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ESTIMATION OF DISTRIBUTION NETWORK STATE  
ON THE BASIS OF A MATHEMATICAL LOAD MODEL 
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The target of estimating distribution network state is to refine the measurement 
data, but it is especially important to detect significant measurement errors or 
mistakes. Usually the redundancy of data required for estimation is not 
available in distribution networks – the number of measurements is not 
essentially bigger or is even smaller than the number of main state parameters. 
Resolving of this problem can be based on a mathematical load model, by 
means of which it is possible to calculate load values and characteristics for 
all loads at any time. Such a load model should consider all main regular 
changes of a load and take into account temperature dependency, stochastic 
nature of a load, and also frequency and voltage dependencies. 

MV Distribution Network  

It is possible to represent a MV distribution network with the help of feeders 
going out from a transmission substation and consisting of line parts and 
distribution substations that are connected to the ends of line parts (Figure). 
The configuration of a feeder can change by switching disconnectors at the 
switching substations. Also MV/MV stations and voltage regulators may be 
incorporated.  

The load of a MV feeder is formed by active and reactive loads of 
distribution substations. The load of a distribution substation is formed as the 
sum of LV loads and losses of distribution transformers. 

Dispatch system SCADA meters state parameters of a feeder periodically. 
Measured data may include values of active and reactive power, currents and 
voltages at various points of the feeder. Mainly these variables are measured 
at HV/MV substations. The metering frequency is usually one or more times 
per minute. 
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Changes of feeder configu-

ration do not obstruct the esti-
mation if the actual or expected 
circuit is known. Possible 
changes of the feeder circuit are 
recorded by SCADA, and these 
can be checked during the state 
estimation. However, SCADA 
does not observe changes of the 
circuit in LV networks, and that 
may result in abrupt changes of 
LV loads at distribution 
substations. Abrupt changes in 
a load may occur also because 
of other reasons, for example, 
due to the load irregularity of 
dominant consumers or switch-
ing on/off reactive power sour-
ces. In this paper such different 
states of the load are called load 
cases. On the basis of actual 
cases of several loads the load 
scenario is formed.  
 
 
 
 
 

Mathematical Load Model 

Mathematical model of a load (active power, reactive power or current) can be 
presented in the form of 

)()()()( ttRtEtP θ+=  

where E(t) is mathematical expectation of the load;  
R(t) is rate of the load; 

)(tθ  is normalized deviation of the load. 
Normalized deviation of the load consists of temperature dependency )(tγ  

and stochastic component )(tϑ  

)()()( ttt ϑγθ +=  

Stochastic component in its turn is divided into three components: 

V = [P,Q,U,I] 

p = [P,Q] 

U0 

A distribution network 
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)()()()( tttt πξζϑ ++=  

where )(tζ  is expected deviation of the load; 
)(tξ  is residual deviation of the load (white noise); 
)(tπ  is peak deviation of the load. 

Finally 

[ ])()()()()()()( tttttRtEtP πξζγ ++++=  

Mathematical expectation E(t) is the main component of the load model, 
which describes regular changes of the load and corresponds to normal 
temperature. Mathematical expectation is principally nonstochastic. In 
addition to mathematical expectation, standard deviation of the load is 
considered, which is the measure of load stochasticity. 

Rate of the load R(t) is needed for comparison of different loads on the 
basis of  model components. For example, it is practical to estimate 
temperature dependency )(tγ  simultaneously for a larger group of similar 
loads – for the whole load class. So the rate R(t) determines the level of 
temperature dependency for considered load. In addition, the rate of the load 
supports also the consideration of stochastic components.  

Temperature dependency )(tγ of the load describes the load deviation 
caused by deviation of outdoor temperature from its normal values. Normal 
temperature (mathematical expectation of temperature) is calculated as the 
average outdoor temperature of the last 30 years at certain time moments of 
the year. It is typical that temperature dependency of load is characterized by 
delay of about 24 hours. If the real temperature corresponds to normal 
temperature (considering delay), the temperature dependency does not exist 

0)( =tγ . 
Here expected deviation of the load )(tζ  describes the conditional 

mathematical expectation of the stochastic component, which is also needed 
for calculating load short-term (more accurate) forecast. Residual deviation of 
the load )(tξ  describes a normally distributed noncorrelated stochastic 
process – white noise. Peak deviation of the load )(tπ  corresponds to large 
positive or negative deviations of the load, which do not match with normal 
distribution. Such kinds of load deviations can occur from time to time. 

