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Abstract. This article investigates a potential for using models based on 
infrared spectra to predict basic thermodynamic properties of narrow boiling 
range oil fractions or pseudocomponents. The work took advantage of the 
simultaneous availability of a property database of narrow boiling range 
fractions of Kukersite oil shale retort oil (from the industrial retorting process) 
together with infrared spectra of these fractions. The work was based on the 
hypothesis that the models based on infrared spectra could potentially be used 
to reduce experimental data when developing other predictive methods, or 
even as a substitute for other prediction methods. In this study four basic oil 
properties, which are often used to predict other thermodynamic properties, 
were predicted from infrared spectra using support vector regression. These 
were specific gravity, refractive index parameter, average boiling point and 
molecular weight. According to bulk property prediction approach these 
selected properties can be grouped into energy parameters (two former) and 
size parameters (two latter). It was found that, for distillation fractions with 
varying compositions, both the energy parameters (specific gravity, refractive 
index) as well as the size parameters (molecular weight, average boiling point) 
can be predicted from Fourier transform infrared (FTIR) spectra, and that the 
accuracy of the predictions based on infrared spectra was comparable with 
the accuracies of petroleum bulk property correlations. Thus, infrared spectra 
can provide a convenient alternative in the thermodynamic property prediction 
field because they can be easily measured and correlated to a wide variety of 
properties.

Keywords: property prediction, FTIR spectroscopy, oil, liquid fuel, shale oil, 
chemometrics.
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1. Introduction

The thermodynamic and physical properties of oils are required so that 
chemical-physical processes can be designed or evaluated, both in terms of the 
plant and in the environment [1–3]. For pure compounds and simple mixtures, 
for which the complete composition can be known, the properties for each 
compound can be specifically designated. However, for complex undefined 
mixtures of unknown composition, such as oils from various resources like 
petroleum, biomass, coal, or oil shale, simplifications are required to various 
degrees. For these materials empirical correlations which are based on bulk 
properties are historically applied [4–6]. These correlations are usually based 
on commonly measured characteristic properties of the oil’s narrow boiling 
range fractions (distillation cuts), which are referred to as pseudocomponents, 
such as their specific gravity, viscosity, molecular weight, or average boiling 
points from distillation curves. The specific property of a pseudocomponent 
can be predicted, depending upon system complexity, from one or more other 
properties using suitable regression equations. For conventional oil cuts with 
average boiling points below 350 °C regression equations with following 
general forms are often proposed [4]:

					            ,			   (1)

.                         (2)

Equations (1) and (2) contain the property θ that is to be predicted, with θ1 
and θ2 being the two input parameters (or properties from which the property 
θ is to be predicted), and a to f are empirically derived regression constants. 
For heavier or more polar substances these two parameter equations may not 
be suitable [4]. Therefore those correlations which supply accurate results 
for a range of oils (for oil cuts with boiling points of up to 350 °C), and 
which are used in process simulators, are usually based on at least two input 
parameters: preferably one describing molecular size (such as carbon number, 
molecular weight, average boiling point), and the other describing molecular 
energy (such as specific gravity, refractive index, hydrogen-carbon ratio) [4]. 
While the deviation of properties into molecular size and molecular energy 
parameters is quite tentative, the approach still serves to emphasise the 
fact that molecules which are of a similar size (described, for example, by 
properties such as carbon number, molecular weight, or average boiling point) 
can involve components of various structure classes (such as, for example, 
in the case of conventional petroleum, a grouping into paraffins, naphthenes, 
or aromatics is often used). Therefore a variation exists in terms of property 
values. To be able to develop these bulk property correlations a large amount 
of experimental data are needed; however, experimental measurements are 
often time consuming and expensive.
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Our own laboratory’s work with Kukersite oil shale retort oil was what 
initially led us to investigate infrared-based prediction methods. The Kukersite 
oil shale retort oil is a synthetic crude oil which is produced from Estonian 
Kukersite oil shale by pyrolysis or retorting [7, 8]. As with many alternative 
liquid fuel sources, shale oils manufactured from different sources have 
compositions that are more or less different from those of most conventional 
petroleum crudes [9]. As an example, the shale oil that is manufactured via 
retorting from Kukersite oil shale has a high content of oxygen-containing 
compounds, with the largest portion being phenolic compounds [10, 11]. For 
this reason physical/thermodynamic property correlations, which have been 
developed based on petroleum fuels, may give worse results for Kukersite 
shale oil than would be required in applications.

