics of gas	are given at 20 °	C and 760 mm	1 Hg.						

V. Yefimov et al.

Table 5 Yield and Characteristics of Gas* Obtained in the Fischer Retort from Low-Sulphur Oil Shales of Various Denosits

IndicesInvestigated shale sample $r_{\alpha}H_m$ i C_nH_m i C_nH_m i C_2H_4 i C_2H_4 i C_2H_4 i C_3H_6 i C_3H_6 i C_3H_6 i C_4H_8 : i C_4H_1 : i C_6H_{10} : i <th>igated shale sample number 2 3 .6 4.3 6.5</th> <th>see Table 1)</th> <th></th> <th></th> <th></th> <th></th> <th></th>	igated shale sample number 2 3 .6 4.3 6.5	see Table 1)					
C _n H _m I 2 $C_{a}H_{m}$ 16.6 4.3 Including: $C_{2}H_{4}$ 15.6 4.3 $C_{2}H_{4}$ $C_{3}H_{6}$ 6.1 1.8 $C_{3}H_{6}$ 6.1 1.8 0.6 $C_{4}H_{8:}$ 0.1 0.1 0.1 $C_{4}H_{10:}$ 0.1 0.2 0.2 $C_{4}H_{10:}$ 0.5 0.2 0.2 c_{ib} -buttene-2 0.5 0.5 0.2 c_{ib} -buttene-2 0.5 0.5 0.2 c_{ib} -buttene-2 0.5 0.5 0.5 c_{ib} -buttene-2 0.5 0.5 0.6 $rams$.6 4.3 6.5	acc I and I)					
$C_n H_m$ 16.6 4.3 $C_2 H_4$ 1.5 $C_2 H_4$ $C_2 H_4$ $C_3 H_6$ 6.1 1.5 $C_4 H_8$: $C_4 H_8$: $C_4 H_8$: $Dutene-1$, iso-butene $transbutene-2$ cis -butene-2 cis -butene-2 cis -butene-2 cis -butene-2 $cis-butene-2 ramspentene-1 cishutene-1 $.6 4.3 6.5	4		1 10 01	7 22 10	8	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10.7	8.3	8.7 0.1	12.3	14.6	7.6
$\begin{array}{c cccc} C_3^{2}H_6 & 6.1 & 1.8 \\ C_4H_8 & 0.1 & 0.6 \\ \text{buttene-1}, iso-butene & 3.3 & 0.6 \\ \text{trans-butene-2} & 0.8 & 0.1 \\ \text{cis-butene-2} & 0.5 & 0.2 \\ C_5H_{10} & 0.1 & 0.1 \\ \text{pentene-1} & 2.6 & 0.1 \\ \text{trans-pentene-2} & 0.2 \\ C_6H_{12} & 0.2 & 0.2 \\ \text{cis-pentene-2} & 0.2 & 0.2 \\ C_6H_{12} & 0.1 & 0.1 \\ \text{trans-pentene-2} & 0.1 & 0.1 \\ \text{trans-pentene-2} & 0.2 & 0.2 \\ C_6H_{12} & 0.1 & 0.1 \\ \text{trans-pentene-2} & 0.2 & 0.2 \\ C_6H_{12} & 0.1 & 0.1 \\ \text{trans-pentene-1} & 0.1 & 0.1 \\ \text{trans-pentene-1} & 0.1 & 0.1 \\ \text{trans-pentene-2} & 0.2 & 0.2 \\ \text{constant} & 0.1 & 0.2 \\ \text{trans-pentene-1} & 0.1 & 0.1 \\ \text{trans-pentene-1} & 0.1 & 0.1 \\ \text{trans-pentene-2} & 0.2 & 0.2 \\ \text{trans-pentene-1} & 0.1 & 0.1 \\ tran$	1.3 1 1.5 1 1.8	2.9	2.4	2.9	4.4	4.8	1.7
C4Hs: 3.3 0.6 buttene-1, iso-buttene 3.3 0.6 <i>trans</i> -buttene-2 0.8 0.1 <i>cis</i> -buttene-2 0.5 0.2 C ₅ H ₁₀ : 0.5 0.2 pentene-1 0.5 0.2 <i>cis</i> -buttene-2 0.5 0.2 C ₆ H ₁₂ : 2.6 0.1 2.nethylbutene-1 - - 3-methylbutene-1 - - Deterne-1 - - betterne-1 - - 2-methylbutene-1 - - 1 - - - Selentified - - - Internet - - - 3-methylbutene-1 - - - Deterne-1 - - - Deterne-1 - - - Cot i	i.1 1.8 2.2	4.2	2.9	3.7	3.9	4.6	3.1
buttene-1, iso-buttene 3.3 0.6 <i>trans</i> -buttene-2 0.8 0.1 <i>cis</i> -buttene-2 0.5 0.2 C_5H_{10} : $pentene-1$ 0.2 C_5H_{10} : $pentene-1$ 0.2 cis -buttene-2 0.5 0.1 cis -pentene-2 $ cis$ -pentene-1 $ fout identified$ $ dot identified$ <t< td=""><td>T.A 0.0</td><td>2.0 1.8</td><td>10.5</td><td>6.3</td><td>1.0</td><td></td><td>63</td></t<>	T.A 0.0	2.0 1.8	10.5	6.3	1.0		63
<i>trans</i> -butene-2 0.8 0.1 <i>cis</i> -butene-2 0.5 0.2 C_5H_{10} : 0.1 0.2 C_6H_{12} : 2.6 0.1 <i>trans</i> -pentene-2 $ -$ <i>cis</i> -pentene-1 $ -$ <i>suchylbutene-1</i> $ -$ <		1.8	1.5	1.0	2.1	1.9	2.5
cis-buttene-2 0.5 0.2 C5H ₁₀ : 2.6 0.1 pentene-1 2.6 0.1 <i>trans</i> -pentene-2 - - cis-pentene-2 - - - cis-pentene-2 - - - C ₆ H ₁₂ : 2-methylbuttene-1 - - 3-methylbuttene-1 - - - Not identified - - - Zelculated heating value, MJ/m ³ : A6.51 24.58	0.1 0.4	0.4	0.3	0.3	0.4	0.7	1
$\begin{array}{c c} C_5H_{10};\\ pentene-1\\ trans-pentene-2\\ cis-pentene-2\\ cis-pentene-2\\ C_6H_{12};\\ 2-methylbutene-1\\ 3-methylbutene-1\\ nexene-1\\ nexene-1\\ nexene-1\\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0.2 0.3	0.4 0	0.3	0.6	0.2	0.3	+
pentene-1 2.6 0.1 <i>irans</i> -pentene-2 $ -$ <i>cis</i> -pentene-2 $ C_{6}H_{12}$: $ C_{6}H_{12}$: 2 -methylbutene-1 $ 2$ -methylbutene-1 $ 3$ -methylbutene-1 $ hexene-1$ $ -$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
<i>trans</i> -pentene-2 cis -pentene-2 cis -pentene-2 C_6H_{12} :2-methylbutene-1- 2 -methylbutene-1 3 -methylbutene-1 $hexene-1$ Not identified $To t a 1$ 100.0100.0Calculated heating value, MJ/m^3 :46.5124.58	6 0.1 0.3	0.7 30	0.6	0.2	1.3	6.0	0.3
cis-pentene-2 C_6H_{12} : $2-methylbutene-1$ $3-methylbutene-1$ $3-methylbutene-1$ $hexene-1$ Not identified $To t all$ 100.0100.0Calculated heating value, MJ/m^3 :46.5124.58	- 0.1	10.3	30.3	7100 -		0.1	Ē
$\begin{array}{c c} C_{6}H_{12};\\ 2\text{-methylbutene-1}\\ 3\text{-methylbutene-1}\\ hexene-1\\ hexene-1\\ \hline \\ Vot identified\\ \hline \\ \hline \\ Tot all\\ \hline \\ Tot all\\ \hline \\ 100.0\\ \hline 100.0\\$	+ 03 + 08 -		P.er	1939		1.0	E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c} 3-\text{methylbutene-1} & - & - & - \\ \text{hexene-1} & - & - & - \\ \text{Not identified} & - & - & - & - \\ \hline \hline & - & - & - & - & - \\ \hline & - & - & - & - & - & - \\ \hline & - & - & - & - & - & - \\ \hline & T \text{ ot all} & 1 & 00.0 & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - & - & - \\ \hline & - & - \\ \hline$		33/81 - 453	- 34.1	-5804	1000	0.2	E
Not identified $T_{0.1}$ and $T_{0.1}$ $T_{0.$	0.1	1	1	1	-	0.1	-
Not identified $ -$ Total100.0100.0Calculated heating value, MJ/m^3 :46.5124.58	0.3	1	1	1- 0.2	12-04	N8 -0.2	110 -2
Total 100.0 100.0 Calculated heating value, MJ/m ³ : high 46.51 24.58	0.3			- 03	1	I	
Calculated heating value, MJ/m ³ : high 46.51 24.58	.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	100.0
high 46.51 24.58							
	.51 24.58 24.07	35.37	27.34	29.26	33.75	35.08	33.50
low 42.92 21.22	.92 21.22 22.06	32.36	24.83	26.75	30.90	32.02	30.60
Density, kg/m ³ 1.481 0.945	481 0.945 1.394	1.099	0.891	1.117	1.205	0.909	1.140
Content of H_2S , g/m^3 206 71	06 71 -	41	12	61	131	5.7	363

