https://doi.org/10.3176/oil.1993.2/3.15

REVIEWS

V. YEFIMOV

DEVELOPMENT OF OIL SHALE PROCESSING INDUSTRY IN ESTONIA BEFORE WORLD WAR II

The Baltic oil shale (kukersite) possesses unique properties due to a high oxygen content of kerogen (≈ 10 %). Long experience of commercial oil shale processing in Estonia has demonstrated that these properties become most evident when kukersite is used for the production of shale oil. Since oxygen-containing compounds prevail in the oil, it is possible to use the latter as feedstock for the manufacture of products not easily obtainable from petroleum, coal and oil shales other than kukersite.

During the early years of development of the oil shale industry in Estonia several methods of retorting were used (Table 1). A series of long experiments in different units (Geissen, Rolle, Pumpherston, etc. type retorts) demonstrated their complete unfitness for retorting kukersite [1—5]. On the other hand, test runs in a Pintschdesigned experimental retort with a throughput of 7—8 tonnes per day erected at Kohtla-Järve in 1921 showed promising results. An oil yield of 18 % from the feed shale was attained. Taking into account, however, that at that period mostly high organic oil shale was used for retorting (Table 2), the oil yield obtained could not be regarded as sufficiently high (77 % of Fischer assay oil).

Based on positive results obtained by testing the retort, already in 1921 "J. Pintsch A/G" began to design the first oil shale retorting plant at Kohtla-Järve, which consisted of 6 retorts with a throughput of 33 t/day each (later named GGS-1). The Pintsch-type retorts where the retorting zone was separated from the gasifier by a narrowed shaft at the mid-height were selected for the first plant. The air needed for processing was drawn in through the lower part of the retort by vacuum maintained within the whole reaction volume.

By the end of 1924 the construction of GGS-1 was completed with the start-up on December 24, 1924. The first production was obtained two days later. In December 1926 GGS-1 was commissioned into full commercial operation. A two-week balance test run gave the following results [3–4]: average throughput of oil shale – 33.4 t/day, the oil yield – 17.3 % from feed shale (68 % of Fischer assay oil), specific gas yield – 690 m³/t^{*} (incl. 20.6 g/m³ C₅⁺ hydrocarbons) with a calorific value of 4.86 MJ/m³. The characteristics of the feed shale used and the spent shale discharged during the test run are given in Table 3.

The demand for liquid fuels increased considerably in the early 1930's as a result of the beginning economic crisis. The State Oil Shale Works began to intensively search for opportunities of introducing new retorting capacities as fast and least

^{*}All data given at 20 °C and p = 101.3 kPa.

Plant	Unit	Through- put rate, t/day	Number of retorts/ ovens	Start-up	Cease of operation
Kohtla- Järve	Experimental vertical retort	OCESSIN	HALE PI	OF OIL 8	ELOPMENT
Jaive	(generator)*	7—8	1	3.08.21	December, 1924
	GGS-1	33	6	24.12.24	30.07.85
	GGS-2	40	8	31.03.36	30.07.85
	GGS-3 GGS-4	40 45	16 20	28.05.38 1943	stónia Iras de
Kiviôli	Experimental tunnel oven section Commercial-scale experimental tunnel	latter as fi troleum: r of the oil s	to use the	1926	In the 1930's
	oven	75	(Insidal)	1927	minimal ito spo
air comple a Pints: v erected	Commercial tunnel oven	250 350	2 2	1931 1935	The last oven was closed down in 1975
Sillamäe	Commercial tunnel ovens	270 500	romising secoult, reloting	1928 1938	Most likely during World War II
Kohtla- Nômme	Davidson horizontal rotary retorts	25 25	4	1931 1934	1961 1961

Table 1. Start-up of Oil Shale Processing Units in Estonia before World War II

* In the Baltic oil shale basin a mode of direct heated vertical retorts is historically referred to as "oil shale generators".

-expensive as possible. Under these circumstances local specialists led by K. Luts developed a new "Kohtla-Järve" design of a cylindrical retort without the narrowed shaft for an oil shale throughput rate of 37.5 t/day. The units GGS-2 and GGS-3 were equipped with such retorts. On GGS-1 and GGS-2 the spent shale residue was removed from the units by small steel trucks (initially driven by horses, later by electric locomotive), but at GGS-3 a steel conveyer was used, replaced by belt conveyer in 1953. Analogous belt conveyers were installed on GGS-1 and GGS-2 in 1956.