In the process of finding approaches that provide the desired accuracy, 
we began investigating the potential for using correlations that are based 
on infrared spectra to support the development of bulk property prediction 
methods for the thermodynamic and/or physicochemical properties of oil cuts. 
The initial practical idea was to use the Fourier transform infrared (FTIR) 
method to measure and/or predict structural characteristics (especially the 
amount/concentration of phenolic OH groups [11]); however, it was later seen 
as a convenient tool for detecting random experimental measurement errors 
(identifying outliers) for all measured properties or to help reduce the amount 
of experimental data that would otherwise be needed to develop predictive 
bulk property correlations. The current paper is the third on this topic to 
have been issued from our laboratory. Application options in regard to the 
FTIR-based multilinear regression approach in order to be able to determine 
structure characteristics (such as hydroxyl concentrations in narrow boiling 
shale oil cuts [11]), and to determine temperature-dependent properties with 
linear temperature dependence (such as the density temperature dependence 
of narrow boiling shale oil cuts [12]), have been presented in earlier articles 
that have been published by this laboratory. Although the use of FTIR together 
with multilinear regression is a common tool for the property evaluation of 
various materials [13–15], using this approach as a thermodynamic property 
prediction tool – the current area of interest – has never previously been 
emphasised to our knowledge. The most likely reason is the unavailability of a 
suitable database which simultaneously involves quantitative information on 
thermodynamic properties and FTIR spectra for oil distillation cuts (narrow 
boiling range fractions). There is also an additional restriction that could have 
reduced interest in the wider scientific community when it came to predicting 
thermodynamic properties that can be obtained from FTIR spectra. This means 
that some form of standardisation or calibration transfer is needed to be able 
to use correlations on another spectrometer and, therefore, permit them to be 
used by other teams.

In this paper we take experimental property data for over two hundred 
Kukersite shale oil fractions, together with their FTIR spectra, and investigate 
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the use of FTIR-based models to predict the basic temperature-independent 
thermodynamic properties, with an emphasis on predicting so-called ‘size 
parameters’. In this article we focus on four basic properties that are commonly 
used in characterising oils from the point of view of thermodynamic property 
prediction: the specific gravity, the refractive index parameter (which is 
calculable from the refractive index [16]), the average boiling point, and the 
average molecular weight. Although the specific gravity and the refractive 
index are temperature-dependent properties, they are often measured at a 
single standard temperature and are used as a characteristic parameter. In this 
sense, these properties at a specified temperature are temperature-independent 
properties. As infrared spectra contain information about the molecular 
structure of the sample and do not directly contain information about the size 
of the molecules in the sample, the current work was driven by our initial 
interest to evaluate whether at all, or how well, FTIR-based models can 
predict so-called ‘molecular size’ parameters such as molecular weight and 
average boiling point. Application for FTIR-based models when it comes to 
density and refractive index as properties of fuels (here grouped into energy 
parameters) can be found in the available literature [12].

2. Experimental methods

2.1. Sample preparation

The oil shale retort oils used for this study were obtained from Eesti Energia’s 
Narva Oil Plant (Narva, Estonia). This plant uses the solid heat carrier retorting 
method (called the Galoter process) [17, 18]. Some additional information 
on the Kukersite oil shale, the processes occurring during pyrolysis and 
characteristics of the resulting oil can be found from the literature [10, 11, 
19–25]. At the plant oil is separated into wide technical fractions as a product 
(currently typically into shale gasoline, fuel oil, and heavy oil). Mainly 
gasoline and fuel oil samples (technical fractions) from the plant were used for 
this study. The wide technical fractions from the plant were further separated 
into narrow boiling fractions via distillation, either by simple distillation 
or rectification, at our laboratory. However, most distillations were simple 
batch distillations that were carried out either at atmospheric pressure (using 
an Engler distillation [26]), and/or in a vacuum. Additional information on 
experimental settings and procedures can be found in: rectification [22, 27] 
and simple distillation [23, 28] of gasoline; rectification [27, 29] and simple 
distillation [28] of fuel oil.

To increase diversity, wide technical fractions were obtained from different 
plants that use different oil shale processing regimes and were taken at multiple 
times over the course of three years. Additionally, to map/screen trends, some 
fuel oil technical fractions (or their distillation cuts) were artificially adjusted via 
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extraction and/or mixing. For this purpose, the samples were separated into phe-
nolic and neutral fractions using extraction with a 10% NaOH solution [10, 11]. 
In this manner additional fuel oil samples were created that had lower and 
higher contents of phenolic compounds than the original samples themselves 
(with hydroxyl contents ranging from about zero to 10 wt% OH).	

