RESEARCH AND EXPERIMENTAL PROCESSING OF HIGH-SULPHUR OIL SHALES

V. YEFIMOV S. DOILOV I. PULEMYOTOV

Oil Shale Research Institute Kohtla-Järve, Estonia

During the retorting process of oil shales in Fischer retorts sulphur is transferred to retorting products (to oil, gas or semicoke) in different proportions, depending on the content of organic sulphur (more precisely on the share of organic sulphur in total one) in the shales.

The conditions of retorting the shales do not influence the sulphur content in the retort oils.

High-sulphur oils obtained in the experimental retort are similar to each other in their chemical group composition. They are characterized by an increased content of aromatic hydrocarbons and a reduced content of phenols and alkenes.

The majority of oil shales of the world yield on retorting paraffinic oil which is similar to low-sulphur paraffinic petroleums in its physical and chemical properties. The second group of oil shales found throughout the world forms on retorting high-sulphur oil [1].

In order to learn about the physical, chemical and processing properties of the second group of oil shales the research of the corresponding samples has been carried out both in laboratory conditions and experimental retort. Samples were delivered to the Oil Shale Research Institute by various foreign organizations and geological expeditions at different times. These samples obviously do not reflect completely the average qualitative character of their deposits. Nevertheless, these samples give an idea about the physical and chemical properties and specific features of the oil shales originating from different deposits.

The present research has, in authors' opinion, a practical value for rating the oil shales as process raw materials for retorting, and the possibilities for their industrial use.

This paper generalizes the results of the investigation of oil shale samples obtained from the main shale deposits of the world, including the Volga Basin in Russia, and Uzbekistan (Table 1), the Ukraine, Morocco, Jordan, Syria and Brazil (Table 2). For a comparable study the corresponding data for the most common oil shales which yield paraffinic

Table 1. Properties of Oil Shales from Russia and Uzbekistan Deposits

Indices	Volga Basin	n					Sysol	Uzbekistan	an	
	Kasphir	Chagan	Perelyu	b, seam	Kotsebinsk	Perelyub, seam Kotsebinsk Rubezhinsk		Baisun	Urtabulak	Sangruntau
			1	4						
	Investigate	Investigated shale sample number	ple numl	oer						
	-	2	3	4	5	9	7	∞	6	10
Moisture of oil shale tested in experimental retort, %	20.0	5.8	I	9.4	4.9	12.5	13.6	2.6	7.2	8.7
Content (dry basis), %:	77	154	143	7.9	11.2	104	77	89	9 &	13
Ash Ad	65.3	52.4	43.6	46.1	51.7	40.2	66.2	63.2	60.3	74.8
Organic matter*	27.0	32.2	42.1	46.0	37.1	49.4	26.1	30.0	31.1	23.9
Total sulphur S^{d}_{r} Including:	3.7	4.14	80.9	5.80	90.9	4.69	3.4	4.15	4.56	4.57
Sulphate	0.7	0.23	0.12	0.08	0.33	80.0	0.12	0.05	1	0.79
Pyrite	1.7	1.13	1.11	0.59	1.51	29.0	1.43	3.28	1	2.26
Organic (by difference)	1.8	2.78	4.85	5.13	4.22	3.94	1.85	0.82	1	1.52
Heating value (bomb calorimeter), MJ/kg	8.54	92.01	14.25	16.37	12.18	99.91	8.37	10.93	10.55	6.32
Fischer assay product yield	(standa	andard retort),	rt), %							
Shale oil	8.7	13.0	20.0	20.9	15.2	21.1	9.6	11.7	9.4	6.1
Pyrogenetic water	4.4	4.0	4.8	5.7	4.7	5.9	4.2	4.0	4.8	4.4
Semicoke	81.0	75.9	9.99	63.9	72.1	62.7	80.2	78.6	73.7	84.9
Gas and losses (by difference)	5.9	7.1	9.8	9.5	8.0	10.3	0.9	5.7	12.1	4.6
Fischer assay oil of organic matter, %	32.2	40.3	47.5	45.4	41.0	42.7	36.8	39.0	30.1	25.5

* Here and later on organic matter content is equal to: $100-(\mathrm{CO}_2)^d_M-\mathrm{A}^d$.

Table 1. Properties of Oil Shales from Russia and Uzbekistan Deposits (end)

Indices	Volga Basin	n					Sysol	Uzbekistan	itan	
	Kasphir	Chagan	Perelyub, seam	seam	Kotsebinsk	Rubezhinsk		Baisun	Urtabulak	Urtabulak Sangruntau
			1	4						
	Investigate	Investigated shale sample number	ple numbe	ı.						
	_	2	3	4	5	9	7	∞	6	10
Fischer assay product yield	(shale	sample	200 g)	: %:						
Shale oil	-	12.1	18.3	9.61	13.6	19.5	8.4	1	1	1
Pyrogenetic water	1	3.6	4.3	5.3	4.3	5.3	3.6	1	1	1
Semicoke	ı	76.2	67.7	64.6	72.1	64.2	9.87	1	1	1
Gas and losses (by difference)	1	8.1	9.7	10.5	10.0	11.0	9.4	1	ı	1
Fischer assay oil of organic matter, %	1	37.6	43.5	42.6	36.7	39.5	32.2	1	1	1
Ash composition, %:										
SiO ₂	38.0	29.9	24.6	40.5	32.4	31.9	1.94	45.5	34.7	55.0
Fe ₂ O ₃	13.9	8.7	5.5	5.5	9.5	5.5	7.5	9.6	9.8	0.6
Al ₂ O ₃	14.9	9.3	8.1	11.8	10.2	9.8	13.3	13.6	11.0	13.0
K ₂ O	2.8	1.6	1.4	2.3	1.6	1.9	4.0	322	171	316
Na ₂ O	2.4	0.5	0.2	0.7	0.2	0.7	0.4	7:-7	1.,,	0.11
MgO	0.7	3.0	2.1	1.8	1.8	2.3	2.6	3.6	3.1	3.2
CaO	20.4	34.1	43.7	22.8	28.0	33.2	17.5	19.2	23.6	12.4
SO ₃	5.6	10.4	12.1	11.6	14.9	13.2	7.3	8.3	11.8	6.2
Total	98.7	97.5	7.76	97.0	98.6	97.3	7.86	102.0	6.66	100.4
						The second secon			-	