Year	Moisture W ^r , %	Content,	%		Fischer assay oil yield, %	Calori- fic value
ibiom ² metaloh m mag di bo p	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		(bomb calori- meter), MJ/kg			
1922	18.2	11.6	42.8	45.6	30.1	17.1
1923	18.8	11.9	45.6	42.5	28.1	16.0
1924	18.3	11.9	45.6	42.5	28.1	16.0
1925	19.0	12.2	46.0	41.8	27.6	15.7
1926	16.0	12.6	42.7	44.7	29.5	16.8
1927	12.3	12.2	40.1	47.7	31.5	17.9
1928	13.2	12.0	41.9	46.1	30.4	17.3
1929	12.5	12.6	43.1	44.3	29.2	16.6
1930	12.7	12.3	41.3	46.4	30.6	17.4
1931	11.8	12.1	40.4	47.5	31.3	17.8
1932	11.6	12.0	40.4	47.6	31.4	17.9
1933	11.6	12.0	40.3	47.7	31.5	17.9
1934	11.2	14.0	44.5	41.5	28.6	16.3
1935	11.0	15.2	46.7	38.1	26.3	15.0
1936	11.0	17.5	45.9	36.6	24.4	13.9
1937	11.0	19.4	46.6	34.0	23.3	13.3
1938	10.6	17.9	45.7	36.4	25.1	14.3
1939	10.6	18.7	46.6	34.7	23.6	13.4
1940	10.7	19.1	47.5	33.4	23.2	13.2
1941	10.7	19.3	48.2	32.5	22.7	12.9

	Table 2. Pre	operties of Fe	eed Shale	Processed at	the	Kohtla-Järve Plant
--	--------------	----------------	-----------	---------------------	-----	--------------------

* 100 - (CO²)_M^d - A^d.

Table 3. Properties of Feed Shale Used and Spent Shale Discharged in Test Run on GGS-1 in 1926

Properties	Oil shale	Semi- coke*	Spent shale
Moisture, %	13.2	N=53 87	-805
Proximate analysis (dry basis), %:	25,000	6 V dames	Justichel
carbon dioxide, (CO2) _M ^d	12.5	18.0	13.2
ash, A ^d	39.6	62.4	75.7
organic matter	47.9	19.6	11.1
Fischer assay product yield, %:	1959	LI HSIAN	105-4
shale oil	29.3	Sillan-A	1
pyrogenetic water	2.2	- diam	- 10
semicoke	59.1	-	-
gas and losses	9.4	-	- 013
Calorific value (bomb calorimeter), MJ/kg	1000 01	िल विद्या	103.(
	17.2 5	6.15	3.43

* Sample of semicoke taken from the narrowed shaft.

Year	Ko	ohtla-Järve		Kiviôli				
-	Oil shale processed	Prod	luced	Oil shale processed	Prod	luced		
diad- otas),		crude oil	motor petrol	Micerel barbar	crude oil	motor petrol		
1921	1013	115		1400	and some	enteran		
1922	1668	259	28 45	N 1 5 19 3	18.2			
1923	2368	361	ce la la		1 21 ···			
1924	2196	337	CA LL A	5 0.11	6.1			
1925	18746	2652	11 12.07	A L C CL				
1926	39601	5784	32 1 2		10.01			
1927	31621	4237	12		- tor			
1928	42412	6595	and the	a harris	- 2 -			
1929**	32454	5453	24	12.6	1 A 14			
1930	37959	6318	26	6.02	10.01			
1931	43842	6829	EN IL CO	A 1.01	3.16			
1932	52503	9001		1 D.ST -	S III			
1933	61200	10404	CS 11 71	A 1 1 0.51 1	ATT			
1934	64888	11031	100 1000	A	10.10			
1935	69165	11758	35	1 152	in and			
1936	133703	22868	1179	116393	22926	3569		
1937	178205	30008	968	284782	55563	8852		
1938	301926	48977	1041	328876	65079	10034		
1939	370198	60545	1443	340185	70004	11515		
1940	386341	59701	946	354530	68195	10772		

Table 4.	Oil Shale	e Processing on	Retorting	Plants in	Estonia
----------	------------------	-----------------	-----------	------------------	---------

* Calcualted by difference.