The number of samples, mostly narrow boiling range fractions (or cuts) 
that were used in this FTIR-based models study, amounted to 355 for specific 
gravity, 327 for refractive index parameter, 229 for average boiling point, and 
277 for number average molecular weight. It should be noted that although 
the property data that was used in this study covers a wide range of property 
values (such as boiling points between 350–670 K or 80–400 °C; a refractive 
index parameter between 0.34–0.45; specific gravity between 0.7–1.10; and a 
molecular weight between 70–450 g/mol), not all data would be reliable for the 
development bulk property correlations of desired accuracy. On one side, this 
is due to the observation that, during sample preparation to the narrow boiling 
range cuts, in the case of higher boiling fractions the applied temperature-time 
history of distillation could have resulted in a thermal decomposition-based 
chemical alteration (i.e. resulting in systematic anomalies). In addition, on 
the other side, artificially adjusted samples may not be the best choice for 
developing reliable bulk property correlations as the artificial adjustment of 
the oil’s nature could have resulted in unreliable changes taking place (i.e. 
causing some systematic anomalies). However, in order to increase diversity, 
we have included in database for the development of FTIR-based models 
the properties of the aforementioned fractions of somewhat questionable 
representative quality. Although not all of the data can be used for developing 
or evaluating bulk property correlations, they are still valuable for the purposes 
of this study – to evaluate the potential of applying FTIR-based methods.

2.2. Property measurements

The methods and devices that have been used for measuring the properties 
(density, refractive index, average boiling point, average molecular weight), 
together with estimated standard uncertainties for the purpose of this study, 
are summarised in Table 1 and given in more detail below.

2.2.1. Density

The density at 20 °C was measured using an oscillating tube density meter 
(DMA 5000 M, Anton Paar GmbH) equipped with a heating attachment that 
heats the sample at the unit’s inlet to lower the viscosity. The performance 
of the device was checked using distilled water and air. Based on repeat 
measurements of selected narrow boiling range fractions the standard 
uncertainty was estimated to be roughly 0.00015 g/cm3. The uncertainties for 
the heavy samples may be slightly greater than those of the lighter fractions. 
For heavier samples, due to their higher viscosity, several densities were 
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measured at higher temperatures, and a density at 20 °C was then calculated 
from the linear temperature dependence [12].

2.2.2. Refractive index parameter

The refractive index at 20 °C was measured at 589.592 nm using an Abbemat 
HT refractometer (Anton Paar GmbH). Performance was checked before and 
after each set of measurements and was carried out using distilled water. From 
repeat measurements of selected narrow boiling range fractions the standard 
uncertainty was estimated to be 0.0011 (with an expanded uncertainty of 
0.0021 at a level of 95%). The refractive index parameter was calculated from 
the refractive index at 20 °C using the equation given by Huang [16]:

 (3)

where I is the refractive index parameter and n is the refractive index at 20 °C.

2.2.3. Average boiling point

The average boiling points for the samples were measured by means of a 
thermogravimetric analyser based method [27–29]. The accuracy of this 
method was evaluated using measured oil narrow boiling range fractions that 
had been obtained by Rannaveski et al. [27] according to the ASTM D2892 
standard. Based on these fractions, the standard method uncertainty of 2.1 °C 
(with an expanded measurement uncertainty of 4.3 °C at 95%) is used here 
[27].
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Table 1. Methods used for measuring the properties of shale oil samples

Property Measurement method (device) Estimated standard 
uncertainty

Density Oscillating tube density meter  
(Anton Paar DMA 5000 M) 0.00015 g/cm3

Refractive index Refractometer (Anton Paar Abbemat HT) 0.0011

Average boiling 
point

Thermogravimetric analyser based method, the 
method developed in-house (Du Pont 951) 2.1 °C

Average molecular 
weight

Cryoscopy, ASTM D2224 standard 
(device built in house)

Vapor pressure osmometer 
(Osmomat 070 or Knauer K-7000)

7 g/mol
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2.2.4. Molecular weight

The average molecular weight was measured using mainly two different 
methods: cryoscopy (built in-house, as in the ASTM D2224 standard) and 
vapour pressure osmometry (Osmomat 070, Gonotec GmbH or later in the 
project Knauer K-7000, Knauer GmbH). Benzene was used as a solvent 
for the cryoscopy and was also used mainly in osmometric measurements. 
For both methods calibration was carried out using solutions of benzyl with 
known concentrations. Standard uncertainties were calculated based both upon 
the accuracy of the calibration and tests with pure compounds. The relative 
expanded uncertainty (at the 95% level) was determined to be between ±6 
and ±7%, for a single method (device). As for fractions, the uncertainty was 
smaller for fractions with lower molecular weights and larger for heavier 
fractions. When taken on average, the absolute standard uncertainty of 7 g/mol 
(an absolute expanded uncertainty of 14 g/mol at the level of 95%) can be 
used here.