Table 2. Properties of Oil Shales from Various Deposits of the World

Indices	Morocco, Timahdit	Timahd	it	Svria,	Jordan,	Brazil,	Ukraine		Estonia,
				Senoman	El-Lajjun	Irati	Verkhnesinevid	Boltysh	Estonian (kukersite)
	Investigat	ed shale	Investigated shale sample number	ımber					
	11	12	13	14	15	16	17	18	19
Moisture of oil shale tested in experimental retort, %	5.66	4.36	5.8	1	1	1	3.0	4.4	5.1
Content (dry basis), $\%$: Carbon dioxide $(CO_2)^d M$ Ash A^d	25.2	19.2	8.1	32.1	15.1	2.6	0.8	0.5	20.8
Organic matter Total sulphur S^{d}_{t}	12.6	18.3	23.1	14.8	23.9	17.6	22.6	42.0	33.0
Including: Sulphate	60.0	0.10	0.20	0.10	0.10	0.04	0.10	0.12	0.05
Pyrite Organic (by difference)	0.73	0.81	1.38	0.30	1.09	4.01	2.00	1.11 0.17	1.30
Heating value (bomb calorimeter), MJ/kg	4.21	5.84	6.61	4.27	7.87	5.61	6.53	12.73	12.43
Fischer assay product yield		(standard	retort)	. %:					
Shale oil	5.5	7.2	8.7	6.5	12.7	7.0	1	17.5	21.8
Pyrogenetic water	8.0	2.0	2.7	1.9	1.1	1.3	1	3.9	2.4
Semicoke	9.06	87.7	84.3	88.2	82.1	88.2	ı	72.9	70.2
Gas and losses (by difference)	3.1	3.1	4.3	3.4	4.1	3.5	1	5.7	9.6
Fischer assay oil of organic matter, %	43.6	39.3	37.9	44.0	53.1	39.8	1	41.7	66.1

Table 2. Properties of Oil Shales from Various Deposits of the World (end)

Indices	Morocco, Timahdit	, Timahd	lit	Syria,	Jordan,	Brazil,	Ukraine		Estonia,
				Senoman deposition	El-Lajjun	Irati	Verkhnesinevid Boltysh	Boltysh	Estonian (kukersite)
	Investiga	ted shale	Investigated shale sample number	ımber				B	
	11	12	13	14	15	16	17	18	19
Fischer assay product yield	d (shale	e sample	ple 200	0 8), %:					
Shale oil	9.4	1.0	9.7	1	1	-	3.4	1	1
Pyrogenetic water	0.5	6.0	2.9	1	1	1	1.5	1	1
Semicoke	90.2	86.5	84.6	1	1	1	92.2	1	1
Gas and losses (by difference)	4.7	5.6	4.9	I	1	1	2.9	1	T
Fischer assay oil of organic matter, %	36.5	38.2	32.9	1	1	1	15.0	1	1
Ash composition, %:									
SiO ₂	29.5	36.1	48.3	10.4	38.5	60.3	73.8	65.8	28.5
Fe ₂ O ₃	4.5	5.2	6.7	338	1.5	12.0	9.9	9.8	5.5
Al ₂ O ₃	6.2	9.5	17.9	0.56	2.8	13.2	13.2	17.6	6.7
K ₂ O	1.9	1.3	1.2	1	-	4.8	1.1	2.6	2.1
Na ₂ O	0.2	0.1	0.1	1	1	2.1	8.0	1.7	0.4
MgO	3.9	8.9	2.7	I	3.2	3.1	0.7	1.5	4.4
CaO	47.0	33.9	15.5	8.62	38.9	2.8	1.1	2.1	44.8
SO ₃	5.2	5.7	6.2	3.2	6.4	1.7	5.3	1	6.5
Total	98.4	98.3	9.86	97.2	91.3	100.0	102.6	6.66	6.86

Table 3. Properties of Fischer Assay Products from Oil Shales of Russian and Uzbekistan Deposits

To obtain the semicoking products the Fischer retort was applied with oil shale sample, g Density at 20 °C, kg/m³ Molecular mass Heating value (bomb calorimeter), MJ/kg Elemental composition (dry basis), %: 80.0						-	Contract of Contra		The state of the s
the Fischer nple, g MJ/kg %:		3	4	5	9	7	8	6	10
MJ/kg %:	200	200	200	200	200	200	20	20	20
MJ/kg %:	Sh	ale Oil							
MJ/kg //:	1000	1000	943	1013	0101	973	962	972	973
MJ/kg	222	184	195	661	228	179	1	1	1
%:	38.60	38.98	38.60	38.77	38.81	38.90	40.95	40.49	40.82
0.08 80.0									
, ,	78.92	77.56	79.10	78.41	78.16	8.67	80.8	82.0	80.7
9.6	96.8	9.43	00.6	9.38	8.90	9.5	10.2	10.1	10.0
7.4	7.12	7.39	7.50	8.50	69.9	4.8	4.2	0.9	7.8
	1.20	0.47	0.74	09.0	89.0	0.7	1.9	7.10	7:5
O (by difference)	3.80	5.15	3.66	3.11	5.57	5.2	2.9	§1.9	51.5
	Se	Semicoke							
Content (dry basis), %:									
Carbon dioxide $(CO_2)^d_M$ 9.9	19.4	20.4	11.6	15.2	9.91	8.7	8.3	8.5	1.8
Ash A ^d 78.3	65.7	64.3	66.4	68.7	59.1	77.3	75.9	74.0	87.5
Carbon C ^d 7.6	12.6	16.7	22.0	16.8	25.2	14.0	11.0	9.4	9.9
Total sulphur S^{d}_{i} 1.91	2.10	2.24	1.9	3.25	2.15	1.78	2.94	3.24	2.87
Heating value (bomb calorimeter), MJ/kg 4.48	5.35	6.15	8.75	6.07	96.8	4.40	5.74	6.36	3.35

Table 4. Properties of Fischer Assay Products from Oil Shales of Various Deposits of the World