VIEID and CALTERING	CS 01 Gas 0	DLAINED III	LITE FISCILE	L Netoll III	C-MOT IIIC	no mudm		an rous	CIICO	
orld (Shale Samples 10	100									
Tor	Investigated	d shale samp	ole number ((see Table 2)	P.M.	100 0	100.0	0.001	10.001	100'0
	10	11	12	13	14	15	16	17	18	19
gas yield, m ³ /t	19.0	31.0	20.2	32.9	42.0	34.1	28.4	43.9	30.5	36.2
of components, vol.%:	27.3	16.0	18.0	26.7	52.3	19.9	45.5	28.6	32.0	32.7
	5.3	6.0	8.7	9.4	0.0	5.5	0.7	4.4	0.7	0.7
	24.3	38.1	40.7	25.7	27.4	14.5	11.4	12.3	44.6	29.4
	2.6	8.1	6.1	3.8	6.3	4.5	7.0	6.4	4.4	5.4
2	31.0	26.2	19.3	25.0	10.0	37.2	26.7	34.7	12.4	24.2
ding:	18.7	149	110	1 12 2	1 6.6	1 18.8	1 15.6	18.2	5.8	12.3
	7.2	6.9	4.7	7.0	1.8	10.5	6.5	9.1	3.4	6.3
	3.5	2.6	2.2	3.4	0.9	4.9	2.4	3.9	1.7	3.0
0:	3.3			8.1	5.0	24				T. ILY
utane	1.1	1.1	0.7	1.3	0.5	1.7	1.0	1.6	0.7	1.2
butane	0.3	0.2	0.4	0.1	1	0.2	0.1	0.2	0.1	0.3
2:					-			-	1 05	
entane	9.0	0.5	0.3	6.0	0.2	1.1	1.0	1.0	C.U	1.0
pentane	0.1	660 20010 M	-	0.1	1	1	0.1	0.1	1.0	0.1
4:						_		1 0.6	10	
lexane	1	1	1				c.U	0.0	1.0	C.U

Table 6. Yield and Characteristics of Gas Obtained in the Fischer Retort from Low-Sulphur Oil Shales of Various Deposits of the World (Shale Samples 10-19) (end)