** 1929-1933 - the years of world economic crisis.

The daily throughput of these cylindrical retorts was 41-42 tonnes of oil shale, the shale oil yield being 14.0-14.5 % on feed shale or 60-65 % of Fischer assay oil. The gas yield was 720-750 m³/t.

The construction of a new plant (GGS-4) was started before the World War II, the Pintsch-type retorts with a design capacity of 37—40 t/day were selected again, but this time with more complete control of the process which enabled to obtain higher oil yields. As on GGS-3, for removal of ash residue a steel conveyer was also installed on GGS-4 which in 1955 was replaced by conveyer belt.

At the Kiviôli and Sillamäe plants tunnel ovens were selected for processing of oil shale, where the retorting process was carried out in steel oven-trucks. The tunnel ovens enabled to obtain oil with a higher content of gasoline fractions in the oil (up to 20 Vol. %). Owing to the use of the gas and oil vapours formed in the tunnel oven process as circulating gaseous heat carrier heated in heat exchangers

Sillamäe		Kohtla-Nômme*			Total			
Oil Produced		Oil Produced		Oil shale	Produced			
pro- cessed	crude motor pro- oil petrol cessed crude motor petrol	pro- cessed	crude oil	motor petrol				
Desilie	Vol_ 1			1 2.5	-	1313	115	ECOI -
latini be	ay point				-	1668	259	aras
	-			-	-	2368	361	arosti
	-			1 00 T	-	2196	337	rear
	-			e ie -	0.70	18746	2652	keon El
187	-	10.5			174.5	39601	5784	00010
ett	-	2 1 2 2	0			31621	4237	000
	5271	83 1		8.01 -	0.07	69951	11866	maril
	3549	P. P. P.		-	205	61896	10776	910
01		13.5.1 4		8 81 -	2.17	49466	10066	251
and the second	-	178 4 6	6	1586	154	106674	17149	1223
	-		· · · ·	4124	678	198261	36595	4209
	1	and some me		and the second s	And the second second	202099	37617	4992
	-			8248	1356	243465	46876	5899
	-				-	250866	47273	6217
43893	8019	1342	49391	9643	1649	343380	63456	7739
81452	15703	2969	54220	10619	1612	598651	11893	1440
81904	14938	2403	54498	10637	2582	767204	139631	15160
204443	36944	7623	54639	11397	2034	969465	178890	2261
196989	35197	6719	73374	10936	2063	1011234	174029	20500

before World War II, tonnes

(superheaters), the plant oil yield reached that of the Fischer assay. In addition, about 1 % (on the initial feed shale) of light gasoline was recovered in a refrigerating plant. The calorific value of the product gas with a specific yield of 20—30 m³/t was about 33.5 MJ/m³ (excl. 20—25 g/m³ of C₅⁺ hydrocarbons which remained in the gas after light gasoline separation).

At Kohtla-Nômme the low-capacity Davidson horizontal rotary retorts were operated for a relatively short period. The plant consisted of 4 rotating horizontal drums, heated externally with flue gases, generated by burning of their own semicoke. The oil vapours were withdrawn through offtake pipe. The oil yield was 19–20 % from the feed shale, i.e. about 90 % of Fischer assay oil. The gas yield was within a range of 80–120 m³/t, its calorific value (excl. C_5^+ hydrocarbons) being about 3,500 kcal/m³.