Indices	Investigated s	Investigated shale sample number (see Table 2)	number (see	Fable 2)				
	111	12	13	14	16	17	18	61
To obtain the semicoking products the Fischer retort was applied with oil shale sample, g	200	200	200	20	50	200	20	20
		Shale	0 11					
Density at 20 °C, kg/m ³	1961	974		0101	816	688	868	896
Molecular mass	192	210		1	210	1	1	276
Heating value (bomb calorimeter), MJ/kg	40.50	40.26	40.19	38.39	42.16	39.9	42.7	40.19
Elemental composition (dry basis), %:								
O	79.64	79.00		76.5	84.4	78.9	84.66	83.12
Н	66.6	10.02	10.23	0.6	11.0	9.3	11.95	10.13
S	7.14	7.02		10.6	1.3	5.6	0.82	0.84
Z	2.54	2.34		120	9.0	1.0	0.64	0.20
O (by difference)	69.0	1.62		33.9	2.7	5.2	1.93	5.71
		Semicoke	oke					
Content (dry basis), %:								
Carbon dioxide $(CO_2)^d_M$	27.3	22.0	8.7	34.0	2.7	1.2	0.3	28.1
Ash A ^d	67.8	70.2	80.7	58.8	0.06	82.0	81.6	64.8
Carbon C ^d	4.9	8.9	9.4	5.8	6.2	16.8	10.5	7.6
Total sulphur S ^d ,	8.0	1.0	1.6	99.0	3.1	1.9	1.3	1.5
Heating value (bomb calorimeter), MJ/kg	1.55	2.38	2.89	1.67	2.34	4.40	4.98	2.64
				-	-		-	+

Table 5. Yield and Characteristics of Gas* Obtained in the Fischer Retort from Oil Shales of Russian and Uzbekistan Deposits

Indices	Investigate	ed shale san	nple numbe	Investigated shale sample number (see Table 1)	e 1)					
	1	2	3	4	5	9	7	00	6	10
Specific gas yield, m ³ /t	41.1	56.2	62.9	74.5	68.2	75.2	45.4	47.7	8.09	40.4
Content of components, vol.%:										
C02	22.3	24.7	24.1	21.5	26.1	30.1	35.1	\$31.5	20.7	22.5
H ₂ S	7.17	7.47	36.0	7.67	1.00	0.62	19.9	,	19.5	4.17
H ₂	17.7	10.0	5.7	6.5	7.1	5.4	13.1	33.3	23.7	27.3
00	5.3	6.2	7.3	7.1	0.9	8.7	0.9	3.9	3.6	3.2
C_nH_{2n+2}	21.3	27.1	20.9	28.2	20.7	24.9	8.61	25.7	27.7	20.8
Including:										
CH ₄	11.7	15.4	11.5	0.91	11.6	14.4	11.0	14.2	15.2	12.8
C ₂ H ₆	6.4	6.5	5.4	7.0	5.2	6.2	5.0	9.7	9.1	5.5
C_3H_8	2.3	3.3	2.4	3.1	2.3	2.6	2.2	2.4	2.7	1.7
C4H10:										
<i>n</i> -butane	0.7	1.0	8.0	1.0	8.0	8.0	0.7	1.1	0.7	9.0
iso-butane	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1	1	-
C ₅ H ₁₂ :										-
n-pentane	0.1	0.5	0.4	9.0	0.4	0.5	0.5	0.4	1	0.7
iso-pentane	1	0.1	0.1	0.1	0.1	0.1	0.1	-	1	-
C ₆ H ₁₄ :							(-
n-hexane	The state of	0.2	0.5	0.3	0.7	0.7	0.7	1	1	1
				-						

Here and later on all characteristics of gas are given at 20 °C and 760 mm Hg.

Table 5. Yield and Characteristics of Gas Obtained in the Fischer Retort from Oil Shales of Russian and Uzbekistan Deposits (end)

C _n H _m Including: C ₂ H ₄ C ₂ H ₄ C ₃ H ₆ C ₄ H ₈ : butnee-1 trans-butene-2 c _{is} -butene-2 C ₅ H ₁₀ : pentene-1 trans-pentene-2 C ₅ H ₁₀ : pentene-1 trans-pentene-2 C ₆ H ₁₂ : 2-methylbutene-1 3-methylbutene-1 hexene-1 Not identified - 0.1	,			-				
5.7 5.7 1.0 1.7 2.0 1.0	2	4	5	9	7	∞	6	10
1.7 1.7 2.0 1.0	7.1 5.1	6.7	4.8	5.6	5.9	5.6	5.0	4.8
1.0 1.0 0.2 0.2 0.2 0.8	2.3 1.4	2.0	1.7	1.6	1.6	1.7	2.4	1.6
1 ene-2	1.1 0.9 0.3 0.2 0.2 0.1	1.1 0.3 0.2	0.8	0.9	1.1 0.3 0.2	1.0	0.0	0.9
ylbutene-1 - - - - -	0.2 0.2 0.1 0.1	0.2	0.2	0.2	0.2	0.2	111	111
1	0.1 0.1 0.1	0.1	0.1	0.1	0.1		1 1 1	111
·		0.3	0.5	0.3	0.2			
Total 100.0 100.0 100.0 Calculated hearing value MVm ³ .	100.0 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
22.4	30.27 27.72 27.84 25.58	31.57	26.71	27.42	24.37	24.37	26.80	23.78
Density, kg/m ³ 1.271 1.313 Content of H ₂ S, g/m ³ 391 349		1.347	1.378	1.395	1.345	1.022	1.079	1.068

Table 6. Yield and Characteristics of Gas Obtained in the Fischer Retort from Oil Shales of Various Deposits of the World

Indices	Investigate	d shale sam	Investigated shale sample number (see Table 2)	(see Tabl	e 2)			
	11	12	13	14	91	17	18	61
Specific gas yield, m ³ /t	24.1	32.5	33.0	26.0	27.0	18.3	51.0	38.2
Content of components, vol.%:	1 203	18.8	010	313	1 104	31.1	1 253	1 237
H ₂ S	24.7	21.1	24.6	22.4	28.6	11.9	4.3	14.6
H_2	12.6	13.2	17.9	12.8	13.6	10.9	24.4	5.3
00	3.5	2.4	3.5	7.1	1.9	12.9	8.9	4.2
$C_n H_{2n+2}$	30.3	34.9	24.7	21.5	35.7	28.4	28.4	35.6
Including:								
CH4	15.0	17.9	15.8	13.0	21.3	22.4	13.3	14.7
C ₂ H ₆	8.3	9.6	0.9	5.7	6.9	4.0	10.1	9.8
C3Hs	4.0	4.4	2.0	2.0	4.0	1.4	3.0	5.6
n-butane	1.4	1.5	0.4	9.0	1.4	0.3	1.3	1 2.0
iso-butane	0.2	0.2	0.1	1	9.0	0.1	1	6.0
C ₅ H ₁₂ :								
n-pentane	6.0	8.0	0.2	0.2	8.0	0.2	0.7	3.0
iso-pentane	0.2	0.2	0.1	1	0.4	1	1	8.0
C ₆ H ₁₄ :								
n-hexane	0.3	0.3	0.1	1	0.3	1	1	1

Table 6. Yield and Characteristics of Gas Obtained in the Fischer Retort from Oil Shales of Various Deposits of the World (end)