Indices	Investigated	d shale samp	le number (see Table 2)	Sincer of	1 March 10/ added	borthe File	handor had	Waara .	1 Delice
	10	II	12	13	14	15	16	17	18	19
C _n H _m	9.5	10.7	7.2	9.4	4.0	17.9	8.5	13.1	5.7	7.3
Including: C ₂ H ₄ C ₃ H ₆	4.1 2.6	2.7 3.1	1.8 3.1	3.1 3.1	1.0	4.9 5.4	2.7	3.7	1.5	2.0
C ₄ H ₈ : butene-1, <i>iso</i> -butene	1.7	1.8	1.3	1.6	1.0	3.8	1.2	2.2	1.1 001	1.3
trans-butene-2 cis-butene-2	0.2 0.2	0.5	0.5	0.4 0.3		0.5	0.4	0.6	0.3 0.2	0.3
C ₅ H ₁₀ :	50	04			00	-	0.4	07	03	V U
trans-pentene-2 cis-nentene-2	}0.2	}0.5		0.2	3	}1.9	0.1	0.3	0.2	0.2
C6H13:			0141 60	a nutre of		-	-	-	-	_
2-methylbutene-1	0.1	1	1	0.1	1	1	0.1	0.2	0.1	0.1
3-methylbutene-1	1	I	1	0.1	1	1	E	1	1	
hexene-1	- ni	THE STATE OF	solar - side	(see - 1010	1	1	0.2	0.4	0.2	0.2
Not identified	0.1	1	1	1	1	0.5	0.2	0.5	0.2	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Calculated heating value, MJ/m ³ :	nd Doared	abautan 2		A STADER T	chantle of	the Motor	ul menue	ada badabar	Severe 1	0.001
high	30.35	30.87	25.28	29.85	12.89	44.34	25.54	37.72	19.82	26.71
low	27.67	28.13	22.92	27.26	11.68	40.91	23.70	34.83	17.98	24.45
Density, kg/m ³	1.127	0.925	0.912	1.149	1.228	1.292	1.391	1.344	0.960	1.135
Content of H ₂ S, g/m ³	75	13	123	133	1	78	10	62	10	10

Table 7. Heat Balance of Retorting	g Low-Sulp	hur Oil Sha	ales from	Various Dep	osits of	the World	l in the Fi	scher	Retort,	%,		
and Sulphur Distribution between F	Retorting P	roducts, %	(Shale Sa	umples 1-9)								
Not heating	1.10					10						[
Indices	Investigate	d shale samp	le number	(see Table 1)								0.2
Cellin.	1001	2	3	4	5	9	10.2	7	8	150%	6	10
Co. cp-pentene-3	27.3. H	Ch	emical	heat of s	hale	10.00	10.1		1.0.	000		13
Shale oil	70.5	50.9	28.9	63.8	-	59.0	58.7	64	.5	37.3	5	8.4
Gas	14.3	11.7	12.1	9.6	10	11.4	11.7	13	.102	24.4	14	4.1
Gasoline, unregarded losses and	0.2	~ ~	96	01	0.0	01	11		-	0.2		00
Semicoke	0.0	35.1	616	25.6	1	28.6	28.5	22	5	38.6	3(0.4
	1000	1.00	0.10					1001	+			
10141	1 100.0	1 100.0	100.0	1 100.0	-	1 0.00	100.0	100	- n.	100.0	101	0.0
C'IIC		To	tal sulp	hur of s	hale							St.
Shale oil	9.6	5.2 7.1	1.7	9.4	00	8.7	10.2	11	0.	3.4		5.3
Gas (in the form of H ₂ S)	39.0	28.0	-	6.2		3.5	20.8	17	0.	3.2	4	1.5
Semicoke	55.4	64.5	89.1	80.5	0.0	87.5	67.7	59	.5	84.2	5.	7.5
Other species of sulphur in gas and analytical errors (by difference)	-4.0	0.4	9.2	3.9		0.3	1.3	12	.5	9.2	17.2	4.3
Total	100.0	100.0	100.0	100.0		0.00	100.0	100	0.	100.0	100	0.0
Callin a hereine				10 110-11								

Table 8. Heat Balance of Retorting and Sulphur Distribution between I	g Low-Sul Retorting	phur Oil Sh Products, %	ales from (Shale Sa	Various De amples 10-	posits of th 19)	ie World in	the Fische	er Retort,	%	
fadicity contourney to	a province of a	lyste supple p	sunder free	Tables 1 38	0 20 1 43	0.1	20	8.0	1.4	0.1
Indices	Investigate	ed shale samp	le number ((see Table 2)	7.582	8,000	9,300	111,293	1,503	1 202
Benerical index age.	10	II	12	13	14	15 - 30	16	17 50	18 30	19
stacoardiouses 22 to	58	Ch	lemical	heat of	shale	0.00	100 K	tol l	701	102
Shale oil	77.1	68.7	45.2	55.0	39.6	72.3	54.0	58.5	45.1	61.6
Gas	8.7	7.2	13.9	15.5	10.2	13.4	13.2	14.2	16.4	12.6
Gasoline, unregarded losses and	1 (A)	0			040		22.0		NO I	50
analytical errors (by difference)	-0.7	4.9	5.3	-3.1	-2.5	1.3	-3.8	2.9	-2.4	0.7
Semicoke	14.9	19.2	35.6	32.6	52.7	13.0	36.6	24.4	40.9	25.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Vield of shake oil, %:		T.	otal sul	phur of	shale					
Shale oil	12.5	17.8	5.7	5.1	3.6	12.6	4.1	5.7	2.3	2.6
Gas (in the form of H ₂ S)	20.6	2.9	14.6	14.8	1	28.6	2.6	21.4	3.6	2.8
Semicoke	53.3	72.8	72.6	70.0	98.5	59.2	85.6	68.4	85.3	87.6
Other species of sulphur in gas and	satisated sh	ante sumple w		Eppled 1 sure	15) 82		1 1 84.71	1 84.2	84.28	810
analytical errors (by difference)	13.6	6.5	7.1	10.1	-2.1	-0.4	7.7	4.5	8.8	7.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
							all and a second se			

