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STOCHASTICITY OF THE ELECTRICAL  
NETWORK LOAD 
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Standard deviation of the load changing with time and the expected deviation 
caused by autocorrelation are observed in this paper. It is proposed to 
describe the load distribution by so-called peak-normal distribution, which 
represents a combination of normal distribution, Poisson distribution and 
lognormal distribution. 

Introduction 

Regular changes, dependency on weather, operating parameters and 
stochasticity are characteristic of the electrical network load. Possible load 
deviations caused by stochasticity must be considered at designing the 
electrical network and also at planning its operation. It is necessary to know 
the standard deviation characterizing the level of load stochasticity, but also 
the distribution enabling to estimate the probability of deviations. The 
stochastic dependency between random deviations, autocorrelation, is of 
interest, because it is the basis for short-time forecast.  

Modelling of the stochastic component of the electrical network load is 
done in many papers over the last two decades, and different representations of 
load distribution and correlation have been made. Its has been shown [1] that 
most uncertainities of active and reactive daily peak loads in the system can be 
modelled by normal distributions. Herman and coworkers [2, 3] suggest that 
the best function to represent low-voltage network load is that of beta 
distribution of probability. Neimane [4] uses three probability density func-
tions – normal, log-normal and beta distribution – to model variations of the 
network load (the load measured at the 110-kV level) and concludes that all 
three distributions provide a reasonably good representation of load variations. 
However, if variations of the modelled parameter are non-symmetrical, 
lognormal or beta distribution would give a better approximation. 
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Randomness, characteristic of the load, is especially noticeable in the 
case of smaller loads of the distribution network. Such loads have a rather 
high standard deviation. In the case of smaller loads, large deviations may 
occur from time to time, not maching with normal distribution. In this paper 
the mathematical presentation of the stochastic component considers 
autocorrelation of load deviation, which is necessary for obtaining short-
term load forecast. The peak component, which causes large deviations, is 
also considered. Large deviations are especially characteristic of distribution 
network loads. This is one reason why the load is not normally distributed. 
Due to the above-mentioned facts, it is suggested in this paper that load 
distribution is a combination of normal, lognormal and Poisson distributions. 

Standard deviation of load 

The mathematical model describing changes of load (active power, reactive 
power, or current) consists of three basic components [5]: 

 

( ) ( ) ( ) ( )P t E t Γ t Θ t= + + , 
 

where  E(t) is mathematical expectation of the load; 
( )Γ t  – temperature-sensitive part of the load; 
( )Θ t  – stochastic component of the load. 

Mathematical expectation describes regular changes of a load, such as the 
general trend and seasonal, weekly, and daily periodicities. Mathematical 
expectation is principally non-stochastic and corresponds to the normal 
temperature. 

The temperature-sensitive part of a load describes load deviations, caused 
by deviations of outdoor temperature from the normal temperature. The 
normal temperature is the average outdoor temperature of the last 30 years 
on any given hour of the year. If the real outdoor temperature corresponds to 
the normal temperature, there is no temperature influence. In order to 
compare the temperature dependencies of different loads, the component 

( )Γ t  is normalized:  
 

( ) ( ) ( )Γ t R t tγ= , 
 

where  R(t) is the rate of the temperature dependency of the load, 
 ( )tγ  – the normalized component of temperature dependency. 

The stochastic component ( )Θ t  describes stochastic deviations of the 
load. Due to autocorrelation, the deviations are stochastically dependent on 
each other. It is possible to describe the stochastic component of the load by 
the expected deviation ( )tζ , which represents the conditional mathematical 
expectation of the stochastic component and normally distributed non-
correlated residual deviation (white noise) ( )tξ . In addition, it is necessary 
to consider peak deviations of the load by the component ( )tπ , which 
describes large positive or negative deviations that do not correspond to the 
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normal distribution. It is practical to normalize the stochastic component. 
The proper rate is the standard deviation of the load S(t). The result is 

 

[ ]( ) ( ) ( ) ( ) ( )Θ t S t t t tζ ξ π= + + . 
 

The level of stochasticity is expressed by standard deviation S(t), which 
changes with time. As an example, standard deviation of weekly and hourly 
values of the load is presented in Figs. 1 and 2. These examples prove that 
the changes of standard deviation resemble the changes of load (mathematical 
expectation), being larger in winter and in the evening and smaller in  
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Fig. 1. Load standard deviation, weekly values. 
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Fig. 2. Load standard deviation, hourly values. 
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summer and at night. However, a closer observation indicates that changing 
regularities of standard deviation may not coincide with changes of the 
mathematical expectation. 

Expected deviation of load 

Stochastic deviation of the load  
 

[ ]1( ) ( ) ( ) ( )
( )

t P t E t Γ t
S t

ϑ = − −  

 

can be described with the ARIMA-model [6] as 
 

(B)
(B)t tϑ ξΨ=

Φ
, 

 

where tϑ  is the value of random deviation in the time interval, (B)Φ  and 
(B)Ψ  are linear operators, and tξ  is the value of non-correlated time series 

– residual deviation of the load. Also transfer function may be followed: 
 

(B)F(B)
(B)

Ψ=
Φ

, 

 

so that 
 

tF(B)tϑ ξ= . 
 