Indices	Investigated	d shale sam	Investigated shale sample number (see Table 2)	(see Table	e 2)			
	=	12	13	14	16	17	18	61
C _n H _m	8.3	9.0	8.1	4.9	8.6	4.8	8.7	9.91
Including: C2H4 C3H6	2.1	3.4	2.0	1.5	2.3	1.3	2.9	3.3
C4H8: butene-1	1.5	1.7	1.4	1.3	1 2.0	0.5	1.0	3.3
trans-butene-2	0.4	0.5	0.5	1	0.5	1.5	0.3	8.0
cis-butene-2	0.3	0.3	0.3	1	0.3	0.1	9.0	0.5
C ₅ H ₁₀ : pentene-1	0.4	0.4	0.4	0.3	0.3	0.1	0.2	2.6
trans-pentene-2	0.4	0.1	0.4	1	0.4	1	1	1
C ₆ H ₁₂ : 2-methylbutene-1	0.1	0.2	0.1	1	0.2	1	1	1
3-methylbutene-1	0.1	0.1	0.1	1	0.1	1	1	1
hexene-1	0.1	0.2	0.1	1	0.2	1	1	1
Not identified	0.3	9.0	0.2	1	9.0	1	1	1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Calculated heating value, MJ/m3:								
high	34.96	37.30	24.97	23.53	39.27	23.03	29.26	16.51
low	32.15	34.29	22.77	21.56	36.09	21.10	26.75	42.92
Density, kg/m ³	1.291	1.264	1.106	1.285	1.224	1.225	1.117	1.481
Content of H ₂ S, g/m ³	349	296	346	317	405	168	61	206

Table 7. Heat Balance of Retorting Russian and Uzbekistan Oil Shales in the Fischer Retort, %, and Sulphur Distribution between Retorting Products, %

Indices	Investigate	Investigated shale sample number (see Table 1)	ple number	(see Table 1)					
	1	2	3	4	5	9	7	8	6	10
		0	Chemical	l heat of	f shale					
Shale oil	39.8	9.94	54.8	49.3	48.4	49.1	44.6	43.8	36.1	39.4
Gas	10.8	15.8	12.8	14.4	14.0	12.4	13.2	10.6	15.4	15.2
Gasoline, unregarded losses and analytical errors (by difference)	6.9	-0.2	3.6	2.2	1.7	4.8	0.1	4.3	4.0	0.4
Semicoke	42.5	37.8	28.8	34.1	35.9	33.7	42.1	41.3	44.5	45.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
			Total sulphur of	lphur o	f shale					
Shale oil	17.4	22.3	24.3	27.0	21.3	30.0	13.5	11.8	12.4	10.4
Gas (in the form of H ₂ S)	40.9	44.5	52.7	50.7	45.8	53.3	35.3	1	34.2	25.2
Semicoke	41.8	38.5	24.5	20.9	38.7	28.7	42.0	55.7	52.4	53.3
Other sulphur compounds in gas and							0			
analytical errors (by difference)	0.1	3.3	C.I	1.4	-5.8	-12.0	1.6		0.1	11.1
Total	100.0	100.0	0.001	100.0	100.0	100.0	100.0	-	100.0	100.0
					_		-			

Table & Heat Balance of Retorting Oil Shales from Various Denosits of the World in the Fischer Retort. % and

Indices	Investigate	d shale sam	Investigated shale sample number (see Table 2)	(see Table	2)			
	11	12	13 . 14	14	91	17	18	19
		Chemica	Chemical heat of shale	f shale				
Shale oil	52.7	49.5	52.9	58.4	52.6	20.8	58.7	70.5
Gas	6.61	20.7	12.4	14.3	18.9	6.5	11.7	14.3
Gasoline, unregarded losses and analytical errors (by difference)	-5.8	-5.9	-2.1	-7.3	-8.3	10.2	1.1	0.3
Semicoke	33.2	35.7	36.8	34.6	36.8	62.5	28.5	14.9
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		Fotal su	Total sulphur of shale	f shale				
Shale oil	22.2	21.3	20.1	33.9	2.2	7.1	10.2	9.6
Gas (in the form of H ₂ S)	44.7	38.1	35.1	38.1	24.4	10.8	20.8	39.0
Semicoke	40.9	37.0	43.9	28.7	65.2	65.4	67.7	55.4
Other sulphur compounds in gas and analytical errors (by difference)	-7.8	3.6	6.0	-0.7	8.2	16.7	1.3	-4.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

 $Table\ 9.$ Distribution of Sulphur between Products during Retorting High-Sulphur Oil Shales from Various Deposits of the World, %