hales	
S lic	
ulphur (
I Low-S	
fron	
Retort	
Experimental	
the	
Obtained in	
Oils	
of Shale	
Characteristics	s of the World
Yield and	is Denosit
e 9.	arion
Tabl	of V.
	-

of Various Deposits of the Wor	pi										
Indices	Investigate	d shale sam	Iple number	r (see Table	s 1 and 2)			11	2.00		
Common on the form of H18)	I	3	4	5	9	7	8	6	11-12	13	14
Yield of shale oil, %:			10101	sarb un	1 01 8 8 1	-					
Plant yield (raw shale basis)	20.6	2.4	16.62	9.5	10.0	6.2	2.8	7.3	9.1	7.36	1.72
Yield of Fischer assay oil	99.5	50.0	86.4	88.0	60.0	71.0	59.2	71.2	78.3	90.3	36.5
Density at 20 °C, kg/m ³	988	936	916	936	908	931	913	952	910	897	891
Water, %	6.5	46.2	5.8	6.8	14.5	6.4	1.0	11.6	12.4	0.4	1.2
Entrained fines, %	0.50	2.98	0.92	0.85	0.80	0.49	0.46	0.65	0.27	0.06	0.04
Ash, %	0.24	0.72	0.11	0.50	0.10	0.13	0.10	0.06	0.14	0.04	0.003
Viscosity at 75 °C, 10 ⁻⁶ ·m ² /s	11.4	5.3	19.6	8.1	5.2	5.6	6.06	96.6	7.07	5.91	3.64
Flash point, °C	65	77	52	09	84	32	112	44	101	125	52
Pour point, °C	-25	18	+	T	22	-8	30	28	27	30	25
Refraction index, $n^{20}D$	1.549	1.483	1.512	1.470	1.517	1.518	1.516	1.501	1.512	1.510	1.496
Molecular mass	249	222	178	298	184	285	275	300	293	293	305
Phenolic compounds, %	26.1	3.5	1.9	2.1	3.7	4.3	1.9	0.5	0.8	1.4	1.6
Heating value (bomb	cat Microstr	and a reserve	ral an thu	and thereiche	Total and	00				9.2	5.44
calorimeter), MJ/kg	39.77	41.75	42.87	41.95	42.58	41.62	42.79	42.58	43.29	42.62	43.96
Initial boiling point, °C	116	185	153	158	135	100	199	165	200	183	148

Table 9. Yield and Characte of Various Deposits of the V	Vorld (end)		1.00	22	58	- I Junes		10.1			
Indices Mere	Investiga	ted shale sar	nple numb	er (see Tab	les 1 and 2	(
	I	3	4	5	6	7	80	9	11-12	13	14
Distillation, vol.%, at:		7	00	The After	1870		1			2	10 1
160 °C	3	0.50	2	1	1	9	1	1	1	1	1
180 °C	4	I	7	1	2	8	1	1	I	1	2
200 °C	∞		6	3	4	13	1	2	1	2	3
220 °C	12	4	15	4	9	20	2	5	3	4	7
240 °C	14	10	19	8	12	30	5	8	7	8	13
260 °C	18	20	24	13	17	39	10	14	13	14	20
280 °C	22	26	28	22	23	44	18	21	19	21	31
300 °C	26	36	35	28	29	51	26	28	26	27	39
320 °C	30	48	42	36	35	61	36	34	34	35	49
340 °C	35	54	52	43	43	76	44	43	41	43	64
360 °C	45	72	68	58	55		56	54	50	65	83
Elemental composition (dry ba	sis), %:	481-70	10016	5748	THE .	32					
C and exclosing and	81.8	84.33	84.0	84.2	84.45	82.3	84.60	84.75	84.2	84.28	87.0
Н	10.1	10.88	10.8	10.4	11.63	11.7	12.01	11.12	11.9	11.84	12.3
S	0.0	1.51	0.4	1.3	0.76	1.4	0.73	1.13	0.6	1.16	0.5
Z	0.2	0.65	110	141	0.81	146	0.80	1.50	122	1.25	102
O (hy difference)	7.0	2.63	54.0	7+.1	25 6	5+.0	1 86	1 50	C.C2	1 47	7.02

Table 10. Chemical Group Composition of Light-Middle Fractions of Shale Oil Obtained in the Experimental Retort from Low-Sulphur Oil Shales of Various Deposits, wt.%

4.7 28.8 6.91 17 45 9 30 19 19 19 43 15 28 10 50. 43 30 00 15 4 14 53 84 23.7 10 17. 18 35 28 16 3 225 221 337 337 13 36 17 36 15 48. 35 9 27 11-12 2.5 37.2 12.5 40 61 26 33 33 17 .61 25 6 36 25 26 19 19 4 0 26.8 43.0 2.6 13.6 28 24 17 21 21 28 19 233 28 10 10 27 13 29 25 9 4 00 43 26 15 32 36 16 10 26 26 13 27. 00 10 23 27 17 48. 0 50 Investigated shale sample number (see Tables I and 2) 300 350 P-200 300-350 15.6 19.9 44.2 00 24 220 233 333 15 36 28 18 31 9 21 17 31 200d IB B 9 raction action 12.13 Fraction ction 40.0 21.37 6.5 223 223 223 17 34 26 31 16 30 24 25 r a 5 LL L 13.43 12.84 44.17 6.11 31 337 19 13 32 19 22 11 27 8 30 35 30 21 26 23 4 7.6 16.5 11.8 35.9 23 20 5 12 25 26 21 13 27 17 15 27 27 27 16 4 Neutral heteroatomic compounds Neutral heteroatomic compounds Neutral heteroatomic compounds Neutral heteroatomic compounds Alkanes and cycloalkanes Alkanes and cycloalkanes Alkanes and cycloalkanes Alkanes and cycloalkanes Aromatic hydrocarbons Aromatic hydrocarbons Aromatic hydrocarbons Aromatic hydrocarbons Fraction yield Fraction vield Fraction yield Fraction yield Compounds Alkenes Phenols Alkenes Phenols Alkenes Phenols Alkenes Phenols

