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Abstract. The lithology distribution of fine-grained sedimentary rocks in 
regional space plays a crucial role in guiding the exploration of oil shale layers. 
Identifying lithology by conventional logging information is efficient and cost-
effective. However, the strong inhomogeneity of fine-grained sedimentary rocks 
leads to a complex nonlinear relationship between lithology and logging data, 
making conventional linear methods no longer applicable. This study proposes 
a hybrid model for logging lithology identification of fine-grained sedimentary 
rocks from the first member of Qingshankou Formation in the Songliao Basin, 
NE China. This model is based on the hybrid kernel extreme learning machine 
(HKELM), and the firefly perturbation strategy is introduced into the sparrow 
search algorithm (FSSA) for optimization. The lithologic distribution is 
determined using cores, thin sections, and total organic carbon (TOC), while 
a total of four logging curves, the acoustic (AC), density (DEN), resistivity 
(RT), and natural gamma (GR) curves, were collected. FSSA-HKELM was 
compared with five algorithms, ELM, KELM, HKELM, PSO-HKELM, and 
SSA-HKELM, for lithology prediction effectiveness. The proposed hybrid 
method outperformed the other algorithms, achieving an accuracy of 81.78%, 
precision of 81.65%, recall of 87.78%, and a weighted F1 score of 82.16%. 
FSSA-HKELM is a very effective lithological identification method, which 
provides a basis for the lithological prediction of oil shale-bearing formations.

Keywords: lithology identification, sparrow search algorithm, firefly 
perturbation strategy, hybrid kernel extreme learning machine, fine-grained 
sedimentary rocks.
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1. Introduction

Fine-grained sedimentary rocks are primarily composed of grains with 
a granularity smaller than 0.0625 mm, encompassing clay minerals, 
carbonates, quartz, and organic substances as their main constituents [1, 2]. 
As unconventional energy gains prominence, fine-grained sedimentary rocks, 
particularly oil shale, are increasingly becoming a focus of research in this 
sector [3]. The distribution of different lithologies in fine-grained sedimentary 
reservoirs controls hydrocarbon enrichment, which makes exploring the 
distribution of lithologies in regional spaces extremely important.

Drilling and coring represent the most straightforward and precise 
 approaches for identifying lithology. However, studying the spreading 
pattern of lithology in two or even three dimensions using these methods 
is difficult due to the high cost of coring required. Currently, logging 
technology is widely used because of its low cost, high vertical resolution, 
and comprehensive geological information [4]. Common logging methods 
for lithology determination in conventional reservoirs include cross-plotting, 
curve plotting, curve superposition, and statistical analysis [5, 6]. In-depth 
studies of unconventional shale oil have gradually shown that fine-grained 
sedimentary rocks exhibit strong heterogeneity, making it difficult to express 
the relationship between logging and lithology as a simple linear equation. 
Therefore, new methods must be proposed to solve this complex nonlinear 
problem. 

Recently, machine learning (ML) has found applications across various 
fields, including engineering, economics, and education. It exhibits good 
applicability to nonlinear problems [7–9], and many scholars have introduced 
it to lithology prediction in the geology field. The methods most often used 
for this purpose are the supervised learning algorithms, such as K-nearest 
neighbors (KNN), support vector machine (SVM), back propagation artificial 
neural network (BP-ANN), decision tree (DT), random forest (RF), AdaBoost, 
and XGBoost [10–13], along with the unsupervised learning versions of the 
K-means and SOM (self-organizing map) methods [14, 15], all of which have 
achieved good results in lithology prediction.

However, using the aforementioned methods to predict lithology still 
presents some unresolved issues. These problems can be categorized into two 
types: 

1. Traditional algorithms exhibit slow iteration speed and poor general-
i zability. The extreme learning machine (ELM) can overcome these issues, 
thanks to its structural simplicity, rapid training speed, and high generalizability. 
Huang et al. [16] also proved that ELM is superior to traditional algorithms 
(SVM and BP-ANN). Huang et al. [17] further proposed an improved method 
known as the kernel extreme learning machine (KELM), which employs kernel 
mapping to substitute the random mapping used during the ELM training 
phase. This approach reduces computational complexity and enhances model 
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generalization, addressing issues such as the artificial setting of ELM’s hidden 
layers and the random generation of model weights and thresholds. Wang et 
al. [18] also confirmed that KELM is superior to ELM. 

