ГОРЮЧИЕ СЛАНЦЫ OIL SHALE

1985 2/2

https://doi.org/10.3176/oil.1985.2.03

УДК 660.94.3.547.481.543.554

М. С. РАЗВИГОРОВА, Т. К. БУДИНОВА, Г. К. АНГЕЛОВА

О СОСТАВЕ И СТРУКТУРЕ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ГОРЮЧИХ СЛАНЦЕВ МЕСТОРОЖДЕНИЯ КРАСАВА

3. СТУПЕНЧАТОЕ ОКИСЛЕНИЕ КОНЦЕНТРАТА ОРГАНИЧЕСКОГО ВЕЩЕСТВА ЩЕЛОЧНЫМ ПЕРМАНГАНАТОМ КАЛИЯ

Ступенчатое окисление позволяет деструктировать кероген до кислых продуктов, представляющих бо́льшую часть его органического вещества (OB) [1]. Проведение окисления при комнатной температуре в сочетании с удалением продуктов окисления каждой ступени уменьшает вероятность протекания вторичных реакций, что дает возможность выяснить структуру основных элементов OB, а также сравнить OB сланцев разных месторождений. В нашей лаборатории метод окислительной деструкции уже использовался для изучения сланцев месторождения Красава [2-4].

В настоящей работе исследовали нерастворимую часть сланца этого месторождения — кероген. Удаление битумоидов и минеральной массы исключает возможность их влияния на выход и состав продуктов. Цель работы — проведение окисления керогена в мягких условиях и изучение состава первичных продуктов деструкции ОВ.

Экспериментальная часть

В работе использовали кероген, полученный в результате последовательной деминерализации сланца 10%-ной HCl, концентрированной HF, а также смесью концентрированных HCl и HF. Растворимые в органических растворителях вещества удаляли экстракцией до и после деминерализации [5]. Сложноэфирные связи в керогене разрушали омылением спиртовым раствором KOH [6]. Характеристика концентрата OB, %: A^d 8,38, V^d 69,04, S_t 7,67; элементный состав, % на daf: C 70,89, H 7,4, N 1,3, (O+S) по разности 20,41.

Концентрат (10,14 г) окисляли в 13 ступеней раствором перманганата калия в 1%-ном растворе щелочи при комнатной температуре в литровой колбе. После каждой ступени растворимую в щелочи часть продуктов отделяли фильтрованием, а остаток подвергали дальнейшему окислению. Образующуюся в ходе окисления двуокись марганца переводили в растворимую форму, воздействуя на нее щавелевой кислотой в присутствии серной. Остаток промывали дистиллированной водой и использовали для дальнейшего окисления. Продукты отдельных ступеней объединили в три группы или три этапа (A, E, B табл. 1). Окисленный продукт (ОП) каждого этапа разделяли по схеме, приведенной на рис. 1. Получено шесть фракций: I — кислоты, летучие с водяным паром, II и III — эфирные экстракты фракции, растворимой в кислой среде, V — эфирный экстракт фракции, нерастворимой в кислой среде, и VI — ацетоновый экстракт фракции, нерастворимой в кислой среде, Эфирные экстракты, как и летучие

Характеристика процесса окисления

Показатель	Этап окисления									
	A	-	an line a	Б		T. Star				
	Ступень окисления									
	I	II	III	IV	V	VI	VII			
Расход KMnO ₄ , г	8,25	2,75	2,75	2,75	2,75	2,75	2,75			
Выход окислен- ного продукта (ОП), г	2,58			2,6	9	3,5	7			
Соотношение КМрО ₁ /ОП	5,3266		4,0847		2,7717					
Показатель	Этап окисления									
CHEROLOGICA CHEROLOGICA	B									
	Ступень окисления									
	VIII	IX	Х	ХI	XII	XIII				
Расход KMnO ₄ , г	2,75	2,75	1,80	1,40	0,70	0,50				

с водяным паром кислоты, содержат низкомолекулярные продукты (НМП) окисления керогена. Ацетоновые экстракты содержат так называемые полифункциональные кислоты (ПФК). Они более высокомолекулярны и считаются первичными продуктами деструкции керогена. Некоторые авторы предполагают, что НМП получаются в результате дальнейшего окисления ПФК [7].