Sulphur content of the initial shale, In shale In	Deposit (sample No.)	Share of organic sulphur in the total	Content of sulphur,	sulphur, %		Percentage	e of sulphur t	Percentage of sulphur transferred into,	%
The first group The second group The third group The fourth group		sulphur content of the initial shale, %	in shale		lio ui				
(17) The first group (17) The second group (17) The second group (18) The second group (19) The second group (19) The second group (19) The fourth group (17) The third group (18) The third group (18) The third group (19) The fourth group (10) The fourth group (10) The fourth group (11) Show Show Show Show Show Show Show Show			total S	organic S		lio	gas	semicoke	TO THE
(17) 1.3 2.2 24.4 The second group 21.6		The	first	dno					
The second group 21.6 2.68 2.68 4.15 0.82 4.2 11.8 - 4.56 - 4.56 - 6.0 12.4 3.3.3 The third group 54.4 3.40 1.77 61.6 3.37 61.6 3.07 4.44 2.37 1.46 7.10 2.0.1 33.1 44.5 69.6 6.06 4.22 8.50 1.34 4.45 4.45 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.60	Irati (16)	0.4	4.2	0.15	1.3	2.2	24.4	65.2	
(17) 21.6 2.68 0.58 5.6 7.1 10.8 19.8 4.15 0.82 4.2 11.8 4.56 6.0 12.4 34.2 54.4 7.6 1.52 7.8 10.4 25.2 54.4 3.40 1.85 4.8 13.5 35.3 55.7 1.77 0.95 7.14 22.2 44.7 61.6 2.37 1.46 7.02 21.3 38.1 67.2 4.14 2.78 7.12 22.3 44.5 69.6 6.06 4.22 8.50 21.3 45.8 The fourth group The fourth group 80.0 6.08 4.85 7.50 27.0 50.7 88.4 5.80 5.13 7.50 27.0 50.7 88.4 5.80 5.13 7.50 27.0 50.7 88.4 5.80 5.13 7.50 27.0 50.7 88.4 5.80 5.13 10.16 33.9 38.1		The	econd	roup					
19.8	Verkhnesinevid (17)	21.6	2.68	0.58	5.6	7.1	8.01	65.4	
The third group	Baisun (8)	19.8	4.15	0.82	4.2	11.8	1	55.7	
The third group 53.7 The third group 53.7 The third group 60.6 The fourth group The fourth group 80.0 60.8 88.4 88.4 80.3 The third group 1.52 1.48 1.52 1.48 1.55 1.48 1.55 1.48 1.55 1.48 1.55 1.44 1.55 1.44 1.49 1.40	Urtabulak (9)	1	4.56	1	0.9	12.4	34.2	52.4	
The third group 53.7 53.7 61.6 61.6 61.6 62.37 11.77 11.77 11.49 71.10 22.2 44.7 60.6 41.4 22.2 44.7 35.3 14.4 23.7 41.4 22.3 44.5 44.5 44.5 48.6 60.6 41.2 71.4 22.3 44.5 44.5 40.9 60.6 The fourth group 60.8 71.0 71	Sangruntau (10)	33.3	4.57	1.52	7.8	10.4	25.2	53.3	
54.4 3.40 1.85 4.8 13.5 35.3 53.7 1.77 0.95 7.14 22.2 44.7 61.6 2.37 1.46 7.02 21.3 38.1 48.5 3.07 1.49 7.10 20.1 35.1 67.2 4.14 2.78 7.12 22.3 44.5 48.6 3.70 1.80 7.40 17.4 40.9 69.6 60.6 4.22 8.50 21.3 45.8 84.0 6.08 4.85 7.39 24.3 52.7 88.4 5.80 5.13 7.50 27.0 50.7 80.3 2.03 1.63 10.16 33.9 38.1		The	third	dno.					
53.7 1.77 0.95 7.14 22.2 44.7 48.5 61.6 2.37 1.46 7.02 21.3 38.1 38.1 48.5 67.2 4.14 2.78 7.12 22.3 44.5 48.6 6.06 4.22 8.50 21.3 45.8 40.9 69.6 The fourth group 4.69 3.94 6.69 30.0 53.3 44.5 6.08 4.85 7.39 24.3 52.7 88.4 6.08 5.13 7.50 27.0 50.7 sition (14) 80.3 2.03 1.63 10.16 33.9 38.1	Sysol (7)	54.4	3.40	1.85	4.8	13.5	35.3	42.0	
53.7 1.77 0.95 7.14 22.2 44.7 61.6 61.6 2.37 1.46 7.02 21.3 38.1 38.1 48.5 3.07 1.49 7.10 20.1 35.1 44.5 67.2 44.5 48.6 6.06 4.22 8.50 21.3 44.5 40.9 69.6 The fourth group 4.69 8.60 3.94 6.69 30.0 53.3 1 88.4 58.8 5.1 5.1 5.2 5.1 5.1 5.2 5.1 5.1 5.2 5.1 5.1 5.1 5.2 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Timahdit:								
61.6 2.37 1.46 7.02 21.3 38.1 48.5 3.07 1.49 7.10 20.1 35.1 48.5 67.2 44.5 44.5 48.6 69.6 6.06 4.22 8.50 21.3 44.5 40.9 69.6 The fourth group 4.69 88.4 6.69 30.0 53.3 88.4 58.0 5.13 7.50 27.0 50.7 sition (14) 80.3 2.03 1.63 1.63 1.61 33.9 38.1	(11)	53.7	1.77	0.95	7.14	22.2	44.7	40.9	
48.5 3.07 1.49 7.10 20.1 35.1 67.2 44.5 67.2 44.5 48.6 6.06 4.22 8.50 21.3 44.5 40.9 69.6 6.06 4.22 8.50 21.3 45.8 7.12 22.3 44.5 40.9 69.6 6.06 4.22 8.50 21.3 45.8 7.12 22.3 44.5 40.9 69.6 6.06 4.22 8.50 21.3 45.8 7.12 22.3 44.5 40.9 69.6 4.22 8.50 21.3 45.8 7.12 22.3 44.5 40.9 69.6 4.22 8.50 21.3 45.8 45.8 45.8 45.8 45.8 4.85 7.39 24.3 52.7 88.4 5.80 5.13 7.50 27.0 50.7 sition (14) 80.3 2.03 1.63 10.16 33.9 38.1	(12)	61.6	2.37	1.46	7.02	21.3	38.1	37.0	
67.2 4.14 2.78 7.12 22.3 44.5 48.6 69.6 6.06 4.22 8.50 7.13 45.8 40.9 69.6 The fourth group A.09 80.0 6.08 4.85 7.39 7.50 7.30 7.50 7.30 80.7 88.4 5.80 5.13 7.50 27.0 50.7 sition (14) 80.3 2.03 1.63 10.16 33.9 38.1	(13)	48.5	3.07	1.49	7.10	20.1	35.1	43.9	
48.6 3.70 1.80 7.40 17.4 40.9 69.6 6.06 4.22 8.50 21.3 45.8 45.8	Tchagansk (2)	67.2	4.14	2.78	7.12	22.3	44.5	38.5	
69.6 6.06 4.22 8.50 21.3 45.8	Kashpir (1)	48.6	3.70	1.80	7.40	17.4	40.9	41.8	
The fourth group 84.0	Kotsebinsk (5)	9.69	90.9	4.22	8.50	21.3	45.8	38.7	
80.0 4.69 3.94 6.69 30.0 53.3		The	fourth	roup					
ition (14) 80.0 6.08 4.85 7.39 24.3 52.7 88.4 5.80 5.13 7.50 27.0 50.7 1.63 10.16 33.9 38.1	Rubezhinsk (6)	84.0	69.4	3.94	69.9	30.0	53.3	1 28.7	
ition (14) 80.0 6.08 4.85 7.39 24.3 52.7 88.4 5.80 5.13 7.50 27.0 50.7 ition (14) 80.3 2.03 1.63 10.16 33.9 38.1	Perelyub:								
ition (14) 80.3 2.03 1.63 10.16 33.9 38.1 80.3	Seam 1 (3)	80.0	80.9	4.85	7.39	24.3	52.7	24.5	
(14) 80.3 2.03 1.63 10.16 33.9 38.1	Seam 4 (4)	88.4	5.80	5.13	7.50	27.0	50.7	20.9	
	ition		2.03	1.63	10.16	33.9	38.1	28.7	

oil on retorting (Boltysh deposit) and kukersite with its very specific characteristics (Estonian deposit) are presented.