Mathematical model describes the load, but it does not determine the 
values needed in practice directly (so-called load characteristics), for example 
it does not give forecasts directly. However, it is possible to calculate these 
load characteristics on the basis of the load model. Load characteristics can be 
divided into primary and derived characteristics. Primary characteristics are 
derived directly from the mathematical model. Derived characteristics are 
calculated by combining primary characteristics. Primary characteristics are 
load real values P(t), mathematical expectation E(t), standard deviation S(t), 
temperature dependency )(tγ , etc.  
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On the basis of these components, it is possible to find the next 

characteristics, for example: 
)()()()( ttRtEtPF γ ′+=  – long-term forecast of the load 

[ ])()()()()( tttRtEtPSF ττ γζ ++=  – short-term forecast of the load 

)()()()( ttRtPtPN γ−=  – normalized load 

[ ])()()()()( tttRtPtPS γγ ′−−=  – simulated load. 

Here τ  is forecast anticipation time, and )(tγ ′  – influence of simulated 
temperature. It is possible to simulate temperature, for example, by adding 
specified deviation to normal temperature, or by using some other year 
temperature data (cold winter, warm autumn). The long-term forecast of the 
load can be based on normal temperature (temperature dependence is absent), 
or on simulated temperature. 

Mathematical expectation, standard deviation and rate are complicated 
time functions. Depending on the needed accuracy, also other components of 
the model, especially temperature dependency, may be described in detail. 
However, sometimes the load changes are so much irregular that accurate 
describing of such loads is impossible. In that case mathematical expectation, 
standard deviation and rate of these loads are calculated as constants, and 
corresponding models are called trivial models. In the case of such a trivial 
model the difference between load value and mathematical expectation is a 
stochastic component, for which it is possible to calculate the expected 
deviation, residual deviation and peak deviation of the load. So, it is possible 
both to analyze and to forecast the load by means of the trivial model. It is 
important to note that the above-mentioned trivial model in principle 
corresponds to traditional load forecast models that are generally used for 
short-term forecasting.  

In order to describe a certain load, it is necessary to estimate the parameters 
of mathematical model on the basis of its load data. At the point of estimation 
the mathematical model consists of components and factors.  

Model components that include most parts of model parameters are 
relatively stable. The components can be estimated in the course of load 
research, and they will stay the same during several years, until the character 
of the load does not essentially change. If there is not enough initial data 
(hourly data at least of one year) about the considered load, it is possible to use 
components of some other load model with similar structure. In this case the 
estimation and application of type load models is necessary.  

Level of the load, shape of the load curve, temperature dependency and 
other current changes are described by model factors. As the number of the 
factors is not large, it is possible to refine them on the basis of a relatively 
small amount of initial data. If there is still not enough initial data, it is 
possible to derive needed factors partially from type models. The refining of 
factors is called model editing. Model parameters considered below are 
factors.  
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State Estimation 

The target of state estimation is to refine measurement data, but it is especially 
important to clarify significant measurement errors or mistakes. As the 
redundancy of data required for the estimation is usually not available in 
distribution networks, traditional estimation methods used under conditions of 
main grid are not directly applicable in distribution networks. For getting 
required additional data load models are used [1]. The present work is based 
on the same conception, but the load model described above is essentially 
more perfect. This model has been used also before in connection with the 
network steady-state monitoring [2], but only under conditions of main grids.  
The calculating of feeder state parameters is based on network equations 
through main operating parameters – supply voltage and node loads  

Vj(U0, p1, p2, ... pn) 

Symbol pi corresponds here to both active and reactive power. So the 
general number of loads n is equal to double number of nodes and so there are 
n + 1 main operating parameters U0, p1, p2...pn. 