2.3. Infrared spectral measurements

Infrared spectra were measured using a Fourier transform infrared spectrometer 
that was fitted with an attenuated total reflection (ATR) measurement accessory. 
A single reflection ZnSe crystal was used. The spectrometer was an Interspec 
301-X portable mid-infrared spectrometer (Interspectrum OÜ). The spectra 
were measured over the range of 700 to 4000 cm–1 at a resolution of 1 cm–1. 
A cosine apodisation was used (cos(0.5∙π∙x)∙(cos(0.5∙π∙x))2). Ten scans were 
taken and averaged together to produce the spectrum. Baseline correction was 
carried out by fitting a third order polynomial to regions in which shale oil 
does not absorb (2000–2200 and 3700–4000 cm–1).

2.4. Multivariate regression

Regression was carried out using support vector regression, which was 
implemented in Python (version 2.7) using the Scikit-learn package (version 
0.15) [30]. A mixed kernel was used, which combined the polynomial and 
radial basis function kernels using a single weighting parameter [31]. The 
regression parameters were optimised by minimising the five-fold cross 
validation error using the SciPy differential evolution solver [32, 33].

To make spectra more comparable to those from different instruments, with 
the hope of creating models that could be used on a wider range of instruments, 
the spectra were pre-processed. First, the spectra were transformed to remove 
the wavelength dependence that is inherent in ATR spectra, and therefore 
to make them  more like a transmission spectrum. This was done using the 
algorithm that was presented by Bertie et al. [34] and Bertie and Lan [35]. 
Then, because the first half of the spectra contained most of the chemical 
information, the region above 1800 cm–1 was removed. After this the standard 
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normal variate transformation was applied to the spectra, in which each 
spectral data point is offset by the mean of the spectrum and is then divided by 
the standard deviation of the variation in absorbance values. Regression was 
carried out using these pre-processed spectra.

The residuals of the models were used to detect outliers. If it was possible, 
then infrared spectra and the properties of outlying samples were re-measured, 
and this allowed some measurement errors to be identified and corrected. 
Some samples could not be re-measured due to the limited volume of the 
sample, so errors in the experimental data could also account for some of the 
outliers that were observed.

2.5. Error statistics

For FTIR models, four error statistics were calculated from the cross validation 
values in order to evaluate performance of models: root mean squared error 
(RMSE), average absolute deviation (AAD), average absolute relative 
deviation (%AAD), and the Pearson correlation coefficient squared (R2):
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where, in Equations (4) to (7), the value θpred is the predicted property value (found during cross 
validation), θactual is the actual property value and n is the number of data points. 
 
 
3. Results and discussion 

 
The accuracy of the predictions for each of the four parameters can be visualised from Figure 1, 
which shows the residual (the difference between the measured value and the predicted value) for 
each property of each sample when it was part of the cross validation set. Figure 1 indicates that 
while there is quite a random fluctuation of residuals of the predicted values (quite a symmetrical 
distribution with no clear trends), the fluctuations pattern varies somewhat between those 
properties that were investigated. As the same infrared spectra were used for all of the property 
models, then it is reasonable to expect that the effect of inaccuracies in the infrared spectra likely 
had a similar impact on the residuals of predicted values across the different properties. Therefore 
the experimental property accuracy (measurement accuracy) and the strength of the correlation 
between spectra and the property are the most likely factors that could lead to any differences. 
Figure 1 also shows that several samples have quite large residuals (points that are much farther 
from other points). The majority of these outliers were more of the property specific type, but a 
minority of the outliers had large residuals across all of the four properties, which suggests that 
the sample preparation may have resulted in fractions with less common chemical compositions. 
The residuals for average boiling point provide a good example of the latter: there are two samples 
with boiling points of about 600 K that have residuals of more than 30 K. These two samples, and 
about five or six others, had consistently large residuals across all of the four properties. 