Year	Crude oil	Kohr	a Sirve sma	old-abidit	Motor pe	trol	12
baon	Tonnes	Thou- sand kroons	Average price, kroons/ tonne	Export, per cent of total production	Tonnes	Thou- sand kroons	Average price, kroons/ tonne
1923	8.1	0.34		2.5			
1924	9.3	1.31	× 115 -	2.7			
1925	72.8	4.96	- 259	4.1			
1926	11.2	1.67	- 351 1.1	1.9			1.1.1.1
1927	863.3	93.60	1 - 237	20.8			
1928	2516.8	244.30	97.0	21.3			
1929	1866.5	132.0	74.5	16.7	209.5	37.2	187
1930	1568.9	104.3	67.0	15.7	227.8	39.4	173
1931	2353.9	125.1	53.2	13.8	518.3	48.4	271
1932	3939.9	220.8	60.5	10.0	753.3	188.3	250
1933	6210.7	320.0	51.5	16.8	1573.5	437.4	278
1934	13967.4	691.7	49.8	30.0	2078.4	685.9	330
1939	90000.0	1905051	310	50.3			

Table 5. Export of Estonian Oil Shale Fuel Products

Table 6. Properties of Feed Shale and Basic Operational Data for Semicoking in Retorts of Different Design

Characteristics	Tunnel over	15	Davidson retort	Retorts GGS-3
L Celculad by difference 1929-1933 - The years of world ecos	Kiviôli December 1973	Kohtla- Järve February 1961	Dec. 12, 1960	October 21—24, 1963
Test number	1	2	3	4
The daily throughput of these of	indricel rob	rts was 41	-42 tonne	t of cel she
PUIDA CONTRACT AND A CONTRACT OF THE	and people	BIBIN SIOS	usigged of	addition of the
Oilshale	shale shale	intrial feed		0.0
Moisture, %	8.3	9.0	8.0	8.8
Conventional organic matter,	31.2	35.0	30.0	34.0
(dry basis), % Fischer assay oil yield, %	21.6	23.6	20.2	23.1
Calorific value	21.0	23.0	20.2	23.1
(bomb calorimeter), MJ/kg	11.97	13.44	11.22	13.15
Yield of products		13.44	11.22	15.15
Shale oil, %	自行而且20月4日,有	11 AHWARK	ARC BREAK	ungen ngenor
Plant yield (raw shale basis)	19.0	20.8	16.5	13.9
Yield of Fischer assay oil	97.6	97.0	89.0	66.0
Specific gas yield, m ³ /t	20	25	100	585
C ₅ ⁺ hydrocarbons		and the	Manal 002.4	denote mais
in product gas, g/m ³	22	22	no data	24
Operational data		Contraction in a	and Reptarial	
Feed shale throughput rate, t/day	384	388	23	47
Temperature of oil vapours				
at the retort offtake, °C	460	480	450	210
Final gas temperature				A
after condensation system, °C	25	30	20	63

Properties	Test number (see Table 6)					
House Line and Line a	1	2	3	4		
Density at 20 °C, g/cm ³	0.9644	0.9650	0.9490	1.0031		
Viscosity at 75 °C, °E	1.76	1.4	1.5	2.9		
Flash point, °C	10	25	9	104		
Distillation, Vol. %:	a li of min			0.7		
Initial boiling point, °C	91	65	60	183		
80 °C	- Andrews	2	4	-		
100	1	3	6	erimum an		
120	3	4	9	-		
140	4	5	12	-		
150	6	7	14	-		
160	8	9	15	-		
180	1 11	11	18	-		
200	15	14	22	3		
220	19	16	24	5		
240	23	20	27	9		
250	25	22	30	11		
260	27	24	30	13		
280	32	28	34	18		
300	39	35	39	24		
320	45	40	48	31		
340	56	55	53	40		
350	64	73	60	49		
360	79	-	68	58		
Calorific value (bomb calorimeter), MJ/kg	40.19	40.11	40.11	39.27		
Phenolic compounds, %	23.3	22.3	23.1	26.7		
Molecular mass, M	276	-	- 000	280		
Elemental composition, %:		1 1 1	ON	6/1		
C	82.1	82.6	81.5	83.1		
Н	9.9	10.4	9.9	9.7		
S	0.8	0.9	1.1	0.8		
O + N (by difference)	7.2	6.1	7.5	6.4		

Table 7. Properties of Oil Produced by Semicoking Oil Shale

Table 8. Chemical Group Composition of Light-Middle Fractions of Shale Oil, wt. %