После 13-й ступени окисления осталось 0,7348 г неокисленного продукта, содержащего 0,6171 г ОВ со следующим элементным составом, % на *daf*: C 61,86, H 6,27.

Из фракций I, II, III и V обработкой 1М NaHCO₃ выделяли кислоты, которые после метилирования диазометаном исследовали газовой хроматографией (ГХ) и ГХ-масс-спектрометрией (ГХ-МС) [5]. Щавелевую кислоту определяли титрованием. Ацетоновые экстракты из растворимых (ПФК IV) и нерастворимых (ПФК VI) в кислой среде продуктов исследовали ИК- и ¹Н ЯМР-спектроскопией.

Таблица 2

Характеристика низкомолекулярных продуктов (НМП)

Этап окисления	Выход НМП								Содержание	
	По фракциям		II + III		V		Общий		кароок- сильных групп	
	I						ALIT			
	a	б	а	б	a	б	а	б	а	б
A	0,10056	4,18	0,0951	69,60	0,0242	17,76	0,0115	8,45	0,1366	53,65
В	0,0083 0,0110	6,13 6,05	0,0876 0,0772	64,80 42,40	$0,0348 \\ 0,0905$	25,77 49,60	$0,0044 \\ 0,0036$	3,29 1,94	$0,1351 \\ 0,1823$	50,87 51,80

Примечание. а — г/г ОВ, б — % от НМП.

Состав эфирных экстрактов после обработки их двууглекислым натрием, %

Фракции	Этап окисления									
	A		Б		В					
	С	Н	С	Н	C	Н				
II +III V	88,49 69,92	$11,51 \\ 30,08$	85,25 67,97	14,75 32,03	87,12 67,92	12,88 32,08				

Примечание. С — свободные кислоты, Н — нейтральная часть.

Обсуждение результатов

В результате 13-ступенчатого окисления было деструктировано 92,78% исходного углерода. 90,1% из него содержалось во фракциях I—VI, представляющих ОП. Израсходованное количество KMnO₄ — 34,65 г. ОП распределяется приблизительно поровну между НМП и ПФК на всех этапах окисления. Содержание отдельных фракций НМП изменяется с углублением процесса окисления (табл. 2). Количество щавелевой кислоты и эфирных экстрактов II

Компонентное распределение дикарбоновых (a) и монокарбоновых (δ) кислот по этапам

и III уменьшается, а количество эфирного экстракта V увеличивается. В табл. З представлен состав эфирных экстрактов после обработки NaHCO₃. Соотношение кислые/некислые продукты одинаково на всех этапах.

Таблица 4

Содержание бензолкарбоновых кислот в продуктах окисления сланца, % на ОВ							
Кислоты	Этап он	Всего					
nutos semio rN. ma	A	Б	В	need of			
Бензойная	0,16	0,08	0,03	0,27			
Фталевые	0,44	0,45	0,44	1,33			
Бензолтрикарбоновые	0,27	0,37	0,19	0,83			
Бензолтетракарбоновые	0,26	0,16	0,13	0,55			
Бензолпентакарбоновая	0,02	0,02	0,04	0,08			
Меллитовая	0,02	0,03	0,03	0,08			
Ντοτο	1,17	1,11	0,86	3,14			
				Таблица			

Выход полифункциональных кислот (ПФК)

Эта п окисления	Фракция	п ПФК	Итого			
	IV					VI
	a	б	a	б	a	б
A	0,1016	84,92	0,0178	15,08	0,1194	46,35
Б	0,0712	54,57	0,0593	45,43	0,1305	49,13
В	0,0231	13,57	0,1468	86,43	0,1699	48,20
Всего	0,1959		0,2239		0,4198	

Примечание. а — г/г ОВ, б — % от ПФК.