10	
67	
d,	
Orl	
M	
e	
th	
J	
S	
sit	
00	
le	
P	
ns	
io	
ar	
>	
H	
Lo.	
50	
le	
ha	
5	
ii	
0	
IL	
h	
In	
S	
M	
3	
0.0	
iii	
FO	
ete	
R	
00	
-ii	
Iu	
S	
ct	
np	
ē	
P	
H	
lee	
T.	
be	
1	
h	
d	
S	
JC	
-	
io	
uti	
di	
str	
Di	
11	
le	
2	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Deposit (sample Nr.)	Shale oil		Percentage into	of sulphur tr	ansferred	Content of total	Share in tot of shale, %	al sulphur	Sulphur in semi-	H ₂ S in gas, g/m ³
The first group Anin (14) 913 0.50 98.5 - 174 81.8 Anin (14) 913 0.50 98.5 - 1.7 1.32 1.74 81.8 Maoming (19) 0.90 0.31 87.6 2.8 2.6 1.22 6.6 80.3 Maoming (19) 0.90 0.31 87.5 3.5 3.5 8.7 1.00 - <t< th=""><th>Mörscriffe u Daufa v v Nurse v Nurse v</th><th>Density at 20 °C, kg/m³</th><th>Content of sulphur, %</th><th>semicoke</th><th>gas (H₂S)</th><th>oil</th><th>sulphur in shale, %</th><th>Organic S</th><th>Pyrite S</th><th>coke, %</th><th>our shale - in mos onding v the sulp</th></t<>	Mörscriffe u Daufa v v Nurse v Nurse v	Density at 20 °C, kg/m ³	Content of sulphur, %	semicoke	gas (H ₂ S)	oil	sulphur in shale, %	Organic S	Pyrite S	coke, %	our shale - in mos onding v the sulp
Anin $(I4)$ Description of the second set of the set of th	Politicourie	raf ler tel		L	he first	group		ly ce la ¹	ine asi m		
Eckibastus (3)915 0.44 89.1 $ 1.7$ 1.32 17.4 81.8 Maoming (19)9090.31 87.6 2.8 2.6 1.22 6.6 80.3 Ust-Kamenogorsk (5)9060.80 87.5 3.5 8.7 1.00 $ -$ Stuart (16)8970.60 85.6 2.6 4.1 1.00 $ -$ Stuart (16)8930.48 85.5 3.5 8.7 1.00 $ -$ Stuart (17)8930.48 85.3 3.6 2.3 0.78 15.4 70.5 Fushun (18)8730.46 84.2 3.2 9.4 2.10 $ -$ Curkovo-Nikolayev (8)878 0.46 84.2 3.2 9.4 2.10 $ -$ Paraiba valley oil shale (11)910 1.00 72.8 4.1 1.00 $ -$ Paraiba valley oil shale (12)920 2.30 72.6 14.6 5.7 1.60 55.6 33.7 Paraiba valley oil shale (12)920 2.30 72.6 14.6 5.7 1.60 55.6 33.7 Paraiba valley oil shale (12)920 2.30 72.6 14.6 5.7 1.60 55.6 33.7 Paraiba valley oil shale (17)899 0.43 68.4 21.4 5.7 1.60 55.6 33.7 Puddian (17)899 0.43 68.4 21.4 5.7 1.6	Anin (14)	913	0.50	98.5		3.6	0.67	23.9	76.1	0.75	- 00 P
Maoning (f) Maoning (f) Maoning (f) 909 0.31 87.6 2.8 2.6 1.22 6.6 80.3 Ust-Kamenogorsk (f) 897 0.60 87.5 3.5 8.7 100 $ -$ Stuart $(I6)$ 897 0.60 87.5 3.5 8.7 100 $ -$ Stuart $(I6)$ 893 0.48 87.5 3.5 8.7 100 $ -$ Stuart $(I6)$ 893 0.48 85.5 3.5 8.7 100 $ -$	Eckibastuse (3)	915	0.44	89.1		1.7	1.32	17.4	81.8	1.34	- 378
Ust-Kanenogorsk (5) 906 0.80 87.5 3.5 8.7 100 $ -$ Stuart (16) 897 0.60 85.6 2.6 4.1 1.00 $ -$ Fushun (18) 893 0.48 85.3 3.6 2.3 0.78 15.4 70.5 Fushun (18) 893 0.46 84.2 3.2 3.4 0.38 18.4 81.6 Fushun (18) 873 0.46 84.2 3.2 3.4 0.38 18.4 81.6 Curkovo-Nikolayev (8) 873 0.46 84.2 3.2 9.4 2.10 100 $ -$ <td>Maoming (19)</td> <td>606</td> <td>0.31</td> <td>87.6</td> <td>2.8</td> <td>2.6</td> <td>1.22</td> <td>6.6</td> <td>80.3</td> <td>1.28</td> <td>10</td>	Maoming (19)	606	0.31	87.6	2.8	2.6	1.22	6.6	80.3	1.28	10
Stuart (16)Stuart (16)8970.6085.62.64.11.00 $ -$ Fushun (18)8930.4885.33.62.30.7815.470.5Gurkovo-Nikolayev (8)8780.4684.23.23.40.3818.481.6Kenderlyck (4)9231.0080.56.29.42.1010.5 $-$ Paraiba valley oil shale (11)9101.0072.82.917.81.2844.543.0Paraiba valley oil shale (12)9201.0072.614.65.71.6055.633.7Paraiba valley oil shale (12)9202.3072.614.65.71.6055.633.7Aleksinac (13)9081.7570.014.85.12.788.38.9.9Boltysh (6)8930.4368.421.45.71.6055.633.7Macksina (17)8990.4368.421.45.71.20 $ -$ Boltysh (6)9320.5567.720.87.10.39 $ -$ Macksina (7)9380.8267.720.87.10.39 $ -$ Macksina (17)9390.6059.517.011.01.00 $ -$ Mutadian (17)8390.6659.514.45.71.6025.653.7 $-$ Macksing (6)9320.6359.517.014.8	Ust-Kamenogorsk (5)	906	0.80	87.5	3.5	8.7	1.00	10-0	1	1.00	12
Fushun $(I\hat{\delta})$ 8930.4885.33.62.30.7815.470.5Gurkovo-Nikolayev $(\hat{\delta})$ 8780.4684.23.23.40.3818.481.6Kenderlyck (4) 9231.0080.56.29.42.1010.5 $-$ Paraiba valley oil shale (II) 9101.0080.56.29.42.1010.5 $-$ Paraiba valley oil shale (II) 9101.0072.82.917.81.2844.543.0Paraiba valley oil shale $(I2)$ 9081.7572.614.65.71.6055.633.7Aleksinac $(I3)$ 9081.7570.014.85.12.788.389.9Huadian (17) 8990.4368.421.45.71.20 $ -$ Boltysh (δ) 9750.6064.528.07.10.39 $ -$ Mae Sot $(I5)$ 9341.3557.541.553.22474.991.9Breznik (g) 9341.3557.541.553.843.153.8Green River $(I0)$ 930.6541.553.20.6564.553.264.4Bortysh (δ) 9341.3557.541.553.264.464.4Breznik (g) 9341.3553.320.612.564.464.4Breznik (g) 9341.3553.320.612.50.6564.4 <td< td=""><td>Stuart (16)</td><td>897</td><td>0.60</td><td>85.6</td><td>2.6</td><td>4.1</td><td>1.00</td><td>518 - 812</td><td>1</td><td>1.00</td><td>10</td></td<>	Stuart (16)	897	0.60	85.6	2.6	4.1	1.00	518 - 812	1	1.00	10