2. ML algorithms require setting multiple parameters, and only appropriate 
parameters can ensure high prediction accuracy, so finding the optimal 
parameter combination for enabling the algorithm to build the best model is an 
important challenge. Lately, the swarm intelligence (SI) optimization algorithm 
has garnered significant interest, being successfully adopted by many scholars 
for ML parameter optimization [19, 20]. For instance, in the application of 
logging-based lithology prediction, Sun et al. [21] proposed using the Bayesian 
optimized parameters of XGBoost to predict the lithology of the Ordos Basin 
and attained an area of 0.987 under the receiver operating characteristic curve 
within the test dataset. Gu et al. [22] suggested employing the linear artificial 
fish swarm algorithm for optimizing LightGBM parameters, improving the 
accuracy of lithology prediction for sandstone reservoirs. SI performs a 
stochastic search by mimicking the relationships between individuals and 
groups of organisms [23]. Some of the more commonly used algorithms 
include ant colony optimization (ACO) [24], particle swarm optimization 
(PSO) [25], gray wolf optimization (GWO) [26], and the whale optimization 
algorithm (WOA) [27]. Inspired by the foraging and refeeding behaviors 
of sparrows,  the sparrow search algorithm (SSA) is considered a relatively 
effective technique currently in use [28]. However, the initial population of 
this algorithm is still as easy to lack diversity as classical algorithms, such as 
PSO, which makes it difficult to achieve global optimization.

 In this study, we chose the lithology and logging data of the first member 
of the Upper Cretaceous Qingshankou Formation (oil shale formation) in the 
Southeastern Uplift Zone of the Songliao Basin as an example. Using ELM 
as the base model, the radial basis function (RBF) and polynomial function 
are introduced and combined by weighting to build a hybrid kernel extreme 
learning machine (HKELM). This approach overcomes the limitations of 
KELM, which uses a single kernel function and cannot simultaneously 
satisfy high learning capacity and generalizability. HKELM’s parameters are 
optimized using the SI optimization algorithm. 

Given that SSA is prone to local optima and slow convergence, many 
scholars have enhanced SSA by integrating the firefly algorithm, thereby 
improving its local search capability, convergence speed, and accuracy [29, 
30]. In this study, firefly perturbation is introduced into SSA for parameter 
optimization. A hybrid model, FSSA-HKELM, has been established to predict 
the lithological distribution of fine-grained sedimentary rocks. This model 
elevates the accuracy, stability, and training speed of lithological predictions, 
thereby furnishing an essential groundwork for the exploration of oil shale. 
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2. Geological setting

  Situated in northeastern China, the Songliao Basin represents the country’s 
largest terrestrial oil- and gas-bearing sedimentary basin. The basin extends 
up to 750 km in length and 300–370 km in width. It is segmented into six 
main tectonic units and has experienced four phases of tectonic development: 
prerifting, rifting, postrifting thermal subsidence, and tectonic inversion [31, 
32]. The basin’s sedimentary thickness reaches up to 10 km, with its center 
covering strata from the Jurassic to the Quaternary periods. Moreover, the 
most widely distributed Cretaceous strata are the main developmental layers 
(up to 7 km thick), and the sedimentary thickness gradually decreases towards 
the edge [33]. A detailed description is shown in Figure 1.

 The Qingshankou Formation (K2qn) serves as a principal hydrocarbon-
bearing horizon developed from the Upper Cretaceous series. It is a large-
scale lake intrusion with three sets of formations, from oldest to newest as 
follows: K2qn1 (10–100 m thick), K2qn2 (310 m thick), and K2qn3 (18–266 m 
thick) [34]. K2qn1 is the primary oil shale enrichment layer within K2qn [35]. 
The enrichment of oil shale during this period was controlled by sea level 
rise and tectonic factors. A gradual increase in temperature during the Upper 
Cretaceous led to a rise in sea level, which increased the water depth of the 
lakes. At the same time, the basin was in a phase of tectonic stability and 
continued to decline, which further increased the water depth and the lake 
area. The bottom of the lake basin formed a water column stratification, 

Fig. 1. Songliao Basin location, tectonic unit distribution, and stratigraphic map, 
along with the locations of boreholes for the JFD-1, JFD-5 and JFD-8 wells (modified 
from Jia et al. [36]).
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which promoted the preservation of organic matter at the bottom of the lake. 
Eventually, widely distributed and thick black oil shale deposits were formed. 
This study focuses on the fine-grained sedimentary rock strata of K2qn1 in the 
Southeastern Uplift Zone of the Songliao Basin, using it as a case study to 
analyze and compare lithologic identification methods based on logging.