As can be seen from Tables 1 and 2, the sulphur content of oil shales, which form high-sulphur oils during retorting, varies considerably - from 1.77 to 6.0 %. The organic sulphur content of those shales also varies considerably - from 0.15 to 5.13 %. A rather high content of calcium carbonate is typical of the mineral part of oil shales from Morocco, Syria and Jordan. Silicon compounds prevail in the mineral part of oil shales from Brazil and the Ukraine.

Distillation of shale under laboratory conditions was carried out in a standard Fischer retort. The shale samples weighed 20 and 50 g and the final temperature reached 510 and 520 °C, respectively. We have established that both retorts give consistent results. A Fischer retort containing 200 g of shale was also applied for estimating the quality of the retorting products. This procedure was used primarily for oil shales low in organic matter.

During the retorting of the shale samples mentioned above, sulphurrich oils (from 5 to 10 %) were formed irrespective of their initial sulphur content (Tables 3 and 4). Only the oil shales from the Irati deposit with their rather high original sulphur content of 4.2 %, yield an oil containing only 1.3 % of sulphur.

Sulphur content of the semicoke obtained from the oil shales of Russian and Uzbekistan deposits is moderate - 1.9-3.2 %. However, sulphur content of Moroccan, Syrian and Jordanian shale semicokes is rather low - 0.7-1.6 %. The content of hydrogen sulphide in retort gas is 20-30 % by volume for practically all the tested samples (Tables 5 and 6).

The most interesting aspect of the retorting process is the actual sulphur balance during the treating of oil shales in the Fischer retorts (Tables 7 and 8). The amount of sulphur of the original shale samples which passes on to the products during retorting, varies substantially. Thus, 2.2-33.9 % of the shale sulphur is transferred to the oil, 10.8-53.3 % - to the retort gas, and 20.9-65.4 % - to the semicoke.

Such diverse distribution of sulphur during the retorting process of oil shales is primarily due to the presence of organic sulphur in the shales. The greater the content of organic sulphur, the more of it passes on to oil and gas. In case of an elevated content of inorganic sulphur in oil shales, the quantity of sulphur in the semicoke rises.

According to the data generalized in Table 9, high-sulphur oil shales can be divided into four groups according to their share of organic sulphur in the total sulphur amount. The first group comprises oil shales with a low content of organic sulphur, not exceeding 5-10 % of the total sulphur in the shales. The share of organic sulphur in the second group is 20-35 %, in the third one - 50-70 %, and in the fourth group - 80-90 %. It is interesting to note that the transfer of sulphur from the initial shale to oil depends not so much on the content of organic sulphur in the shale as on its share of total sulphur.

Table 10. Yield and Characteristics of Shale Oils Obtained in the Experimental Retort from Oil Shales of Russian and Uzbekistan Deposits

Indices	Investigate	d shale sam	ple number	investigated shale sample number (see Table 1)	(1				
	*	2	4	5	9	7	8	6	10
Yield of shale oil, %:									
Plant yield (raw shale basis)	8.1	10.2	8.56	9.74	13.97	6.56	96.6	6.9	4.0
Yield of Fischer assay oil	81.8	83.1	45.2	67.4	75.6	78.8	87.7	67.7	60.7
Density at 20 °C, kg/m ³	1037	1033	966	1030	1030	1017	896	973	066
Water, %	2.0	29.1	67.3	40.4	20.0	40.0	32.0	1-	1
Entrained solids, %	0.62	0.47	2.64	1.68	0.45	1.34	0.33	0.05	0.12
Ash, %	0.19	0.10	1.02	0.39	0.10	0.21	60.0	0.01	90.0
Viscosity at 75 °C, 10-6 ·m ² /s	11.4	7.3	4.0	8.0	7.0	10.4	5.9	8.9	5.5
Flash point, °C	112	126	91	78	74	901	64	96	88
Pour point, °C	-7	12	5	-13	-14	7	1	-	1
Refraction index, $n^{20}D$	1.571	1.572	1.548	1	1	1	1.495	1.548	1.549
Molecular mass	250	299	242	235	1	1	256	258	255
Phenolic compounds, %	1.8	1.5	-	9.9	ı	1	2.5	3.4	3.1
Heating value (bomb calorimeter),									
MJ/kg	39.42	39.35	39.52	38.90	38.82	39.27	41.16	40.70	40.15

* Here and later on the data concerning commercial operation of vertical retorts in the Syzran oil shale processing plant (Volga Basin, Russian Federation) are presented (throughput rate of one retort is 60-70 tonnes of oil shale per day).

Table 10. Yield and Characteristics of Shale Oils Obtained in the Experimental Retort from Oil Shales of Russian and Uzbekistan Deposits (end)

Indices	Investigate	d shale sam	nple number	Investigated shale sample number (see Table 1)	(1)				
	1*	2	4	5	9	7	8	6	10
Initial boiling point, °C	184	183	203	165	150	176	93	179	06
Distillation, vol.%, at:									
2° 091	1	1	1	1	1	1	4	1	2
180 °C	1	1	1	2	3	1	5	1	3
200 °C	2	1	1	4	5	2	7	3	4
220 °C	3	3	∞	6	10	9	=======================================	8	8
240 °C	5	6	18	14	15	6	15	15	14
260 °C	10	61	26	21	22	17	23	23	20
280 °C	14	25	36	29	30	23	29	31	28
300 °C	26	33	45	38	38	33	36	40	40
320 °C	33	54	56	50	49	48	45	49	46
340 °C	41	71	99	63	63	56	55	56	63
3e0 °C	69	1	75	80	88	83	69	70	92
Elemental composition (dry basis), %:									
	9.62	79.44	77.59	78.82	78.99	79.92	84.9	81.5	8.67
H	8.6	9.20	9.51	9.62	8.75	9.50	10.3	10.0	10.8
S	7.2	6.19	6.49	6.81	7.19	4.27	4.2	4.7	6.4
Z	}3.4	\$5.17	0.62	0.03	0.76	0.87	9.08	}3.8	\$4.0
O (by difference)	,	,	5.19	7/.4	4.51	5.44	,	,	

Table 11. Yield and Characteristics of Shale Oils Obtained in the Experimental Retort from Oil Shales of Various Denosits of the World