Gurkovo-Nikolayev ($\$$) 878 0.46 84.2 3.2 3.4 0.38 18.4 81.6 Kenderlyck (4) 923 1.00 80.5 6.2 9.4 2.10 10.5 $-$ Paraiba valley oil shale (II) 910 1.00 72.8 2.9 17.8 1.28 44.5 43.0 Paraiba valley oil shale (II) 910 1.00 72.8 2.9 17.8 1.28 44.5 43.0 Paraiba valley oil shale (II) 910 1.00 72.8 2.9 17.8 1.28 44.5 43.0 Paraiba valley oil shale (IZ) 920 2.30 72.6 14.6 5.7 1.60 55.6 33.7 Aleksinac ($I3$) 908 0.43 68.4 21.4 5.7 1.60 55.6 33.7 Mackina ($I7$) 899 0.43 68.4 21.4 5.7 1.20 - - Ukhta (2) 995 0.60 64.5 28.0 7.1 0.39	Fushun (18)	893	0.48	85.3	3.6	2.3	0.78	15.4	70.5	0.74	10
Kenderlyck (4)9231.0080.56.29.42.1010.5 $-$ Paraiba valley oil shale (11)9101.0072.82.917.81.2844.543.0Paraiba valley oil shale (12)9081.0072.82.917.81.2844.543.0Paraiba valley oil shale (12)9202.3072.614.65.71.6055.633.7Aleksinac (13)9081.7570.014.85.12.788.389.9Boltysh (6)8990.4368.421.45.71.20Boltysh (6)8990.8267.720.810.21.4012.179.3Ukhta (2)9750.6064.528.07.10.39Luban (7)9252.0059.517.011.01.6025.068.7Mae Sot (15)9341.3557.541.55.32.474.991.9Green River (10)9270.845.3.320.612.50.6543.153.8	Gurkovo-Nikolayev (8)	878	0.46	84.2	3.2	3.4	0.38	18.4	81.6	0.40	9
Paraiba valley oil shale (II) 910 1.00 72.8 2.9 17.8 1.28 44.5 43.0 Paraiba valley oil shale (IZ) 920 1.00 72.8 2.9 17.8 1.28 44.5 43.0 Paraiba valley oil shale (IZ) 920 2.30 72.6 14.6 5.7 1.60 55.6 33.7 Aleksinac $(I3)$ 908 1.75 70.0 14.8 5.1 2.78 8.3 89.9 Boltysh (6) 908 1.75 70.0 14.8 5.7 1.60 55.6 33.7 Boltysh (6) 899 0.43 68.4 21.4 5.7 1.60 55.6 33.7 Ukhta (2) 899 0.82 67.7 20.8 10.2 1.40 12.1 79.3 Mae Sot $(I5)$ 925 2.00 59.5 17.0 11.0 1.60 25.0 68.7 Mae Sot $(I5)$ 934 1.35 57.5 41.5 5.3 2.47 4.9 91.9 Green River $(I0)$ 934 1.35 53.3 20.6	Kenderlyck (4)	923	1.00	80.5	6.2	9.4	2.10	10.5	1	2.35	41
The second groupThe second groupParaia valley oli shale $(I2)$ 9202.3072.614.65.71.6055.633.7Huadian (17) 9081.7570.014.85.12.788.389.9Boltysh (6) 9081.7570.014.85.12.788.389.9Ukhta (2) 9750.6064.528.07.10.39 $ -$ Luban (7) 9252.0059.517.011.01.6025.068.7Mae Sot $(I5)$ 8890.6059.228.612.60.8732.264.4Breznik (9) 9341.3557.541.55.32.474.991.9Creen River $(I0)$ 9270.8453.320.612.564.453.8	Paraiba valley oil shale (11)	910	1.00	72.8	2.9	17.8	1.28	44.5	43.0	1.30	43
Paratiba valley oit shale $(I2)$ 9202.3072.614.65.71.6055.633.7Aleksinac $(I3)$ 9081.7570.014.85.12.788.389.9Huadian (17) 9081.7570.014.85.12.788.389.9Boltysh (6) 9750.4368.421.45.71.20 $ -$ Ukhta (2) 9750.6064.528.07.10.39 $ -$ Luban (7) 9252.0059.517.011.01.6025.068.4Mae Sot (15) 9341.3557.541.55.32.474.991.9Green River (10) 9270.8453.320.612.50.6543.153.8				T	le secon	1 group					
Aleksinac (I_3) 908 1.75 70.0 14.8 5.1 2.78 8.3 89.9 Huadian (17) 899 0.43 68.4 21.4 5.7 1.20 $ -$ Boltysh (6) 899 0.43 68.4 21.4 5.7 1.20 $ -$ Boltysh (6) 899 0.82 67.7 20.8 10.2 1.40 12.1 79.3 Ukhta (2) 975 0.60 64.5 28.0 7.1 0.39 $ -$ Luban (7) 925 2.00 59.5 17.0 11.0 1.60 25.0 68.7 Mae Sot $(I5)$ 889 0.60 59.5 17.0 11.0 1.60 25.0 68.4 Mae Sot $(I5)$ 934 1.35 57.5 41.5 5.3 2.47 4.9 91.9 Green River $(I0)$ 927 0.84 53.3 206 12.5 0.65 43.1 53.8	Paraiba vallev oil shale (12)	920	2.30	72.6	14.6	5.7	1.60	55.6	33.7	1.30	123
Huadian (17) 899 0.43 68.4 21.4 5.7 1.20 $ -$ Boltysh (6) 898 0.82 67.7 20.8 10.2 1.40 12.1 79.3 Ukhta (2) 975 0.60 64.5 28.0 7.1 0.39 $ -$ Luban (7) 925 2.00 59.5 17.0 11.0 1.60 25.0 68.7 Mae Sot (15) 889 0.60 59.2 28.6 12.6 0.87 32.2 64.4 Breznik (9) 927 0.84 53.3 20.6 12.5 64.4 4.9 91.9	Aleksinac (13)	908	1.75	70.0	14.8	5.1	2.78	8.3	89.9	2.29	133
Boltysh (δ) 898 0.82 67.7 20.8 10.2 1.40 12.1 79.3 Ukhta (2) 975 0.60 64.5 28.0 7.1 0.39 $ -$ Luban (7) 925 2.00 59.5 17.0 11.0 1.60 25.0 68.7 Mae Sot (15) 889 0.60 59.2 28.6 12.6 0.87 32.2 64.4 Breznik (9) 934 1.35 57.5 41.5 5.3 2.47 4.9 91.9 Green River (10) 927 0.84 53.3 20.6 12.5 0.65 43.1 53.8	Huadian (17)	899	0.43	68.4	21.4	5.7	1.20	R Thorse	1	1.10	62
Ukhta (2) 975 0.60 64.5 28.0 7.1 0.39 $ -$ Luban (7) 925 2.00 59.5 17.0 11.0 1.60 25.0 68.7 Mae Sot (15) 889 0.60 59.2 28.6 12.6 0.87 32.2 64.4 Breznik (9) 934 1.35 57.5 41.5 5.3 2.47 4.9 91.9 Green River (10) 927 0.84 53.3 20.6 12.5 0.65 43.1 53.8	Boltysh (6)	898	0.82	67.7	20.8	10.2	1.40	12.1	79.3	1.30	61
Luban (7) 925 2.00 59.5 17.0 11.0 1.60 25.0 68.7 Mae Sot (15) 889 0.60 59.2 28.6 12.6 0.87 32.2 64.4 Breznik (9) 934 1.35 57.5 41.5 5.3 2.47 4.9 91.9 Green River (10) 927 0.84 53.3 20.6 12.5 0.65 43.1 53.8	Ukhta (2)	975	0.60	64.5	28.0	7.1	0.39		-	0.30	71
Mae Sot (I5) 889 0.60 59.2 28.6 12.6 0.87 32.2 64.4 Breznik (9) 934 1.35 57.5 41.5 5.3 2.47 4.9 91.9 Green River (10) 927 0.84 53.3 20.6 12.5 0.65 43.1 53.8	Luban (7)	925	2.00	59.5	17.0	11.0	1.60	25.0	68.7	1.10	131
Breznik (9) 934 1.35 57.5 41.5 5.3 2.47 4.9 91.9 Green River (10) 927 0.84 53.3 20.6 12.5 0.65 43.1 53.8	Mae Sot (15)	889	0.60	59.2	28.6	12.6	0.87	32.2	64.4	69.0	78
Green River (10) 927 0.84 53.3 20.6 12.5 0.65 43.1 53.8	Breznik (9)	934	1.35	57.5	41.5	5.3	2.47	4.9	91.9	1.70	363
	Green River (10)	927	0.84	53.3	20.6	12.5	0.65	43.1	53.8	0.40	75

