E. V. TARTU ÜLIKOOL ÕLIKIVIDE UURIMISE LABORATOORIUM

OIL SHALE RESEARCH LABORATORY UNIVERSITY OF TARTU, ESTONIA

BULLETIN No. 4

May 1932

DESULPHURISATION OF ESTONIAN SHALE OIL

BY

PAUL N. KOGERMAN, M.Sc, D.I.C., M.Inst.P.T., PROFESSOR OF ORGANIC CHEMISTRY

TARTU 1932 PUBLISHED BY THE OIL SHALE RESEARCH LABORATORY REPRINTED FROM THE JOURNAL OF THE INSTITUTE OF FUEL, Vol. V, No. 22, April, 1932.

The problem of the removal of sulphur compounds from mineral oils is of great industrial and economic importance. The upper allowable limit of sulphur compounds regarded as deleterious (corrosive) to the engine, etc., are still open questions. The U.S. limit for sulphur compounds, * expressed in per cent. of the element (0.1), has undoubtedly been based on the sulphur content of "straight run" petrols, or gasolines, from paraffin-base oils, and must be regarded as very low in relation to petrols obtained from other sources. The increasing production of mixed-base and asphalt-base well oils (Californian, Mexican and other fields) is supplying the refineries with heavy oils containing high percentages of sulphur. The gasoline obtained on cracking these heavy oils also generally shows high content of sulphur. The usual refining methods adopted for treatment of "straight run" oils are not adequate to reduce the sulphur content of cracked distillates to the requirements of the specification. Consequently, drastic refining should be applied, which causes large refining losses.**

The Estonian crude shale oils belong to the asphalt-base type of oils. They contain about 1 per cent. of sulphur, whilst the raw shale contains about 2 per cent. of the element.

The yields of oil obtained on distillation of the shale, with and without steam, in the Fischer apparatus at about 520° C. are given in Table I.

* United States Government Specification for Lubricants and Liquid Fuels, Bureau of Mines Tech. Paper 323a, Washington, 1924.

Estonian War Office New Specification for Liquid Fuels allows 0.5 per cent. of sulphur in shale petrols (benzines).

** For financial side of the question see: G. Egloff, C. D. Lowry, Jr., and P. Truesdell, *Petroleum*, Vol. xxvi. (1930), pp. 919-927.

Particulars relating to the chemical composition of the shale, the yield of oil under various conditions, etc., have been published elsewhere. *

Table I.

Yields of Oil and Distribution of Sulphur in Products of Distillation.

	Distill	roducts lation of thout Ste	Shale	Products of Distillation of Shale with Steam				
	Oil	Coke	Gas	Oil	Coke	Gas		
Yield per cent	33.23 0.9473	52.52	14.25	35.77 0.9557	50.85	13.38		
Per cent. of sulphur based on total S. in Shale .	9.3	44.4	42.4	11.0	44.7	40.2		

The distribution of sulphur compounds in fractions of a crude shale oil obtained on distillation in Fischer aluminium apparatus (in laboratory) was determined by M. Wittlich, ** and the results are given in Table II.

The residue (pitch) left on fractionation of crude oil contained 4.0 per cent. of sulphur. (See Table II.)

The distribution of sulphur in the fractions of Estonian shale oils resembles on broad lines the distribution of sulphur in Kimmeridge Shale Oils (which, of course, are characterised by very high sulphur content), *i. e.*, the percentage of sulphur compounds is higher in the lower boiling fractions. ***

The crude petrol produced on distillation on a large scale usually contains about 0.8 to 1.0 per cent. of sulphur. After alkali and sulphuric acid treatments (3 per cent. of H_2SO_4) the petrol still contains 0.6 per cent. of sulphur, although the "doctor" test is negative. By increasing the amount of

* P. N. Kogerman: On the Chemistry of the Estonian Oil Shale "Kukersite." Archiv für die Naturkunde Estlands, I. S., X. Bd., 2 Lief, Tartu, 1931. Abstract, Journ. Inst. Petr. Techn., vol. 17, No. 98, pp. 569-570a, 1931.