Indices	Investigated s	hale sample n	Investigated shale sample number (see Table 2)	ole 2)		
	11	12	13	17	18	61
Yield of shale oil, %:						
Plant yield (raw shale basis)	3.91	5.28	4.40	1.62	10.0	20.6
Yield of Fischer assay oil	75.3	7.97	53.7	49.2	0.09	99.5
Density at 20 °C, kg/m ³	982	981	994	994	806	886
Water, %	30.0	30.0	25.8	1	1	1
Entrained solids, %	0.55	0.45	98.0	1.26	08.0	0.50
Ash, %	60.0	60.0	0.35	0.20	0.10	0.24
Viscosity at 75 °C, 10-6 ·m ² /s	6.4	5.7	7.6	7.3	5.2	11.4
Flash point, °C	16	88	88	06	84	65
Pour point, °C	3	0	5	1	1	T
Refraction index, n^{20}_D	1	1	1.552	1.535	1.517	1.549
Molecular mass	243	262	271	254	1	249
Phenolic compounds, %	1.6	2.0	1.9	14.8	3.7	26.1
Heating value (bomb calorimeter), MJ/kg	41.39	40.90	40.19	39.98	42.58	39.77

Table 11. Yield and Characteristics of Shale Oils Obtained in the Experimental Retort from Oil Shales of Various Deposits of the World (end)

Indices	Investigated s	shale sample n	Investigated shale sample number (see Table 2)	le 2)		
	11	12	13	17	18	19
Initial boiling point, °C	182	178	091	125	135	116
Ustination, vol. 76, at. 160 °C	1	1	-	4	1	3
180 °C	1	1	2	9	2	4
200 °C	2	2	9	6	4	8
220 °C	3	4	11	12	9	12
240 °C	7	11	17	17	12	14
260 °C	16	17	23	28	17	18
280 °C	22	25	34	34	23	22
300 °C	30	33	44	44	29	26
320 °C	39	44	57	54	35	30
340 °C	51	54	78	61	43	35
360 °C	29	68	-	74	55	45
Elemental composition (dry basis), %:						
0	80.14	79.92	81.15	79.70	84.45	81.8
Н	66.6	9.62	10.11	9.90	11.63	10.1
S	6.85	6.63	7.6	3.98	92.0	6.0
Z	2.41	2.84	71 17	16.17	1316	177
O (by difference)	0.61	0.99	۲۱.1 ر	24.01	101.0	7.75

Table 12. Chemical Group Composition of Light-Middle Fractions of Shale Oil Obtained in the Experimental Retort from Oil Shales of Various Deposits, wt.%

Compounds	Investig	Investigated shale sample number (see Tables 1 and	sample	number (s	ee Table	s 1 and 2)		
	1	∞	6	10	13	17	18	19
	Frac	tion II	BP-20	J. (
Alkanes and cycloalkanes	5	16	=======================================	01	11	20	22	23
Alkenes	13	28	21	7	14	13	32	48
Aromatic hydrocarbons	52	33	49	62	56	41	27	20
Neutral heteroatomic compounds	28	22	91	18	15	14	91	5
Phenols	2	1	3	3	4	12	3	4
Fraction yield	2.6	7.48	11.5	7.2	5.5	8.27	8.7	7.6
	Frac	tion 2	00-300	0.				
Alkanes and cycloalkanes	4	13	12	12	11	20	24	13
Alkenes	5	15	6	7	6	7	20	27
Aromatic hydrocarbons	52	44	51	57	58	44	33	28
Neutral heteroatomic compounds	32	22	21	17	18	15	15	17
Phenols	7	9	7	7	4	14	~	15
Fraction yield	20.9	27.8	21.2	25.2	24.8	27.17	19.9	16.5
	Frac	tion 3(00-350	O.				
Alkanes and cycloalkanes	4	12	14	~	~	91	36	3
Alkenes	1	9	9	4	5	2	7	7
Aromatic hydrocarbons	48	43	48	58	59	45	31	27
Neutral heteroatomic compounds	40	32	27	23	23	61	21	36
Phenols	7	7	5	7	5	18	5	27
Fraction yield	18.5	14.24	14.3	16.9	14.4	14.89	15.6	11.8
	Frac	tion IE	3P-350) ·				
Alkanes and cycloalkanes	4	13	13	11	10	61	28	12
Alkenes	4	14	11	9	∞	7	18	25
Aromatic hydrocarbons	50	43	49	58	59	44	31	26
Neutral heteroatomic compounds	35	25	22	19	19	91	17	21
Phenols	7	2	2	9	4	14	9	91
Fraction yield	42.0	59.52	47.0	49.3	44.7	50.33	44.2	35.9
		-	-		-			

For a more thorough study of the physical and chemical properties of retort oil as the main product of thermal destruction of oil shales, some of the samples have been processed in an experimental retort under conditions for semicoke gasification. The retort had a throughput of 500-1000 kg of shale per day [2, 3]. As seen from Tables 10 and 11, processing in the experimental retort yields shale oil which ranges from 60 to 90 % of the Fischer assay oil, dropping to 45 % only in the case of Carpathian Menilitic shales. This experimental retort yielded high-sulphur oils which were virtually identical to the oils obtained in the Fisher retorts. However, condensation of oil and water vapours in the condensation apparatus resulted in the formation of a stable emulsion, and the separation of oil from water was troublesome.

At the beginning of the investigation of shale oil properties the group composition of light/middle fractions of shale oil was studied (Table 12), and later on the group composition of crude shale oil was determined (Table 13). The data presented in the tables show the resemblance between the light/middle fractions and the total high-sulphur oil. They are characterized by an increased content of aromatic hydrocarbons and a reduced content of alkenes and phenols (in comparison with paraffinic oil of oil shales from Boltysh deposit and with kukersite oil). The Carpathian Menilitic shale had an additional characteristic of a high content of phenols in its oil.

Table 13. Chemical Group Composition of Crude Shale Oil Obtained in the Experimental Retort from Oil Shales of Various Deposits, wt.%

Compounds	Investig	gated shal	e sample	number	(see Tables	1 and 2)
	4	5	6	7	11	12
Alkanes and cycloalkanes Alkenes	8.7 6.5	}5.1	}4.1	3.9 3.3	7.2 7.2	6.8
Aromatic hydrocarbons	46.8	54.5	50.4	44.9	58.3	58.5
Neutral heteroatomic compounds	34.8	34.7	40.8	43.7	22.7	22.7
Phenols and carboxylic acids	3.2	5.7	4.7	4.2	4.6	5.2

The Syzran oil shale processing plant in Russia where very small amounts of shale from the Kashpir deposit (60-70 thousand tonnes per year) are processed since 1932 is the only enterprise having any industrial experience in processing high-sulphur oil shales. This limited processing of Volga Basin shales is due to the high content of sulphur in the oil which makes it unusable as a liquid fuel. Only a limited assortment of products, including mainly medicinal such as sulphichton, albichtol, etc. is produced at this plant. Those medicinal compounds are extremely important in veterinary practic, but since they are needed only in negligible amounts, they cannot serve to justify their large scale production.