3. Materials and methods

3.1. Sample description

The core observation shows that oil shale, mudstone, sandstone, and dolomite 
are mainly developed in the study area. From wells JFD-1 (91 samples), JFD-5 
(37 samples), and JFD-8 (30 samples), a total of 158 core samples were 
selected for evaluation, focusing on oil yield (ω) and total organic carbon 
(TOC) assays. Additionally, well logging data for JFD-1 (376.125–461.000 
m in depth), JFD-5 (399.125–495.500 m), and JFD-8 (439.000–528.750 m)  
were gathered, with a sampling interval of 0.125 m. The data primarily 
consisted of four curves: resistivity (R, Ω·m), natural gamma (GR, API), 
acoustic (AC, μs/m), and density curves (DEN, g/cm3).

3.2. Geochemical methods

3.2.1. Oil yield (ω) measurement

For the ω test, the rock is first coarsely pulverized to 3 mm and then 50 g of 
rock powder is weighed into an aluminium retort. The rock powder sample 
is heated to 520 °C in stages according to industry standards. The water is 
separated from the obtained oil-water mixture, its volume is recorded, and the 
oil yield is calculated. 

3.2.2. TOC measurement

TOC is measured with a LECO analyzer. Before testing, the rock is 
pulverized to a particle size of 200 mesh and weighed to 70 mg in a crucible.  
The rock powder is then acidified using diluted hydrochloric acid at a con-
centration of 5% to remove inorganic carbon (carbonates) from the rock [37].

3.3. Machine learning methods

3.3.1. HKELM

The principle of ELM

ELM represents a straightforward yet powerful single-layer feedforward 
neural network. It eliminates the need for extensive parameter tuning; instead, 
the network randomly initializes the weights of the input layer and the biases 
of the hidden layer. Furthermore, its operation merely requires specifying the 
neuron count of the hidden layer. ELM performs well in both classification 
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and regression applications, and exhibits simple algorithm structures and 
good generalizability [38]. Figure 2 illustrates the mathematical structure of 
the method, depicting its input layer, hidden layer, and output layer, connected 
by weights and biases.

The ELM model’s output is represented by Equations (1)–(3) [37]:

             , (1)

           ,     (2)

               ,   (3)

where  x represents the input feature vector, h(x) and H denote the hidden 
layer’s output mapping matrices, β is the weight connecting the hidden layer 
and the output layer, H+ is the generalized inverse matrix of H, and T is the 
target desired output of the network.

The principle of KELM

Although ELM outperforms traditional neural networks by reducing 
algorithm complexity and improving training speed, computational accuracy, 
and generalizability, its predictive accuracy is affected by the predetermined 
number of neurons in the hidden layer, as well as by the random assignment 
of weights and thresholds. To address this, Huang et al. [17] introduced the 
concept of kernel functions into ELM and proposed KELM. The output 
function for KELM is defined as follows:

Fig. 2. ELM algorithm structure. X1 to Xn represents the input vector and Y1 to Ym the 
output vector of all samples.
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where C represents the penalty factor and I denotes the unit matrix. The kernel 
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The principle of HKELM

Different kernel functions impact KELM’s performance variably, with RBF 
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kernel function, exhibits strong learning capability but limited generalizability. 
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such as PSO and GWO. SSA is comprised of three roles: producer, scrounger, 
and vigilante. The sparrow’s position is expressed as follows:

                      ,              (10)

where X denotes the position in space of all individuals of the population,  
d represents the number of parameters to be searched, and n denotes the size 
of the sparrow population involved in the parameter search.

The producer  has the duty of locating the area with food and leading 
the scrounger to this location. Producers are highly adaptable and usually 
encompass 10–20% of the population. The producer’s position is calculated 
as follows:

           

,

             

(11)

where t and i termax are the current and maximum iterations of the algorithm, 
respectively, Q is a number randomly generated according to a normal 
distribution, L is a matrix consisting entirely of ones, with 1 row, and d 
columns, R2 and T represent the warning and safety values, with ranges of [0, 1] 
and [0.5, 1], respectively.