** M. Wittlich: "Einiges über den Schwefel im estländischen Ölschiefer (Kukersit) u. dessen Verschwelungsprodukten", Acta et Comment. Univers. Dorpat, A. VIII., 6, Tartu, 1925.

*** H. G. Shatwell, "The Hydrogenation and Desulphurisation of Norfolk Shale Oil." Journ. Inst. Petr. Techn., vol. XI, p. 550 (1925).

Table II.

Distribution of Sulphur Compounds in Fractions of Crude Shale Oil.

Fractions	Distil	Obtained lation of thout Ste	Shale	Oil Obtained on Distillation of Shale with Steam			
0C	Percent by weight	Per cent S.	Sp. gravity	Percent by weight	Percent S.	Sp. gravity	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$12.32 \\ 2.49 \\ 2.86 \\ 5.04 \\ 6.59 \\ 8.13 \\ 10.59 \\ 12.28$	$1.26 \\ 1.11 \\ 1.08 \\ 0.97 \\ 0.80 \\ 0.74 \\ 0.78 \\ 0.99$	$\begin{array}{c} 0.7557\\ 0.8438\\ 0.8808\\ 0.9017\\ 0.9224\\ 0.9509\\ 0.9589\\ 0.9904 \end{array}$	$11.74 \\ 2.35 \\ 3.84 \\ 4.74 \\ 4.55 \\ 6.87 \\ 13.87 \\ 18.35$	$\begin{array}{c} 1.20\\ 1.08\\ 1.02\\ 0.99\\ 0.87\\ 0.76\\ 0.92\\ 0.90 \end{array}$	0.7526 0.8022 0.8787 0.8989 0.9013 0.9428 0.9840 0.9935	

sulphuric acid the sulphur content can be reduced, but at the same time the refining losses are increased. Therefore, other methods of treatment of shale petrols have been studied.

The distribution of sulphur compounds in the fractions of crude petrol is shown graphically in Fig. 1.

Properties of Crude Benzine or Petrol Used in the Experiments.

The crude petrol used in the experiments was of heavy type, obtained form a Swedish company Estländska Oljes-

Fractions ^o C.	Amount g.	Per cent. yield	n_{20}^{D}	d ₂₀	Colour	
Up to 100	410.63	13.06	1.4146	0.7322	Light	
100-150	32.48	39.89	1.4327	0.7696)		
$150 - 170 \dots 170 - 200 $	10.71 16.70	13.16 20.51	1.4501 1.4637	0.8074	Yellow	
200—230	7.99	9.81	1.4854	0.8897	Brownish yellow	
Residue	2.26	2.78	-		and the second	
Total	80.77	99.21	_	-	86.62	

Table III. Engler Distillation of Crude Petrol. kifferkonsortiet, operatning in Estonia: * Sp. gravity = $0.8035/20^{\circ}$ C.; $n_{20}^{D} = 1.4486$. Distillation by Engler method gave the results shown in Table III.

81.4 gm. of petrol were taken for distillation.

Sulphur	1.48 per cent.	
Soluble in 6 per cent. NaOH.	4.9 "	
Soluble in 100 per cent. H_2SO_4	53.6 "	
Unsaturated compounds		
Aromatic compounds	10.5 "	
Saturated compounds	46.4 "	
Water		

The distribution of the saturated, unsaturated and aromatic compounds is illustrated graphically in Fig. 2.

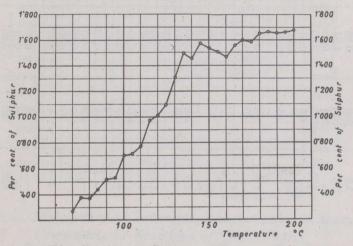


Fig. 1. — Distribution of Sulphur Compounds in Fractions of Crude Petrol.