More details about the models are given in Table 2, including error statistics such as root 
mean squared errors, average absolute deviations, and relative mean deviation for each property. 
Table 2 reveals that somewhat better predictions are obtained for the specific gravity and the 
refractive index parameter than for the average boiling point and the average molecular mass. This 
makes sense because the specific gravity and the refractive index parameter are quantitatively more 
closely related to the types of bonds (functional groups) in the mixture (which is the information 
that an infrared spectrum gives). At the same time, the measurement-related standard uncertainties 
in Table 1 indicate that the experimental data for these properties were more accurate than was the 
experimental data for average boiling point and molecular weight. The uncertainty ratios for 
predicted/measured values (predicted as RMSE and measured as standard uncertainty) for these 
four properties were as follows: 31 for specific gravity, 2.9 for refractive index parameter, 3.3 for 
average boiling point, and 1.7 for molecular weight. The comparison of uncertainty ratios for the 
predicted values and measured values, especially those of the refractive index parameter and the 
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Fig. 1. Residuals of the predicted values for samples as part of the cross validation set.



29Multivariate models based on infrared spectra as a substitute for oil property correlations ...

part of the cross validation set. Figure 1 indicates that while there is quite a 
random fluctuation of residuals of the predicted values (quite a symmetrical 
distribution with no clear trends), the fluctuations pattern varies somewhat 
between those properties that were investigated. As the same infrared spectra 
were used for all of the property models, then it is reasonable to expect that 
the effect of inaccuracies in the infrared spectra likely had a similar impact 
on the residuals of predicted values across the different properties. Therefore 
the experimental property accuracy (measurement accuracy) and the strength 
of the correlation between spectra and the property are the most likely factors 
that could lead to any differences. Figure 1 also shows that several samples 
have quite large residuals (points that are much farther from other points). 
The majority of these outliers were more of the property specific type, but a 
minority of the outliers had large residuals across all of the four properties, 
which suggests that the sample preparation may have resulted in fractions with 
less common chemical compositions. The residuals for average boiling point 
provide a good example of the latter: there are two samples with boiling points 
of about 600 K that have residuals of more than 30 K. These two samples, and 
about five or six others, had consistently large residuals across all of the four 
properties.

More details about the models are given in Table 2, including error statistics 
such as root mean squared errors, average absolute deviations, and relative mean 

Table 2. Errors and model parameters for each of the multivariate models 
created based on infrared spectra

Specific gravity 
(20/20)

Refractive index 
parameter

Boiling point Molar mass

RMSE 0.00506 0.00186 8.1 K 12.2 g/mol

AAD 0.00344 0.00117 5.8 K 8.24 g/mol

%AAD 0.36 % 0.29% 1.07% 3.42 %

R2 0.9963 0.9938 0.9879 0.9769

Property range 0.714–1.102 0.339–0.449 350–670 K 80–435

Number of samples 355 327 229 277

R
eg

re
ss

io
n 

pa
ra

m
et

er
s

C 88.27799 0.2313152 0.5626782 30.87789

ε 0.0001976886 0.02136228 0.007404886 0.01527662

γ 0.2634851 0.6102149 0.9954894 0.007116409

Degree 3 3 2 2

Zero coefficient 2.134564 1.871514 3.419010 0.8006127

Mixing coefficient 0.8034127 0.9270210 0.8509057 0.8523829
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deviation for each property. Table 2 reveals that somewhat better predictions 
are obtained for the specific gravity and the refractive index parameter than 
for the average boiling point and the average molecular mass. This makes 
sense because the specific gravity and the refractive index parameter are 
quantitatively more closely related to the types of bonds (functional groups) in 
the mixture (which is the information that an infrared spectrum gives). At the 
same time, the measurement-related standard uncertainties in Table 1 indicate 
that the experimental data for these properties were more accurate than was 
the experimental data for average boiling point and molecular weight. The 
uncertainty ratios for predicted/measured values (predicted as RMSE and 
measured as standard uncertainty) for these four properties were as follows: 31 
for specific gravity, 2.9 for refractive index parameter, 3.3 for average boiling 
point, and 1.7 for molecular weight. The comparison of uncertainty ratios for 
the predicted values and measured values, especially those of the refractive 
index parameter and the average boiling point, indicate that model accuracy 
was not only limited by the measurement accuracy of the experimental data, 
but was also dependent upon property, more or less, by factors that served to 
influence correlations between infrared spectra and properties. For example, 
the measurement method for density had a very low level of uncertainty, and 
the high ratio here suggests that accuracy was not limited by the accuracy of 
the experimental data, but instead by other factors.