The scrounger monitors whether the producer has found good food. Once 
good food is found, the scrounger immediately updates the location to obtain 
food for higher energy. The scrounger’s location is calculated as follows:
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(12)

where Xt
worst is the globally worst position (lowest fitness), Xt+1

p is the globally 
best position (highest fitness) of the population at the t-th iteration, A is a 
matrix featuring 1 row and d columns, where each element within A is 
randomly assigned either 1 or –1, and A+ = AT(AAT)–1. When i is greater than 
half of n, it means that the i-th sparrow is starving due to being in a poor 
position (lower fitness) and urgently needs to relocate to other positions to 
find food and replenish its energy. When i is less than or equal to half of n, the 
i-th sparrow then acquires energy at a location in the vicinity of Xt+1

p.
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To prevent predation, 10–20% of the sparrow population are set as 
vigilantes, warning others of danger. The position of the vigilante is calculated 
as follows:

             

,

             

(13)

where Xt
best is the globally optimal position of the population at the t-th iteration, 

β is the control step when the sparrow moves, and the value is generated 
randomly according to a normal distribution with mean and variance of 0 
and 1, K denotes a random number that determines the direction in which 
the sparrow searches, with values ranging from –1 to 1, and fi denotes the 
fitness of the present sparrow individual i, with fg being the highest and fw the 
lowest fitness value. Additionally, ε is assigned the smallest possible constant 
to ensure the denominator does not become 0.

Firefly perturbation strategy

The firefly algorithm (FA) draws inspiration from the luminous behavior of 
fireflies, which are attracted to each other’s light, and it primarily has the 
following three characteristics [42]:

1) Fireflies are not attracted to other fireflies because they are the opposite 
sex; instead, they are attracted to fireflies whose brightness is greater than 
their own.

2) The strength of attraction between fireflies is influenced by their light 
intensity; less bright individuals move towards those with more brightness. 
At the same time, the brightness decreases because of the increasing distance 
between individuals.

3) If a given firefly does not fin d individuals brighter than itself, it moves 
randomly through space.

The calculation of the firefly’s light intensity value proceeds as follows:

            , (14)

the attraction between fireflies can be represented as follows:

             , (15)

and the location of the firefly is updated as follows:

               ,  (16)

where I0 represents the maximum brightness (own brightness), γ denotes the 
light absorption coefficient, inversely related to the distance between fireflies, 
ri,j is the distance between individuals, β0 is the maximum attraction of the 
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fireflies, xi and xj are fireflies at positions i and j, respectively, α is a parametric 
factor that controls the step, and rand is a random number between [0, 1].

Introducing the firefly perturbation strategy updates the sparrow’s search 
position to find the optimal individual, overcoming issues such as the sparrow 
population getting trapped in local optima and low search precision. This 
establishes the FSSA optimization algorithm framework, thereby improving 
the speed and accuracy of SI optimization algorithms in searching for optimal 
HKELM parameters.

3.3.3. Flow of FSSA-HKELM

The analysis of the above algorithms indicates that FSSA has better search 
precision and convergence speed than SSA and other classical algorithms, and 
HKELM has better generalizability and learning capability than KELM and 
ELM. Therefore, FSSA was chosen to optimize five parameters (C, C0, b, σ, 
ω0) of HKELM in this case. The flow of the algorithm is shown in Figure 3 
and the text describes the flow from steps 1 to 10:

Step 1. The logging data to be  input are normalized and preprocessed using 
Equation (1). Afterwards, wells JFD-1 and JFD-5 are set as the training set, 
while JFD-8 serves as the test set. The training set is then used by FSSA to 
optimize HKELM and obtain the optimal parameters.

Step 2. The following m odel parameters are initialized: number of sparrows, 
iteration times, ratio of producers and scroungers in the population, warning 
value, safety value sizes, and initial parameters of HKELM.

Fig. 3. Flow chart of FSSA-HKELM.
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Step 3. The population is initialized.
Step 4. The fitness for every individual sparrow in the population is 

calculated, and the sparrows are ranked according to their values.
Step 5. The individuals with high fitness are selected as producers based 

on the set proportion of producers in the population, and their positions are 
updated based on Equation (11).