I. Vapour-Phase Refining.

Dr. Rostin ** and others chaim that motor spirits can be desulphurised in the vapour-phase in the presence of certain catalysts. To prove this assumption a number of experiments

^{*} For types of retorts see P. N. Kogerman and John Roberts: "Progress in the Treatment of Estonian Oil Shale," *Trans. Second* World Power Conference, Vol. viii., pp. 110-125 (1930).

^{**} G. P. 372,663; F. P. 613,101; E. P. 107,034, 286,255; U. S. P. 1,604,235 (by L. L. Odom) and many others.

	7	
. Remarks	Only a small amount of catalyst was used. Blank experiment with normal benzine and amylene (1:1). Minette - a German iron ore. Temp. of reaction, 1800-2000. Temp: 3000-3200, rapidly distilled. Temp: 3000-3200, slowly, distilled. Ratio: 8:1,6:1. Ratio: 3,3:1.	Ratio: 1:1. Temp.: 140^{0} —170°. Temp.: 300^{0} — 310^{0} . Fraction up to 170°. Unrefined benzine. Fraction up to 170°, in stream of H ₂ . In current of hydrogen.
Per cent. of sulphur in the distillate	0.91 0.26 0.58 0.58 0.80 0.80 0.81 0.81 0.81 0.81 0.08 0.91 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89	0.87 0.88 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.90 0.90
Amount of petrol distilled	150 150 150 150 100 105 105 105 105 105	$\begin{array}{c} 185\\105\\550\\100\\550\\550\\100\\100\\100\\100\\10$
Duration of experiment (hours)	8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6
Amount of gas (litres)	$\begin{array}{c} 27\\ 27\\ 26\\ 27\\ 27\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 24\\ 25\\ 25\\ 25\\ 26\\ 24\\ 25\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26$	$\begin{array}{c} 45\\ 45\\ 45\\ 15\\ 55\\ 22\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 5$
Catalyst	Cu0 Ca0 Ca0 CaC2 NiO CaC2 Fe ₂ O ₃ Fe ₂ O ₃ Cu ⁰ from the exprts. Nos. 2 and 1 Minette	$\begin{array}{c} \operatorname{Min}_{a} \operatorname{tte} + \operatorname{Mn} \operatorname{O}_{2} \\ \operatorname{Fe} & a \\ \operatorname{Fe} & b \\ \operatorname{Cu} & & $
No. of experi- ment	20 20 20 20 20 20 20 20 20 20 20 20 20 2	88 33 33 33 33 33 33 33 33 33 33 33 33 3

In memory of prof. P. N. Kogerman

Table IV.

were carried out. For these experiments a specially designed copper column filled with copper sieves was used (Fig. 3).

Procedure. — A 250 cc. round bottom pyrex flask, provided with a dropping funnel, a thermometer, and gas inlet and outlet tubes, was used for evaporation of shale petrol. The flask was heated on a hot plate. From the dropping funnel the crude shale petrol or benzine was dropped into the hot flask. To sweep the oil vapours into the reaction column a stream of illuminating gas was passed into the flask. In some experiments hydrogen was used.

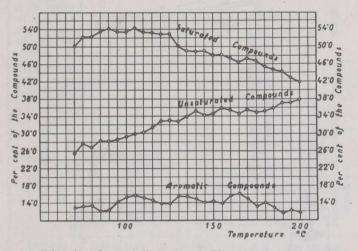


Fig. 2. — Distribution of Saturated, Unsaturated and Aromatic Compounds in Fractions of Crude Petrol.

As supporters of the catalysts, copper sieves were placed in the column. The column was electrically heated, the inner temperature varied from 280° to 310° C. The top of the column was connected with the condenser by means of a copper still-head. The receiver attached to the condenser was cooled in a freezing mixture.