ГХ и ГХ-МС анализ кислот фракций II, III и V показал присутствие в них дикарбоновых (ДКК) и монокарбоновых (МКК) кислот нормального строения, а также бензолкарбоновых кислот (БКК).

ДКК составляют основную часть исследованных фракций (общее количество — 19,92% от ОВ). Содержание щавелевой и малоновой кислот сильно уменьшается с углублением процесса окисления, а

Рис. 3 ¹Н ЯМР-спектры полифункциональных кислот IV (*a*) и VI (*б*) распределение остальных кислот почти одинаково для всех этапов (рис. 2, *a*). Содержание кислоты C_{12} максимальное. Длина углеводородной цепи образовавшихся кислот увеличивается — на третьем этапе до 25 углеродных атомов против 22 на первом. МКК (1,03% от OB) равномерно распределены по этапам. Компонентное распределение сходное (рис. 2, δ). Содержание кислоты C_{14} — максимальное. Кислоты с самыми длинными цепями получаются на первом этапе. Содержание БКК — 3,04% от OB. По этапам оно уменьшается. Идентифицированы все члены гомологического ряда (табл. 4).

Интересно распределение ПФК по этапам. Их общее количество сохраняется, но содержание ПФК IV сильно уменьшается по отношению к общему количеству ПФК. Почти так же увеличивается и содержание ПФК VI (табл. 5). Между ПФК IV и ПФК VI наблюдаются существенные различия. ¹Н ЯМР-спектры ПФК IV трех этапов близки. Основное количество водорода находится в CH₃- и CH₂-группах, связанных с ароматическим кольцом, а также в фенольных группах — при обработке $Д_2$ О полосы поглощения в области 6,5—9 м. д. смещаются (рис. 3).

ИК-спектры фракций трех этапов очень похожи и подтверждают их ароматическую структуру (рис. 4, *a*). Основные полосы поглощения — в областях 1630 см⁻¹ (ароматические С—С связи), 1735 см⁻¹ (карбоксильные группы), 3300—3600 см⁻¹ (ассоциированные ОНгруппы). ¹Н ЯМР-спектры ПФК VI (рис. 3) указывают на минимальное содержание ароматически связанного водорода (5%) и преобладание водорода, связанного в алифатических группах. ИК-спектры содержат полосы в областях 1465 см⁻¹, 2800 см⁻¹ (алифатические структуры), 1730 см⁻¹ (карбоксильные группы) и 3300—3600 см⁻¹ (ассоциированные ОН-группы) (рис. 4, δ).

ПФК IV выделяются уже на первых ступенях деструкции керогена. Тогда же выделяются щавелевая кислота и БКК. Они вероятно получаются в результате деструкции ПФК IV. По данным А. И. Камневой, БКК наиболее часто получаются при деструкции фенольных групп, а, как уже отмечалось, они содержатся в ПФК [7]. Видимо, фенольные группы имеются в исходном веществе. Деструкция ПФК VI приводит к получению *н*-а, ω-ДКК и *н*-МКК. Резкое увеличение количества этой фракции с углублением окислительного процесса указывает на то, что эти ПФК составляют ядро керогена.

Таблица 6

Температура окисления	Продукт	окисления	Неокисленный		
	HMII	ΠΦΚ Ιν	ПФК VI	CO	углерод
Комнатная 65°С	$48,45 \\ 52,31$	14,13 4,61	27,41 17,10	2,79 23,77	7,22 2,21

Распределение окисленного углерода ОВ сланца в продуктах окисления, %

Если сравнить эти данные с результатами, полученными при окислении щелочным раствором перманганата калия при 65°С [4], можно отметить некоторые различия (табл. 6):

— расход перманганата калия на получение 1 г ОП при комнатной температуре меньше (3,94 против 4,6 г/г);

— выход П Φ К VI выше, а выход CO₂, выделенного в процессе окисления при комнатной температуре, намного ниже, чем при 65°C;

— выход МКК и БКК в 5 раз выше;

— общее содержание ДКК, полученных при высокотемпературном окислении, больше, однако только за счет щавелевой и малоновой кислот; остальных ДКК больше в продуктах окисления, полученных при комнатной температуре. Максимальная длина углеводородной цепи также больше при окислении при комнатной температуре (соответственно 25 и 20 атомов углерода).