Step 6. The remaining sparrow individuals are used as scroungers, with 
their positions updated based on Equation (12).

Step 7. A certain number of sparrow individuals are chosen at random 
to serve as vigilantes, based on the predetermined ratio of vigilantes in the 
population. These individuals warn others of dangerous situations. Their 
positions are updated based on Equation (13) to calculate the new fitness 
value. If this value is superior to the optimal value in the present sparrow 
population, then it is updated.

Step 8. Firefly perturbation is introduced to the sparrow population based 
on Equation (16).

Step 9. Fitness is calculated corresponding to the updated position of the 
sparrow population, and optimal individuals are retained.

Step 10. If the stopping condition is satisfied, the optimal global sparrow 
position and the highest fitness level are simultaneously output; if not, the 
process reverts to step 4.

3.3.4. Model evaluation parameters

To comprehensively evaluate the predictive ability of each lithology 
identification model and overcome the one-sidedness of evaluating models 
by a single indicator, the comprehensive accuracy, precision, recall, and F1 
indicators were selected. The samples were divided into true negative (TN), 
false negative (FN), true positive (TP), and false positive (FP). Based on the 
predicted classification effect, the proposed four comprehensive evaluation 
indicators were then calculated by these four results. 

Accuracy represents the proportion of correctly predicted samples to 
the overall sample count, though it does not evaluate the imbalance in the 
number of sample categories. Precision and recall can effectively overcome 
this. Precision is the proportion of true positive samples within the positively 
predicted samples by the model, while recall is the proportion of true positive 
samples among the actual positive samples that are correctly predicted as 
positive. The F1 score is calculated by averaging the reconciliation of precision 
and recall. The above evaluation parameters are calculated as follows:
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      , (19)

             . (20)

3.4. Logging data normalization

Different logging curves have different units and amplitude ranges, which 
can affect the performance of the model when raw log data is fed directly 
into the training model. To prevent the effects of differences in magnitude 
between different logging curves, the logging data are mapped to [0, 1], using 
the maximum-minimum normalization method as follows:

                , (21)

where Z represents the original logging data, Zn denotes the normalized 
logging value, Zmin signifies the minimum value within the logging data, and 
Zmax indicates the maximum value in the logging data.

4. Results and discussion

4.1. Characteristics of lithologies

4.1.1. Determination of oil shale

Due to the difficulty in distinguishing between organic-rich mudstone and 
oil shale based solely on core observations, the lack of a solid basis can 
lead to inaccurate training data for lithology prediction models and result 
in misjudgment during log-based identification. Therefore, it is proposed to 
use TOC to determine oil shale. Oil shale is a fine-grained sedimentary rock 
rich in organic matter with a ω greater than 3.5%; oil shale can be heated to 
produce shale oil and gas [43–45]. ω, the mass proportion of shale oil in oil 
shale, is an important parameter for evaluating oil shale [44]. Therefore, the 
ω parameter is selected as the basis for determining oil shale. However, due 
to limiting factors, such as difficult sample coring and expensive test analysis, 
oil shale cannot be accurately divided into the whole well segment of the 
target layer, so the following steps are carried out: 

(1) Determination of TOC boundaries for oil shale
By conducting a linear fit between ω and TOC, a good correlation   

(R² = 0.95) is observed, as de picted in Figure 4, leading to the derivation of 
Equation (22): 

        TOC  = 1.1845 × ω + 1.1086, R2 = 0.95 (22)
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Inserting the limit value for oil shale ω (3.5 wt%) into this equatio n yields 
a corresponding TOC of 5.25 wt%. Hence, mud shales with TOC exceeding 
5.25 wt% are classified as oil shale.

(2) Logging evaluation of TOC
The 158 measured TOC and corresponding logging data values of the JFD-

1, JFD-5 and JFD-8 wells were used to self-predict the TOC of these three 
wells. The prediction method is a modified ΔlogR method. ΔlogR is a method 
proposed by Passey et al. [46] to predict the TOC of hydr ocarbon source rocks. 
The mathematical idea is to establish an empirical formula from the difference 
in magnitude between the RT curve and the porosity curve (DEN, AC, and 
compensated neutron logging) versus TOC. The formula can be found in [46].