Three groups of catalysts were used: metals, metallic oxides and salts. Some results of a great number of experiments are given in Table IV.

The experiments showed that the most active catalysts were copper and nickel; but even these catalysts lose their

activity rapidly. After a few runs a certain state of equilibrium, or a "limit of saturation," between the catalyst and absorbed sulphur is reached; beyond this limit, during further runs, the catalyst begins to give off the sulphur. A blank experiment (No. 9) on a mixture of Kahlbaum's "normal

9

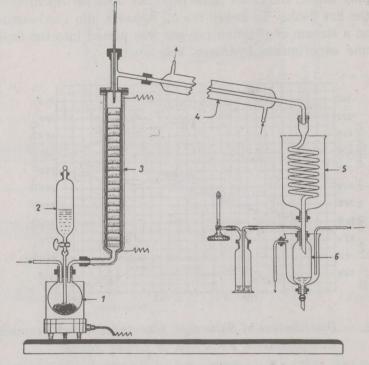


Fig. 3. — Apparatus for Desulphurisation of Shale Petrols in Vapour-phase. 1. Flask. 2. Graduated cylinder. 3. Reaction column. 4. Condenser. 5. and 6. Receivers.

benzine" and amylene confirmed this: on leading the vapour of the mixture (containing 0.06 per cent. of S) over a "saturated catalyst" the reaction product showed a much higher content of sulphur, *i. e.*, 0.08 per cent., and in another experiment a still higher percentage of sulphur.

The vapour-phase refining does not give satisfactory results from the economic point of view, because it is difficult to regenerate the catalyst.

- Martine	Sp. gravity of the petrol (refined)	0.7663	0.7566	0.7566	0.7606	0.7575	0.7594	0.7595	0.7562	0.7637	0.7814	0.7655	0.7623	0.7447		0.7373	0.7367	0.7497		0.7506	
No. Sala	Residue boi- ling below 2300		10.3	14.3	14.3	15.7	18.7	17.9	17.1	12.2	20.3	12.5	9.0	9.6	19.4	18.2	15.0	16.9		24.4	12.8
	Boiling up to 1700		62.2	57.3	46.9	60.6	55.7	59.7	58.9	63.4	57.5	63.4	9.76	65.3	57.4	54.0	58.5	55.5		51.2	
and the second	Per cent. loss	16			15	13	8.5	7.5	9.5	7.5	14		2	6	10	2	00	9.5		7.2	16034
	Per cent. of unsaturated comp.	23.4	9.8	16.2	16.6	.19.0	21.4	14.0	11.0	11.2	19.0	17.6	12.0	10.2	19.0	14.6	11.2	15.9		16.8	
the second se	Per cent. of sulphur in petrol after reaction in fract. up to 1700	0.84	0.11	0.24	0.37	0.31	0.45	0.69	0.06	0.20	0.35	0.53	0.01	0.11	0.58	0.22	0.13	0.40		0.49	0.006
	Per cent. of the sub- stance taken	10	5.2	. 10	10	4	12	5.5	3.6	2.5	9.5	20	10	5.3		2	OF	5.2	0 6	ų.,	6
and the second s	stance	iron ore	3	20.		iron ore	2		3 2	2	Finland)						iron ore	om Expt.		Irom Expt. 31	iron ore
and the second se	Contact substance	reduced bog	4	3	iron oxide	reduced bog	"			2	" (from	Silicogel	Metallic Na	Bi + W	Metallic Na	iron oxide	reduced bog	regenerated fi	No. 3	regenerated II No. 3	reduced bog (Estonian)
	Duration (mins.) Contact su		111 v	105 "			120 "		112 "	110 "	» (75 Metallic Na	_	60 Metallic Na		I	110 regenerated fi	No.	120 regenerated II No. 3	
	(.snim)	reduced	3	2		-400 105		-400	3	" " 110 "	» (4		-400 "]	. " 60 1		n n I	" 110 I	No.	regenerated No.	reduced (Eston
	experiment (reaction temp.) Duration (mins.)	-400 120 reduced	3	*****	* 395-405 110 i	390-400 105	390-393 1	390-400	3	2	" " 105 " (2	370-390 75	390-400 "]	<i>n n</i> 60 1	" " 130 i	n n n	" 110 I	NO.		" 220 reduced (Eston
	sure Temp. of experiment (reaction temp.) Duration (mins.)	390-400 120 reduced	36 " "	0 . "	60 - 395-405 110 i	16 390-400 105	12 390-398 1	49 390-400	3	42 " "]	62 " " 105 " (76 " " "	58 370-390 75	39 390-400 "]	73 ". " 60 1	54 " " 130 1	12 " " " I	n n 110 I	N0.	380-390 120 regenerated No.	" " 220 reduced (Eston
	Initial pres- sure in kg/cm ² Highest pres- sure during the experi- ment kg/cm ² Final pres- sure sure temp. of teaction temp.) (reaction temp.)	0 390-400 120 reduced	2222 36 " "	104 0 "	246 60 395-405 110 i	139 16 390-400 105 1	110 12 390-395 1	224 49 390-400	49 " "	218 42 "	226 62 " " 105 " (236 76 " " "	182 58 370-390 75	210 39 390-400 "]	250 73 " . " 60 1	219 54 " " 130 1	218 12 " " " " I	233 / " " 110 I		4 380390 120 regenerated No.	4 " " 220 reduced (Eston
	sure in kg/cm ² Highest pres- sure during the experi- ment kg/cm ² Final pres- sure sure temp. of experiment (reaction temp.)	0 74 0 390-400 120 reduced	92 222 36 " "	30 104 0 "	86 246 60 395-405 110 i	139 16 390-400 105 1	32 110 12 390-393 1	89 224 49 390-400	226 49 "	91 218 42	92 226 62 " " 105 " (85 236 76 " " "	75 182 58 370-390 75	92 210 39 390-400 "]	87 250 73 " . " 60 1	88 219 54 <i>"</i> 130 i	86 218 12 <i>" " " "</i> I	94 233 " " 110 I	00 NO.	111 4 380-390 120 regenerated No.	202 4 <i>"</i> " 220 reduced (Eston