Supposing that for considered moment there are m measurements 

jV~ (P, Q, U or I), it is possible to obtain the refined operating parameters 
(refined measurements) Vj from the criterion 

 [ ]∑ =−
j

jj VV min~ 2 ,  j= 1...m 

It must be taken into consideration that in distribution networks the needed 
data redundancy does not exist in most cases – the number of measurements m 
does not essentially exceed the number of main operating variables n + 1, or is 
even smaller. For resolving this problem the boundary conditions are applied, 
which demand that the increments of state parameters have to be as small as 
possible 

 ∑ =∆
i

ip min2 ,  i = 1...n 

In other words, it is needed that the state of the network would be as close 
as possible to that, which is forecasted by means of the load models.  

Let us see the network equations being linearized over main operating 
parameters, when marking p0 = U0  

nnjjjjj ppppV ∆++∆+∆+∆=∆ ββββ ...221100  

where 
i

j
ij p

V
∂
∂

=β ,  i = 0...n 

In the form of matrix 

B∆Λ =  
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where [ ]mVVV ∆∆∆= ..., 10Λ  is the vector of increments of measurement data; 

[ ]nppp ∆∆∆= ..., 10∆  is the vector of increments of main state 
parameters;   

  

mnmm

n

n

βββ

βββ
βββ

...
............

...

...

10

22120

11110

=B  is the sensitivity matrix (Jacobean) 

Here the increments ip∆  are found on the basis of the values calculated by 
a load model (short-term forecasts). It is possible to compose the 
mathematical model also for the supply voltage U0. For simplicity it is the 
trivial model, where mathematical expectation and standard deviation of 
voltage are constant and deviation is described by means of Box-Jenkins 
model.  

Let us see the extended vector of increments of measurement data  

 [ ]0...0,0,~...~,~~
210 mVVV ∆∆∆=Λ  

in which the n last components are zeros.  
Let us compose matrix B0 with n + 1 columns where on the first m rows 

there are elements of sensitivity matrix B, and on the next n there is a zero 
vector and an identity matrix. 

1...00
............
0...00
0...10

...
............

...

...

10

22120

11110

0
mnmm

n

n

βββ

βββ
βββ

=B  

As mentioned above, conditions are simultaneously satisfied, if 

( ) ( )
∆

∆BΛ∆BΛ min~~
0000 =−−

T
 

From here a system of linear equations over the increment vector ∆  
follows 

 0000
~ΛB∆BB TT =  

The increment vector ∆  allows to refine all state parameters – it is 
possible to calculate both the specified measured parameters (estimates) and 
whatever other operating parameters. 
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For finding the elements of the sensitivity matrix B it is necessary, at first, 
to assign the increments of the model parameters npp ∆∆ ...0  in turn, then to 
find the corresponding load values and, at last, to calculate the increments 

jV∆  of considered state parameters on the basis of non-linearized network 
equations. As a result  

i

j
ij p

V
∆
∆

=β ,  i = 0...n, j = 1...m 

The results are authentic, if there are no bad data and exclusive states are 
not observed. If bad data are obtained, they have to be removed and the 
estimation procedure must be repeated. It is also possible to attempt to define 
the exclusive states more closely. If the exclusive state is still unclear, the 
estimation of this state is not possible, and the measurements of this moment 
are not used. As a result, dispersion of the short-term operating forecasts 
increases to a certain degree, but in principle this does not obstruct the process 
of estimation.  

Bad data and exclusive loads are tried to disclose one by one or as 
scenarios. Errors among measured data may be combined with one another, 
for example due to telecommunication line interference. The symptoms of 
exclusive situations are detected by rating the load deviations and the 
elements of the sensitivity matrix. 

Editing the Load Models 

For considering possible changes in the load character, it is necessary to edit 
(specify) the model parameters. In this connection the model components are 
fixed.  

Let us see the node loads pi with parameters of the model ai1, ai2...air at the 
moment tk 

pi(tk, ai1, ai2 ... air),  i = 1...n 

where r is the number of parameters that have to be estimated.  
Next the network equations are presented 

Vj = Vj(U0, p1, p2, ... pn) 

describing the state parameters via the parameters of the load model  

Vjk = Fjk(a1, a2, ... al),  j = 1...m 

where l = nr is the overall number of the parameters of all load models. The 
function Fjk corresponds to the moment tk on which the load values and supply 
voltage depend. 