ndices	Heat carrier gas the retort bed	single flow through	Contact material	of oil vapou	irs with hot (50	0-600 °C) s	olid
	Experimental	Hot model of the	e retorting o	chamber of	Solid heat carr	rier units (S)	HC)
	retort	a heat carrier gas	cross-flow	retort [4]	Bench-scale	SCH-5	009
	Kul	kersite Eston	ian dep	osit	1 3/14	1 30	12
Density at 20 °C, kg/m ³ Molecular mass	988 249	1000 278		021 251	10,64	100	975 220
rlash point, °C	65	+	110	- 102	I	5 12	6
	Bul	garia Breznik	deposi	t			
Density at 20 °C, kg/m ³ Molecular mass Pour point. °C	952 300 28	960 303 29	28.8	980 218 16	1	<u>n a i</u>	+
000 1000	Bul	garia Gurkov	o-Nikol	ayev de	posit	1.85.1	
Density at 20 °C, kg/m ³ Molecular mass	913 275		1 22	- 233		N CO	877
our point, °C lash point, °C	30 112	La Ricord					20
	Yug	goslavia Aleks	sinac de	posit			
Density at 20 °C, kg/m ³ Molecular mass Pour point, °C	897 293 30		a and		899 212 15	1 20	111
	Mo	rocco Timahd	it depo	sit			
Density at 20 °C, kg/m ³ Molecular mass	981 262	11		11	959 180		
our point, °C Tash point, °C	88	Tou-Subme On	Simles ho	A Autom	-21 6	the laouty-	11