Fractions and compounds	Test num	Test number (see Table 6)			
1993 10 the annual dia lands more sets of	1	2	3	4	
Fraction boiling up to 200 °C	VI domv	mon ed	lion toni	the b	
Alkanes and cycloalkanes	23	7	20	16	
Alkanes	50	77	57	34	
Aromatic hydrocarbons	15	11	13	30	
Neutral oxygen compounds	10	3	9.5	17	
Phenols	2	2	0.5	3	
Fraction yield, %	11.9	12.8	17.5	4.4	
Fraction 200-350 °C		ne allT	MOST. III	time at	
Alkanes and cycloalkanes	11	9	11	9	
Alkanes	14	17	13	13	
Aromatic hydrocarbons	29	28	33	32	
Neutral oxygen compounds	22	22	20	24	
Phenols	24	24	23	22	
Fraction yield, %	36.6	27.4	29.5	35.1	

Indices	Tunnel ov	Tunnel ovens Kiviôli, 1963					
		Two ovens 26.—29.11. I and II lines		Three ovens 10.—11.12. II line			
	prior to recovery	after recovery	prior to recovery	after recovery	Distillation Distillation		
Test number	5	6	7	8	9		
	1 10 4	21.3		061			
C ₅ ⁺ hydrocarbons, g/cm ³	270	22	287	22	24		
Density at 20 °C, g/cm ³	0.6569	0.6764	0.6445	0.6528	0.7160		
Refraction index, n _D ²⁰	1.3840	1.3865	1.3752	1.3870	1.4140		
Molecular mass	75			100	89		
Distillation, Vol. %	19 100 19	20.0	1	and IES -	ala la		
Initial boiling point, °C	25	-	21	and the	31		
30	8	-	17	250	-		
40	31	-	37	260	2		
50	53	-	56	280	8		
60	67	Danie On:	71	300 84	16		
70	78	Cushen	78	320	25		
80	84	_	82	340	36		
90	92		83	and Manning	48		
100	1 64	- H OVENIE	84	369	59		
110	90,19 1.06		L. (TOTAMILIA)	luo (bomb S	70		
120	2 J 8-60	-	-	appoint is .	79		
130	1 pig	120	Contra-	Pasa, M. asar	86		
140	1 0	enber 1	112'S	matisogno	92		
150	ASA 1 2	-	brunery .		93		
Calorific value	9:9 10:9		961		R		
(bomb calorimeter), MJ/kg		-	48.15	10000000	45.80		
Elemental composition, %	1.2 - 1.5		(01	(by differen	10 + 0		
C	-	-	-	and the second second	85.4		
н	-	-	-		13.4		
t's HO shale to zasitar	Belbherder	i to nobi	an Coinea	emical Ger	0.8		
0 + N	-	_	-	The stand of the	0.6		

Table 9. Properties of C₅⁺ Light Gasoline Fraction Recovered from Gas

As can be seen from Table 4, by 1940 the annual oil shale processing capacity reached 1 million tonnes from which 170—180 thousand tonnes per year of oil were produced. The oil was refined to produce 20—22 thousand tonnes of motor petrol annually. Up to 50 % of the oil and a portion of motor petrol were exported (see Table 5) [5]. The motor petrol was of low quality (octane number 66—68), however, at that time it met the needs of home market.

For complete characterization of the oil shale retorts operated in Estonia in the prewar period, in Tables 6—11 the physical and chemical properties of the retort products are presented. The analyses were performed after World War II by the Oil Shale Research Institute when systematic investigation of oil shale processing plants was carried out.