The parameters of the load model are calculated from criterion 



168 M. Meldorf et al.  

 
[ ]∑∑ =−

j k
jkjk VV min~ 2  

where jkV~  is the measurement data at the moment k. 
Network equations, linearized over the model parameters, are 

lljkjkjkjk aaaV ∆++∆+∆=∆ ααα ...2211  

where 
s

jk
sjk a

V
∂
∂

=α ,  s = 1...l 

In the form of matrix 
∆AΛ kk =  

where [ ]mkkkk VVV ∆∆∆= ..., 21Λ  is the increment vector of measured 
parameters; 

[ ]laaa ∆∆∆= ..., 21∆  is the increment vector of model parameters; 

mlkkm

lkk

k

αα

αα

...
.........

...

1

111

=A  is the sensitivity matrix (Jacobean). 

If the vector of metering deviations is 

[ ]mkkkk VVV ~...~,~~
21 ∆∆∆=Λ  

the increments for model parameters are calculated from the criterion 

( ) ( )
∆

∆AΛ∆AΛ min~~ =−−∑
k

kk

T

kk  

that gives the system of linear equations over the vector ∆   

( ) ∑∑ =
k

k
T
k

k
k

T
k ΛA∆AA ~  

The load values, calculated by load models (short-term forecasts), form the 
basis for linearizing the network equations. Metering deviations 
corresponding to the same values are found. Linearization is acceptable, if the 
metering deviations are not too large. Otherwise it is necessary to use the 
iterative process, according to which the increments are added to the model 
parameters, and new state parameters and metering deviations are calculated. 
In this connection repeated linearization (calculation of the new sensitivity 
matrix) is not needed, and it is possible to continue with the old matrix. The 
elements of sensitivity matrix are calculated as follows 

s

jk
sjk a

V
∆
∆

=α ,  s = 1...l, j = 1...m. 
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The number of measurement data must be larger than the number of 
parameters being estimated. For example, if the number of the loads is 10 
(5 distribution substations), parameters 10 and measurements 10, the number 
of the required values is l = 100, and so more than 10 metering hours are 
needed. Therefore the daily metering is enough to get the results. However, 
the authenticity of results is a separate question. It is clear that the model, 
estimated on the basis of the data of one or some days, is not usable for a 
longer period. For example, the data of winter loads is not representative for 
summer loads. Generally it is an adaptation problem, which can be resolved 
taking into account the essential meaning of the model parameters.  

The degree of the equation system, obliged to be resolved, is high (for the 
above-mentioned example it is 100). It means that the volume of calculations 
is too large, and it may mean that the equation system is ill-conditioned. The 
way out is to use the results of state estimation, by means of which the node 
loads are always found independently from the structure of measured state 
parameters. Consequently, it is possible to receive all load values, state 
parameters and edit the parameters of all load models. If m = 1 and l = r we 
can get 

rkkk αα ...1=A  

[ ]raaa ∆∆∆= ..., 21∆  

[ ] kkk pV ~~~ =∆=Λ  

( ) ∑∑ =
k

T
kk

k
k

T
k p A∆AA ~  

where kp~  is the estimated value of the observed load at the moment k. The 
degree of the equation system is now r, or for the above-mentioned example it 
is now 10, and problems about calculation volumes are settled. 

Conclusions 

The method of distribution network estimation described above is based on 
the physically well-grounded mathematical model that considers time-
dependencies, stochasticity, temperature dependency, and also voltage and 
frequency dependencies of a load.  

The efficiency of the estimation method described above depends on the 
accuracy of the load models, which in turn depends on the regularity of load 
changes. For irregular loads it is possible to use the trivial model. If the 
number of irregular loads is large, or the values of these loads are relatively 
large, editing of the models does not give essential refinements. Traditional 
load models are generally similar to the trivial model, and so they are not 
effective enough for estimation of the distribution network state. 
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By means of the method described above it is possible to learn how the 

network state is compatible with both the load and network models, and 
whether the network state is familiar or not. It is possible to present 
exceptional states like events and fix that the computation on the basis of 
available data is not adequate. Though the deficit of needed data does not 
allow refining the measurement data, it is still possible to clarify the faulty 
measurements. When the method is utilized, there are no problems about 
computer resources, because there are no large volumes of computations. 

It is important that both the state estimation and the editing of load models 
will take place. So, the models always correspond to the real situation in the 
distribution network. On the basis of the load models it is possible to calculate, 
forecast and analyze the network states for both the short-term and long-term 
time intervals.  
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