Выводы

1. В результате окисления керогена перманганатом калия при комнатной температуре достигнута глубокая деструкция ОВ до кислых продуктов (90% от исходного углерода) и получен минимальный выход газообразных продуктов окисления по сравнению с окислением при 65°C. Это дало возможность исследовать бо́льшую часть OB.

2. Проведение окислительного процесса при комнатной температуре позволяет в большем количестве выделить и лучше исследовать первичные продукты (ПФК) деструкции ОВ, особенно ароматические структуры, а также сделать более точные выводы о структуре ОВ. 3. При низкотемпературном окислении концентрации МКК, ДКК и БКК выше, а углеводородные цепи длиннее. Эти данные дают более реальное представление о химической природе и строении макромолекул, в том числе — о длине полиметиленовых цепей алифатической части керогена.

4. Состав П Φ К IV и VI и продуктов их деструкции постоянен на всех этапах, несмотря на то, что их количество меняется.

ЛИТЕРАТУРА

- 1. Vitorović D., Djuričić M. V., Ilić B. Adv. Org. Geochem., 1973, p. 179. (Proc. 6th Intern. Meet. Org. Geochem., Sept. 18-21, 1973, France).
- 2. Ангелова Г., Будинова Т. Изв. хим. Бълг. АН, 1979, XII, кн. 3, с. 484.
- 3. Ангелова Г., Будинова Т. Изв. хим. Бълг. АН, 1979, XII, кн. 2, с. 259.

- 4. Ангелова Г., Будинова Т., Развигорова М. Химия тв. топлива, 1982, № 3, с. 106.
- 5. Развигорова М., Ангелова Г. О составе и структуре органического вещества сланцев месторождения Красава. 1. Исследование состава кислот, содержащихся в битумоидах, и характера их связей. — Горючие сланцы, 1984, 1, № 2, с. 119—125.
- 6. *Развигорова М., Ангелова Г.* О составе и структуре органического вещества горючих сланцев месторождения Красава. 2. Продукты омыления керогена и их связь с минеральными компонентами. Горючие сланцы, 1984, 1, № 3, с. 238—242.
- 7. Камнева А. И. Химия горючих ископаемых. М., 1974.

Институт органической химии Болгарской академии наук г. София Представил А. Я. Аарна Поступила в редакцию 29. 11. 1984

M. S. RAZVIGOROVA, T. K. BUDINOVA, G. K. ANGELOVA

STUDY OF THE COMPOSITION AND STRUCTURE OF THE KRASSAVA OIL SHALE ORGANIC MATTER 3. STEP-LIKE OXIDATION OF ORGANIC CONCENTRATE WITH ALKALINE POTASSIUM PERMANGANATE

Thirteen-step alkaline permanganate degradation of Krassava oil shale kerogen concentrate at ambient temperature is carried out. A high total yield of oxidation products (90.1%) and minimum yield of gaseous products (2.79%) are obtained. It is shown by IR- and ¹H NMR-spectroscopy that two significantly different types of high molecular products are available. Further oxidation of these initial structures leads to low molecular acids, proved by gas chromatography (GC) and GC-mass spectrometry. The date obtained under such mild conditions permit to get a real idea both about the aromatic structures and polymethylene chain lenghts in the kerogen macromolecule.

Bulgarian Academy of Sciences, Institute of Organic Chemistry Sofia