Table V.

301

II. Desulphurisation of Shale Oils by Hydrogenation.

It has previously been observed that on hydrogenation the sulphur content of oils is reduced.* The object of the experiments described in this paper was to find the conditions for almost complete desulphurisation of shale oil under high hydrogen pressures. The temperature and pressure curves are shown in Fig. 4.

Table VI.

	Colour	Odour	Sp. grav.	n ^D ₂₀	Per cent. of S	Unsatur. cmpds. Per cent.	Arom. cmpds. Per cent.
Hydrogenated b. up to 200 ⁰	colourless	pleasant	0.7505	1.4314	0.000	4.0	10.0
Crude benzine b. up to 200 ⁰	yellow	pene- trating	0.7792	1.4386	1.09	35.5	11.0

Properties of Crude and Hydrogenated Petrols.

Table VII.

Engler Distillation of Crude Petrol and of its Hydrogenation Product.

		Cı	rude Be to 20	enzine ι)0 ⁰ C.	ıp	Hydrogenated Benzine up to 2000 C.					
F	Fractions. ⁰ C.		Per cent. by weight.	n ^D ₂₀	d ₂₀	Amount g.	Per cent. by weight	n ^D ₂₀	d ₂₀		
1. 2. 3. 4.	Up to 100 100-150 150-170 170-200 Residue	$11.28 \\ 39.97 \\ 10.30 \\ 12.34 \\ 2.90$	$14.64 \\51.86 \\13.36 \\16.01 \\3.76$	$1.4340 \\ 1.4484$	$\begin{array}{c} 0.7309 \\ 0.7697 \\ 0.8024 \\ 0.8194 \end{array}$	37.18 9.93	$\begin{array}{r} 22.01 \\ 50.18 \\ 13.40 \\ 12.33 \\ 1.96 \end{array}$	$1.4214 \\ 1.4370$	0.7018 0.7438 0 7798 0.7980		
	Total	76.79	99.63			74.01	99.88		122		
Amount of petrol taken		77.01	1.8/18			74.10					