Hydrocarbons	Test number (see Table 9)				
un de la defendencia de la seguitada de la segu	6	7	8	9	
Alkanes	of Stee			10. C.T	
n-propane	21.Guesen - 2	-	-	0.7	
<i>n</i> -butane	6.0	5.9	8.1	3.8	
<i>n</i> -pentane	17.3	16.6	14.4	6.5	
n-hexane	10.9	11.8	9.1	6.4	
n-heptane	2.9	2.0	2.7	6.2	
n-octane	1.0	0.7	2.0	3.6	
higher paraffins	File this S.F		1.0	0.00	
Total	38.1	37.0	37.3	27.2	
Alkenes	the star and				
propene-1	24.5 100 12			and the second	
butene-1	2.8	3.4	7.3	4.7	
trans-butene-2	2.5	2.0	4.9	1.8	
cis-butene-2	1.3	1.2	2.8	1.0	
1,3-butadiene	0.3	0.3	0.6	1.2	
pentene-1	12.2	12.4	9.9	6.0	
	5.9	6.1	4.4	3.0	
trans-pentene-2	2.8	2.8	2.2	1.9	
cis-pentene-2	1.1		0.9	1.9	
2-methylbutene-2		1.2		- incontribution	
cyclopentene	1.3	2.5	1.4		
trans + cis-1,3-pentadiene	4.8	5.9	4.4	-	
hexene-1	11.6	12.7	8.9	7.7	
hexehe-2	6.9	4.1	3.4	2.2	
heptenes		4.7	4.7	8.7	
octenes	1.5	1.0	1.2	4.6	
isoolefins	her. Untersited	te Bronniañia	der enilândiao	1.1	
diolefins	-	-	350 3.	10.1	
' cycloolefins	-	-	-	1.8	
Total	58.9	60.3	57.0	54.8	
Aromatics	ulcersit, seine ((indiation)	adiadischo B	atox. Der	
benzene	1.0	0.8	1.9 2 322	7.1	
toluene	1.3	0.6	1.3	4.6	
Total more areastante	2.3	1.4 HTMBEL	3.2	11.7	
Identified	99.3	98.7	97.5	93.7	
Not identified	0.7	1.3	2.5	6.3	

Table 10. Chemical Composition of C_5^+ Light Gasoline Fraction Recovered from Gas, wt. %

Ny viewski boyiecos

Off Shale Research Institute Rosela-Verve, Estonia

THORE II. CHAIACTCLISTICS OF ACTOR OF	Table 1	11.	Characteristics	of	Retort	Gas
---------------------------------------	---------	-----	-----------------	----	--------	-----

Indices	Tunnel ovens [6]		Davidson	Retorts	
and a second sec	Kiviôli K Ji		retorts [6]	GGS-3	
Content of components, vol. %	1. 1. and 11 and manager same		2 2 English	1994 Days	
CO,		-		Altanea	
H ₂ S	21.0	22.7	12.6	18.3	
C _n H _m	9.0	12.9	4.7	0.5	
Including:	9.9	10.6	5.5	1.3	
C ₂ H ₄	1 6 9.0		18 6	Broken	
C ₃ H ₆	3.5	3.3	1.9	0.8	
C ₄ H ₈	4.6	4.2	2.0	0.4	
O ₂	1.8	3.1	1.6	0.1	
CO	1.2	1.2	3.2	2.0	
H ₂	7.4	8.9	4.4	5.6	
$C_n H_{2n+2}$	5.6	5.6	5.5	6.2	
Including:	24.5	32.9	13.1	4.6	
CH4	8	2	I The second	butepo	
C ₂ H ₄	9.6	15.0	5.5	3.5	
C ₃ H ₈	8.8	11.1	4.5	0.8	
C ₄ H ₁₀	4.8	5.0	1.9	0.2	
N ₂	1.3	1.8	1.2	0.1	
Content of H ₂ S, g/m ³	21.4	5.2	51.0	61.5	
	130	186	28	8	
Calculated gross calorific value	E. A.	1	S-onoturily	dism-f	
(without C ₅ ⁺ hydrocarbons), MJ/m ³	27.26	33.70	15.20	3.8	

REFERENCES

- 1. Winkler H. Der estländische Brennschiefer. Untersuchung, Gewinnung und Verwertung. Reval, 1930. 350 S.
- 2. Zeidler R. Neue Wege der Verwertung des Ölschiefers und seiner Umwandlung in Öle. Reval, 1933. 194 S.
- 3. Luts K. Der estländische Brennschiefer Kukersit, seine Chemie, Technologie und Analyse. Tallinn, 1934. 356 S.
- 4. Riigi Pôlevkivitööstus 1918–1928. Tallinn: Riigi pôlevkivitööstuse kirjastus, 1928.
- 5. Кузнецов Д.Т. Очерки развития сланцевой промышленности Эстонской ССР. Л, 1960. С 200.
- 6. Баршевский М.М., Безиогин Э.С. Шапиро Р.Н. Справочник по переработке горячих сланцев.- Л., 1963. С .238.

Kohtla-Järve, Estonia

Oil Shale Research Institute Received January 4, 1993