However, this method requires m aturity data and artificial debugging of 
multiple baseline values, which is labor-intensive and time-consuming. To 
address these issues, the improved ΔlogR method proposed by Hu et al. [47] 
is used. According to the Pearson coefficient in Figure 5a, DEN and TOC have 
the best correlation. Therefore, the two logging curves of RT and DEN are 
used for calculation, and Equations (23)–(25) are obtained:

        ,        (23)
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               , (25)

where Rmax(ρmax) and Rmin(ρmin) represent the maximum and minimum values on 
the corresponding scales when the curves are superimposed, respectively, and 
a and b are the coefficients of the linear fit of TOC and ΔlogR.

Fig. 5. Correlation between TOC and logging (a), improved ΔlogR predicted TOC 
with measured TOC (b). MAE – mean absolute error.
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Fig. 6. Improved ΔlogR method for TOC prediction in the target formation of the 
JFD-1, JFD-5 and JFD-8 wells.

A linear fit of the measured TOC values from the experimental analysis 
to the TOC values predicted by the proposed method leads to Figure 5b. The 
correlation coefficient R2 = 0.83, the mean absolute error MAE = 0.92, and the 
TOC prediction accuracy is high, as shown in Figure 6. The predicted TOC 
values of the three wells are very close to the measured values, which can be 
used to determine the presence of oil shale.

4.1.2. Petrological and logging characteristics

The core, thin section, and TOC were used to determine the development of the 
four lithologies (oil shale, mudstone, siltstone, and dolomite) in each well. The 
specific petrological characteristics of the lithologies are displayed in Table 1. 
The table also analyzes the logging response characteristics: for instance, 
oil shale is distinguished by high RT, AC, and GR response characteristics, 
alongside low DEN response features. 

To mitigate the impact of differences between logging data scales on model 
training, the logging data are normalized during preprocessing. Figure 7 shows 
the normalized logging curves, while Figure 8 illustrates the distribution 
characteristics of the logging curves corresponding to the four lithologies. 
In Figure 8, the diagonal plot depicts the distribution of different lithologies 
on a single logging parameter, highlighting that all four lithologies have 
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overlapping areas on the logs, which is caused by the non-homogeneity of the 
fine-grained sedimentary rocks. Additionally, the lithological distribution is 
characterized in Table 2.

Table 2. Lithological distribution

Lithology JFD-1 JFD-5 JFD-8

Oil shale 204 203 141

Mudstone 293 375 398

Siltstone 108 115 91

Dolomite 75 79 89

Fig. 8. Distribution of four types of lithologies on four logging parameters in the test 
well JFD-8.
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4.2. Comparison of prediction results

To assess the performance of FSSA-HKELM, samples from a blind well (well 
JFD-8) were selected as the test set for lithology prediction. The classification 
performance of the base classifier HKELM and the parameter search speed 
and accuracy of FSSA were tested. Five models, namely ELM, KELM, 
HKELM, PSO-HKELM, and SSA-HKELM, were compared. The parameters 
to be optimized in HKELM were C, C0, b, σ, and ω0. To fairly evaluate the 
performance of the three optimization algorithms, the size of the population 
was established at 20, and the iteration count was capped at 50. The JFD-1 and 
JFD-5 wells served as training data, fed into the model to identify the optimal 
parameters, and the fitness value was the lithological classification error rate 
of the validation set (1 – accuracy). The detailed parameters of each algorithm 
are shown in Table 3. Concurrently, the algorithms were executed in Matlab 
2020b.
Table 3. Model parameters setting. Abbreviations: ST – safety thresholds, PD – 
producers, SD – vigilantes

Algorithm Parameters

ELM Hidden layer = 100, kernel = sigmod (1/(1+e)–x)

KELM Kernel = RBF, C = 10, σ = 10

HKELM C = 10, C0 = 5, b = 5, σ = 10, ω0 = 0.5

PSO ω0 = 0.89, c1 = 2, c2 = 2

SSA ST = 80%, PD = 20%, SD = 20%

FSSA ST = 80%, PD = 20%, SD = 20%

Fig. 9. Comparison of the adaptation and convergence speed of optimization 
algorithms. 