V. Yefimov et al.

Low-sulphur shales yield retort gas which contains only a little hydrogen sulphide - in most cases no more than 50-100 g/m³ (Tables 5 and 6). The corresponding value for high-sulphur shales is 300-500 g/m³ [1]. Considering the sulphur present in oil shale, up to 10 % (with some exceptions) is transferred to oil (Tables 7 and 8), and the main portion of it remains in the semicoke.

In order to make a more thorough study of the physical and chemical properties of retort oil (which is the main product of oil shale thermal destruction) some of the samples have been processed in an experimental retort with semicoke gasification. The retort had a throughput of 500-1000 kg/day [2, 3]. As seen from Table 9, processing of low-sulphur shales yields shale oil which comprises from 50-80 % of the Fischer assay oil, dropping to 36 % only in the case of Romanian shales from the Anin deposit (Banata province).

Retort oils obtained in such a fashion are characterized by relatively low density, high solidification temperature, and very low content of oxygen and, consequently, of phenols, too. Compared to high-sulphur oils, low-sulphur ones contain more paraffins and olefins and less aromatic hydrocarbons (Table 10).

Low-sulphur oil shales which yield paraffinic retort oil, as investigated by the authors, may be divided into two groups (Table 11) rather precisely. All paraffinic oils are characterized by low density as already mentioned above (about 900 kg/m³). The first group comprises the oil shales for which retorting results in having 70-100 % of the sulphur remain in the semicoke, and only 5-6 % is transferred into the gas (the H₂S content of gas is low and does not exceed 40 g/m³). The second group comprises the oil shales for which 50-70 % of the original sulphur remains in the semicoke and the portion converted into gaseous components is significantly higher (14-40 %). The H₂S content of this gas is up to 60-135 g/m³.

Neither the form of the sulphur nor the proportion of the different forms seem to influence its distribution between retorting products (see data in Table 11). Some other factors are probably impacting on those processes.

Solidification of paraffinic oils (i.e. products of thermal processing of oil shale samples under study) causes serious troubles during retorting. Therefore, it is extremely expedient to find possible routes for obtaining oils with lower values for oil solidification point. As seen from Table 12, this is attainable when processing oil shale in units with a solid heat carrier or using the reverse process in vertical retorts, i.e. repeated contact of vapour and gas mixture with heated semicoke (up to 500-600 $^{\circ}$ C) [4].

Conclusions

Oil shales which form low-sulphur paraffinic oil upon retorting have been studied. The total sulphur content of the studied samples is within the range 0.38-2.78 % and the organic sulphur content varies between 0.07 and 0.89 %. During the oil shale processing in Fischer retorts, sulphur is transferred to the products in the following proportions: 1.7-17.8 % to the oil, traces-41.5 % to the gas (as H₂S), and 53.3-98.5 % to the semicoke. The oils obtained from the studied oil shales have decreased values for density (about 900 kg/m³). The tested shales produce light-middle fractions which contain less aromatic hydrocarbons and more paraffins and olefins than oils obtained during the retorting of high-sulphur oil shales. Paraffinic oils contain only small amounts of phenolic compounds - 2-4 %.

It is suitable to conditionally divide the oil shales studied into two groups. The first group is comprised of the oil shales for which 70-100 % of the total sulphur remains in the semicoke during retorting, and the portion of sulphur transferred into the gas (as H_2S) is very negligible - below 5-6 % (the H_2S content of this gas does not exceed 40 g/m³).

The second group is comprised of the oil shales for which 50-70 % of the total sulphur remains in the semicoke upon retorting, and 14-40 % is transferred into the gas (the H₂S content of this gas rises up to 60-135 g/m³). The form of sulphur present in oil shale and the proportion of different forms do not affect its distribution between the products; some other factors seem to be responsible for this separation.

The world-wide experience of thermal processing of low-sulphur shales which yield paraffinic oil upon retorting is very large. High values for solidification point (25-30 $^{\circ}$ C) of the produced oils very often complicate their transport and further chemical treatment. To avoid these problems, one should process those shales in retorting units with a solid heat carrier or in vertical retorts with repeated contact of oil vapours with the semicoke.

Acknowledgements

This work and the research published in **Oil Shale** Vol. 12, No. 4, pp. 317-340 were financially supported by the Estonian Science Foundation under Grant No. 2029.

REFERENCES

- Yefimov V. M., Doilov S. K., Pulemyotov I. Research and experimental processing of high-sulphur oil shales // Oil Shale. 1995. V. 12, No. 4. P. 317-340.
- Yefimov V. M., Piik E. E. About the characteristics of oil shales from some deposits // Khimiya tvyordogo topliva (Chemistry of solid fuel). 1967. No. 6. P. 65-72 [in Russian].
- 3. Lööper R. A., Velbaum M. A., Paaps G. A. The retorting of Volga-basin shales - special features of the process and primary products. Liquid products of oil shale processing as raw for chemical industry // Transactions of Oil Shale Research Institute. 1986. No. 24. P. 78-90 [in Russian].
- 4. Yefimov V. M., Kundel H. A., Doilov S. K. Effect of the composition of gaseous heat carrier on the yield of benzopyren at oil shale retorting // Khimiya tvyordogo topliva (Chemistry of solid fuel). 1993. No. 6. P. 60-65 [in Russian].

Received April 1, 1996