Table 14. Characteristics of Shale Oils Obtained by Semicoking Oil Shale from Timahdit Deposit

Indices	Bench-scale retort with ash solid heat carrier	Experimental vertical retort with gaseous heat carrier	Externally heated Fischer retort with shale sample 200 g
Yield of shale oil, %:			
Plant yield (raw shale basis)	6.64	5.28	7.0
Yield of Fischer assay oil	95.0	76.7	97.2
Density at 20 °C, kg/m ³	959	186	974
Flash point, °C	9	88	
Pour point, °C	-21	0	1
Viscosity at 75 °C, 10-6 ·m ² /s	2.0	5.7	1
Phenolic compounds, %	3.3	2.0	1
Molecular mass	180	262	210
Heating value (bomb calorimeter), MJ/kg	40.85	40.90	40.26
Initial boiling point, °C	117	178	
Distillation, vol.%, at:			
150 °C	6	1	
200 °C	24	2	1
250 °C	38	14	-
300 °C	55	33:	1
350 °C	71	64	1
Elemental composition (dry basis), %:			
O	81.07	79.92	79.00
Н	9.58	9.62	10.02
S	6.02	6.63	7.02
Z	2.44	2.84	2.34
O (by difference)	0.89	66.0	1.62

The development of the Volga oil shale industry has been hindered by the lack of a simple and low-price desulphurization technology for high-sulphur oils. This is also the case in many countries of the world where oil shale resources have not been put to use. Therefore, the creation of such a technology is extremely important and pertinent to the development of thermal processing techniques for oil shales.

It is known that during the retorting of kukersite using a solid ash heat carrier which contains free calcium oxide, sorption of phenols occurs, resulting in an essential reduction of phenol content in the oil - from 25-30 to 10-12 % [4, 5]. Unfortunately, this kind of process does not affect sulphur compounds occurring in the oil. For example, on retorting the Moroccan shale on in enlarged laboratory unit with a solid ash heat carrier, the quantity of sulphur in the oil remained on the same level as it was in oils obtained from experimental and Fischer retorts. The experiment was carried out in the Moscow G. M. Krzhizhanovsky Institute of Energetics (Table 14).

A number of foreign organizations are engaged in development of desulphurization processes of shale oils and petroleums. Some of the identified projects seem to be of practical interest. These are being carried out at the Russian Fossil Fuel Institute [6] and the Saratov Polytechnical Institute [7]. In the first case the H-donor potential of oil shale organic matter is used for desulphurization of oils. The process proceeds by thermal liquefaction of the oil at a temperature of 400-430 °C without any hydrogen nor catalysts. In the second case, a pyrogasification of high-sulphur shale in the powdered state is proposed, which releases pure gaseous energy carrier and valuable chemical by-products (sulphur, aromatic hydrocarbons and thiophene). One can only regret that this work has not been developed to the stage of pilot-scale tests.

Conclusions

Oil shales which form on retorting high-sulphur oil with a sulphur content of 5-10 % have been studied. The total sulphur content of the studied shale samples is within a range of 1.77-6.0 % but the content of organic sulphur varies between 0.15-5.13 %. During processing in Fischer retorts, sulphur is transferred to the retorted products in the following proportions: to oil - 2.2-33.9 %, to gas - 10.8-53.3 %, and to semicoke - 20.9-65.4 % of the total content of sulphur in the original material. This diverse distribution of sulphur during the retorting process of oil shales is primarily a result of the presence of organic sulphur. In the case of a high organic sulphur content, most of the sulphur is transferred into the oil and gas. In the cases with high inorganic sulphur in the oil shales, the quantity of sulphur in the semicoke is high.

It is suitable to conditionally divide oil shales into four groups according to the relative share of organic sulphur in the total sulphur. The first group comprises the oil shales which have 5-10 % of the total sulphur in the organic form. The percentage of organic sulphur in the other groups is 20-35 %, 50-70 %, and 80-90 %, respectively. The transfer of sulphur

340 V. Yefimov et al.

from the original shale to the produced oil depends mainly on the share of its organic component in the total sulphur.

High-sulphur oils obtained in an experimental retort are quite similar to each other in their chemical group composition. These oils are characterized by an increased content of aromatic hydrocarbons and a reduced content of alkenes and phenols.

There exists no simple and low-price desulphurization technology for high-sulphur oils, and this has hindered the development of the oil shale industry in the Volga Basin as well as the exploitation of the industrial resources of oil shales in many other countries. The shale retorting method does not affect the sulphur content in the retort oils, whether it uses a solid heat carrier, a gaseous heat carrier or an external heat source.

REFERENCES

- 1. Yefimov V. M., Doilov S. K., Lööper R. A., Kundel H. A. Oil shales as technological feedstock for liquid fuels production // Proc. 27th International Geological Congress. Moscow, 1984. V. 7. Section 13-16. P. 159-160.
- 2. Yefimov V. M., Piik E. E. About the characteristic of oil shales from different deposits [in Russian] // Khimiya tvyordogo topliva (Chemistry of solid fuel). 1967. No. 6. P. 65-72.
- 3. Lööper R. A., Velbaum M. A., Paaps G. A. The retorting of oil shales from the Volga-side peculiarities of the process and primary products. Liquid products obtained by retorting oil shales as a chemical raw material [in Russian] // Tr. NII Slantsev. 1986. V. 24. P. 78-90.
- 4. Thermal processing of oil shale kukersite / Ed. by M. Y. Gubergits [in Russian]. Tallinn, 1966. P. 356.
- 5. Yefimov V. M. et. al. Influence of free calcium oxide on the yield and properties of products at retorting of kukersite [in Russian] // Khimiya tvyordogo topliva (Chemistry of solid fuel). 1975. No. 2. P. 72-79.
- Gorlov E., Golovin G., Vol-Epshtein A. Production of synthetic liquid fuel from run-of-mine oil shales, brown coals and waste of petrochemical and chemical industry [in Russian, with English summary] // Oil Shale. 1994. V. 11, No. 1. P. 43-44.
- 7. Kashirsky V. G., Varnakova G. V. The obtaining of the thiophene-aromatic concentrate by the pyrolysis of sulfuric shales from the Volga-side [in Russian, with English summary] // Oil Shale. 1985. V. 2, No. 3. P. 303.

Received September 15, 1994