Actually the operators (B)Φ  and (B)Ψ  are presented as  
 

1( ) (1 ... )(1 )(1 )MF M N
MF M NB B B B Bϕ ϕ ϕ ϕΦ = − − − − −   

 

and 
 

1( ) (1 ... )(1 )(1 )MP M N
MP M NB B B B Bψ ψ ψ ψΨ = − − − − − . 

 

Here, the first part of the operators considers the after-effect of load 
deviations (within the day), which precede the present time interval. The 
second and third parts of the operator consider the after-effect of one day 
backward and one week backward. The daily displacement factors MF and 
MP are actually within the limits of 1–2, and if the sampling frequency is 
once an hour, M = 24 and N = 168. Thus, the model of the stochastic 
component consists of eight parameters 1 2 24 168, , ,ϕ ϕ ϕ ϕ , 1 2 24, ,ψ ψ ψ  and  

168ψ . 
Large deviations of the load should be excluded, as they do not belong to 

the residual deviation. The following criterion is suitable:  
 

t Sc ξξ σ< , 
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where Sc  is reliability factor (e.g. 2.7) and ξσ  – standard deviation of 
residual deviation. Possible large deviations belong to the load peak 
component tπ . 

Actually, the stochastic component of the load is treated recursively. For 
each time interval (hour or a part of it), the value of the deviation tζ  is found 
by Box-Jenkins model. If the difference t tϑ ζ−  is suitable according to  
the previous criterion, equalst t tϑ ζ ξ− , and peak component value 0.tπ =  If 
not, the peak component value differs from zero, and t t t tϑ ζ ξ π− = + . For 
differentiation between tξ  and tπ  the residual deviation tξ  is simulated, 
basing on normal distribution (0, )t N ξξ σ′ = . Therefore  
 

, 0,
, , .

t t t t t t S

t t t t t t t t S

if c
if c

ξ

ξ

ξ ϑ ζ π ϑ ζ σ
ξ ξ π ϑ ζ ξ ϑ ζ σ
 = − = − <
 ′ ′= = − − − >=

 

 
The results of handling the stochastic deviation tϑ  are illustrated in Fig. 3.  

It is possible to find the value of residual deviation of load tξ  for each 
time period (hour) observed. The values of peak deviation of load tπ  appear 
from time to time.  

The expected deviation of the load may be used for short-term forecasting 
of the load. In Fig. 4 an example of the real value of the load and 
additionally the values of long-term forecast ( ) ( )E t Γ t+  and short-term 
forecast ( ) ( ) ( ) ( )E t Γ t S t tζ+ +  are presented.  

 
 

1

2

3

4

5

6
1

2

 
 

Fig. 3. Peak deviation (1) and residual deviation of load (2). 

 

 

Time, hours of day



M. Meldorf, T. Täht  , J. Kilter 230

50

60

70

80

90

100
1

Lo
ad

(M
W

)

 
Fig. 4. Real value of the load (1), long-term forecast (2) and  

short-term forecast (3), hourly values. 

Distribution of load 

Normal distribution is often considered, but it generally does not apply for 
electrical network loads. Also the shape of distribution function depends on 
how the deviation of load P∆  is defined. Attention should be paid to possible 
load deviation from its mathematical expectation, which is found on the 
ground of load model as changing with time. If such a model is not used, an 
average value of load is considered for a longer time period (e.g. a year), and 
the deviation from that is found. It is possible to found also short-term forecast 
deviation from conditional mathematical expectation of the load, which 
considers real progress of load in the recent past and also possible temperature 
influence. Figures 5 and 6 show deviation histograms, which are found in 
respect to constant average value of the load (the first case) and in respect to 
the mathematical expectation, changing with time (the second case). For 
comparison, normal distribution is also shown in these figures. For assessing 
maximum load, attention is paid to the “tail” parts of the histograms, which are 
presented, magnified, in Fig. 7. We can see that the probability of large 
deviations is considerable, unlike in the case of normal distribution. The more 
recognisable are the differences, the larger is the given probability. 
Residual and peak deviations of the load form together the so-called peak-
normal distribution [7]. Let us assume that a random variable X has peak-
normal distribution, when among its normally distributed values large 
deviations appear from time to time – peaks which do not conform to the 
normal distribution. The frequencies of positive and negative peaks may be 
different (including zero). Thus the value X at peak-normal distribution 
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consists of a normal component 0X  and a peak component XΠ . The peak 
component in its turn consists of a positive 1X , negative 2X  and zero 
component Q: 

 

0X X XΠ= +  
 

1 2X X X QΠ = + + . 
 