file:///Users/mac/Desktop/Desktop%20-%20Mac%e2%80%99s%20MacBook%20Pro/Desktop/OilShale/OS_2024/OS_3/TANG/javascript:;
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Figure 9 demonstrates that the three SI algorithms decrease in fitness 
and eventually converge as the number of iterations increases. Five optimal 
parameters for HKELM are obtained. FSSA is clearly superior to SSA and PSO, 
as it has the smallest fitness value (0.0828) and the fastest iteration convergence 
speed, converging by the 10th iteration. SSA parameter optimization is the 
second most effective, with a final fitness of 0.0874 and convergence starting 
at the 20th iteration. Although PSO (11th iteration) converges faster than SSA, 
it has the worst search accuracy (0.1379) among the three algorithms.

The vertical distribution of lithologies predicted by each of the six lithology 
identification models is shown in Figure 10. The lithology prediction results 
of FSSA-HKELM are better than those of the other five algorithms.

Table 4 and Figure 11 show the comprehensive evaluation of lithology 
prediction results for the six algorithms applied to well JFD-8. Among the 
three base learners, HKELM outperforms KELM and ELM in terms of 
accuracy, precision, recall, and F1 (both micro and weighted). Therefore, after 
optimizing HKELM in FSSA, the proposed model outperforms the other five 
models across all six evaluation metrics. This method offers considerable 
advantages in lithology prediction within the study area, making it particularly 
useful for oil shale exploration in K2qn in the Southeastern Uplift Zone of the 
Songliao Basin.

Table 4. Comparison of evaluation parameters of the six lithology logging 
identification models

Models Accuracy Precision Recall F1 (macro) F1 (micro) F1 (weighted)

ELM 64.53% 60.21% 61.88% 59.59% 64.53% 64.69%

KELM 67.04% 47.51% 62.83% 52.54% 67.04% 63.03%

HKELM 68.85% 67.36% 64.83% 56.71% 68.85% 65.73%

PSO-HKELM 69.54% 63.93% 65.92% 60.23% 69.54% 68.01%

SSA-HKELM 80.39% 79.71% 87.04% 81.66% 80.39% 80.63%

FSSA-HKELM 81.78% 81.65% 87.78% 83.08% 81.78% 82.16%
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Fig. 10. Lithology prediction results of the six lithology logging identification models 
in the test well JFD-8. Beneath each algorithm's name, there are two columns: the left 
column shows the predicted lithology sequence, and the right column displays the 
sequence indicating whether the lithology predictions are correct or not.

Fig. 11. Accuracy, precision, recall and F1 of the six classification algorithms.



184 Baiqiang Tang et al.

5. Conclusions

In  this study, a linear fitting based on the ω and TOC data from the wells 
JFD-1, JFD-5, and JFD-8 established that mud shale with TOC greater than 
5.25 wt% is defined as oil shale. Using the measured TOC and logging data 
from these three wells, combined with the improved Δlog method, TOC self-
prediction was utilized to define the oil shales in these wells. The core, thin 
section, and TOC were used to determine the vertical distribution of the four 
lithologies (oil shale, mudstone, siltstone, and dolomite) in each well. After 
obtaining accurate lithology samples, an optimization algorithm and classifier 
were integrated to establish a model of lithology identification for the fine-
grained sedimentary rocks of the Qingshankou Formation in the Southeastern 
Uplift Zone of the Songliao Basin, based on FSSA-HKELM, leading to the 
following insights:

1. The base classifier HKELM, integrating RBF and the polynomial 
function, has enhanced model generalization and learning capability, 
outperforming KELM and ELM in comprehensive evaluation metrics.

2. FSSA, leveraging the firefly perturbation strategy from the SSA 
algorithm, has improved algorithm performance. Comparing the fitness 
curves (error rate in lithology classification) during parameter optimization 
for HKELM among PSO, SSA, and FSSA, it was found that FSSA has a faster 
iteration speed, converging by the 10th iteration with the lowest fitness, thus 
indicating higher search precision.

3. Co mparing FSSA-HKELM with five other models (ELM, KELM, 
HKELM, PSO-HKELM, SSA-HKELM) in the blind well (JFD-8), it is 
evident that the proposed algorithm significantly outperforms the others in 
classification evaluation metrics, achieving an accuracy rate of 81.78%, and 
demonstrating a strong capability in lithology identification.
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