* Compare H. G. Shatwell, *loc. cit.*; J. Kopwillem, "Beitrag zur Untersuchung der Estländischen Schieferöle", Inaug. Dissertation, University of Zürich, 1927. Many patents have been taken out on this aspect. 12

The experiments were carried out in a revolving steel high-pressure autoclave of about 900 cc. capacity. The autoclave was heated by a gas flame. The particulars of the experiments, showing the effect of temperature, pressure, catalysts, and duration of heating on the sulphur contents in petrol are given in Table V.

From the data given in Table V. it is evident that on hydrogenation the percentage of sulphur in petrol is considerably reduced, and at the same time the "saturation" of the product is increased. The optimum temperature is about

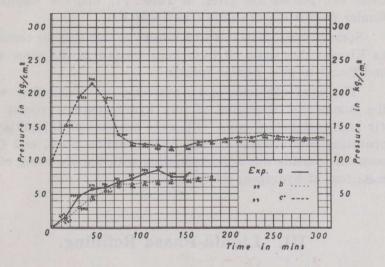


Fig. 4. — Temperature-pressure Curves. A. Blank experiment without hydrogen pressure and without catalysts; B. Blank experiment with catalysts (minette not reduced); C. Hydrogenation curve showing effect of time, i. e., duration of heating.

390° to 400° C., and optimum pressure (initial) about 90 to 100 atmospheres. The initial pressure of 32 atm. used by Shatwell* in his experiments must be regarded as too low for a successful desulphurisation of shale oils. The most effective catalysts in our experiments were reduced iron ores (either alone or, even more effective, mixed with a small

* Loc. cit.

amount of Ni or Cr). The losses caused by inefficient condensation of gases and adsorption on the catalysts undoubtedly could be reduced when working on a larger scale.

Properties of Petrol Obtained on Hydrogenation.

Crude benzine and its hydrogenation product were distilled up to 200° C., washed with 6 per cent. NaOH solution and water, and subjected to Engler distillation. The properties of these two petrols are given in Table VI., and the results of Engler distillation are shown in Table VII.

Some Russian shale oils with almost as high sulphur contents as Kimmeridge shale oil have been treated in the same way and found to give similar results.

The chief obstacles to be overcome in connection with the commercial operation of any hydrogenation process are (i) high installation costs, (ii) some mechanical difficulties in operating continuously a large hydrogenation plant, and (iii) economic considerations in connection with the operating costs, e. g., cost of hydrogen, catalysts, etc.

III. Liquid-Phase Refining.

Comparing the properties of refined shale petrols obtained on usual chemical treatment of crude shale petrol, *i. e.*, alkali and sulphuric acid, clay and acid, hypochlorite, and treatment with certain reagents, it was found that by keeping the refining losses below 12 per cent. the refined product still contained about 0.3 per cent. of sulphur. The hypochlorite process and application of oxidisers gave, with certain shale petrols, fairly satisfactory results, and it seems to the author that investigation in this field might open new possibilities for treatment of shale petrols in liquid phase.

Summarising the experimental results of all the processes investigated so far at the Oil Shale Research Laboratory, University of Tartu, one cannot fail to observe that the complete desulphurisation of shale petrols is achieved only on hydrogenation, using a large excess of hydrogen, and fairly high initial pressures.

In conclusion, the author desires to record his thanks to Mr. J. Usk, M. Chem., and Dr. J. Kopwillem for experimental assistance, and to the New Consolidated Gold Fields, Limited, London, for financial support.