 

 
 

Fig. 5. Histograms of load in the first case. 
 
 

 
 

Fig. 6. Histograms of load in the second case. 
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Fig. 7. A fragment of histograms. 

 
 
 
Distribution density of the normal component is  
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−
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If frequencies of positive and negative deviations of the peak component 
are 1λ  and 2λ , respectively, considering that these deviations exclude each 
other, we get 

 

1 1 1 2 2 2 0( ) ( ) ( )f x f x f xλ λ λΠ Π = + +  , 
 

where 0 1 21λ λ λ= − − . Presuming that distribution of deviations is 
lognormal, we may write 

 
2

2

(ln )
21( )

2

k k

k

x

k k
k k

f x e
x

µ
σ

πσ

−
−

= , (k = 1, 2).  

 

It is considered that the value of X2 is negative. 
Hence peak-normal distribution is described by 8 parameters: 

0 0, 1 1 1 2 2 2, , , , , ,µ σ µ σ λ µ σ λ , and it consists of normal, lognormal and Poisson 
distributions. The last two can be substituted also with some other suitable 
distributions. Figure 8 illustrates a histogram of the positive peak component 
and lognormal distribution approximating it. 
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Fig. 8. Histogram and distribution of the positive peak component 
 
 
Distribution density of the value X, which in this case is the load, can be 

found with convolution  
 

0 0 0 0( ) ( ) ( ) .f x f x f x x dx
∞

Π−∞
= −∫  

 

Here fΠ  corresponds to distribution density of the peak component. The 
nature of the value 0X  depends on how the load deviation P∆  is defined. 
By considering load deviation from the average value E , mathematical 
expectation or long- and short-term forecasts of the load, the deviation may 
be expressed as follows: 

 

1. [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P t E t R t t S t t t t Eγ ζ ξ π∆ = + + + + −  
2. [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )P t R t t S t t t tγ ζ ξ π∆ = + + +  
3. [ ]( ) ( ) ( ) ( ) ( )P t S t t t tζ ξ π∆ = + +  
4. [ ]( ) ( ) ( ) ( )P t S t t tξ π∆ = +  

 

As the values ( )tγ , ( )tζ  and ( )tξ  are actually of normal distribution, the 
equation in the square brackets represents in all cases convolution of the 
normal distribution with the peak component. The final form of the load 
distribution will be achieved with linear conversion, which takes into 
account the deterministic functions E(t), R(t) and S(t): 
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2

12 1

1 ( ) ( ) ( ) ( ) 1( )
( ) ( )

t

P
t

P t E t R t tf P f dt
t t S t S t

γ − −= ⋅ −  
∫ , 

 

where (t1, t2) is the observed time period. Here the functions E(t), S(t) and 
R(t) are related only to the definition of the first and the second load devia-
tions, in other cases they are missing. Distribution function convolution and 
linear conversion can both be realised only numerically. Figures 9 and 10 
give examples of load distribution, whereby load deviation is found accord-
ing to the definitions of the first and second cases. Normal distribution 
density is also given for comparison. 
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Fig. 9. Load histogram and peak-normal distribution in the first case. 
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Fig. 10. Load histogram and peak-normal distribution in the second case.  
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When adding the loads, the sum of normally distributed components is 
also normal. As a result of convolution, the percentage of the peak 
component will decrease until it practically disappears. At summation of 
large number of loads the result will be normal distribution, according to the 
central-limit theorem of the probability theory. However, the number of 
addenda is rather big (tens and hundreds). Actually only transmission grid 
busloads may be considered as normally distributed. This is valid only for 
relative deviations of the load, presented above in square brackets. If the 
distribution is found for a longer time period, the distribution will remain 
asymmetric due to the standard deviation, the rate of temperature dependency 
and especially because of the change of mathematical expectation. If, for 
example, the load deviation is considered in respect to the mean value, the 
load distribution will remain as illustrated in Fig. 5, not depending on the 
number of summed loads. Anyway, such kind of distribution “tail” is 
significantly shorter than in the case of the peak component, whereby the 
assessment of maximum load based on normal distribution does not cause any 
large errors. 

Conclusion 

In monitoring the electrical network load, besides mathematical expectation 
and temperature dependency, stochasticity of the load offers practical 
interest. It is necessary to evaluate possible stochastic deviations of the load 
both for short time period, at planning electrical network operation, but also 
for a longer time period, at electrical network designing. The stochastic 
dependency caused by autocorrelation enables to find the short-term forecast 
of the load.  

The level of stochasticity is determined by standard deviation, which 
must be considered as changing with time not only on yearly but also on 
weekly and daily levels. Expected deviation of the load resulting from auto-
correlation can be found (differs from zero) 7–10 days ahead.  

Load distribution, depending on determination of load deviation, is 
needed to evaluate the possible maximal deviations of the load. It is possible 
to apply the peak-normal distribution representing the combination of 
normal, lognormal and Poisson distributions.  
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