As infrared spectra contain information about the molecular structure of 
the sample and do not directly contain information about the size of molecules 
in the sample, the current work was driven by our initial interest in evaluating 
how well, if at all, FTIR-based models can predict ‘molecular size’ parameters 
for narrow boiling range oil fractions (or pseudocomponents) that are prepared 
by distillation. As can be seen from Figure 1 and Table 2, when it comes 
to the distillation fractions, FTIR models can reliably predict ‘molecular 
size parameters’ (parameters that are more strongly related to the size of 
the molecules rather than to the types of bonds or functional groups in the 
mixture). Moreover, their values are quite accurately predicted. Therefore, in 
order to be able to accurately predict molecular size-related properties, as seen 
in this work, there should exist some form of indirect relation between these 
properties and infrared spectra. In this regard, it was observed that there are 
systematic changes between the infrared spectra [11, 36] in the collected series 
of fractions with narrow boiling ranges (i.e. occurring from the first fraction to 
the last fraction collected). These systematic changes that accompany changes 
in the boiling point of the samples are likely to be what supplies the additional 
information that is necessary for predicting molecular size properties.

The performance of the models from a practical point of view can also be 
checked by viewing the results for sequential fractions from a single simple 
batch distillation. For most of the fractions the difference between model and 
measured values is smaller than the difference between subsequent fractions. 
That is, the infrared models, both for ‘energy parameters’ and ‘size parameters’, 
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can generally distinguish between two fractions. This is illustrated in Figure 2 
where specific gravity (as an energy parameter) and average boiling point (as 
a size parameter) are evaluated for a selected distillation. However, Figure 2 
shows one additional performance-related indication between ‘energy para
meters’ and ‘size parameters’ (a tendency that was generally more or less 
observable). In this exemplary distillation, at the point at which the distillation 
pressure was reduced from atmospheric pressure to low pressure, there is an 
inflection point in the overall trend (the drop in property values). It can be seen 
in Figure 2 that the average boiling point model had larger errors for these two 
samples at the inflection point, but the density model could better account for 
this anomaly. This makes sense when supporting the view that the average 

Fig. 2. Comparison of the performance of the average boiling point model and 
the specific gravity model for fractions from a typical distillation. For the average 
boiling point, the experimental error bars are data point sizes. For the specific gravity, 
experimental error bars are smaller than the data point.
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boiling point prediction from FTIR spectra could for the most part rely on 
systematic changes in FTIR spectra from fraction to fraction (something 
which could be related to changes in the types and concentration of bonds 
in the sample), but specific gravity predictions from FTIR spectra could rely 
both on systematic changes from spectra to spectra and the structure-related 
information of the specific spectra. Therefore, the correlation between a 
property and spectra could be more direct for some properties than others, 
but the spectra of distillation cuts can both directly and indirectly contain 
significant amounts of information which will help to predict the property.

Finally, whether or not the accuracy of the FTIR-based models (brought 
out in Table 2) is sufficient depends upon the desired application, and for 
calculations with a small tolerance for error it may still be preferable to 
measure the value experimentally. However, based on values for AAD and 
%AAD, the accuracies are at the same level as those that have been stated 
for petroleum correlations (bulk property correlations useable in process 
simulators) [4]. It is to note here that the accuracy of the current FTIR study 
and those petroleum bulk property correlations that are currently available are 
not directly comparable in terms of the number of data points, the variability 
of samples, and the chemical nature of samples being used for correlations. 
Still, for indicative purposes alone, the fact can be highlighted here that, for a 
specific gravity, the current FTIR model had an AAD that was about half that 
of the bulk property correlations for conventional oils. However, at the same 
time, some of the petroleum bulk correlations for molecular weight had better 
levels of accuracy than did the current FTIR model, but these correlations were 
for a narrower range of molecular weights. At the same time, the molecular 
weight correlations that included the heavier fractions (as the regression that 
was based on FTIR spectra did) had significantly higher AADs. In addition, 
in a literature review of the use of multivariate regression for fuel property 
prediction [4], we found that other researchers have also created models for 
some of these parameters for other fuels and have achieved similar or better 
levels of accuracy. So it appears that in specific cases multivariate models have 
been shown to have levels of accuracy that are as good (or even better) than 
corresponding petroleum correlations that are based on physical properties. 
Finally, it should be noted that this article only looked at the implementation 
of the FTIR based models, however, data fusion from different analytical 
sources, such as FTIR and NMR, has shown an improvement in the ability to 
estimate some physico-chemical properties of crude oils when compared to a 
single analytical technique [37].

4. Conclusions

In this study an investigation was carried out into the potential for using 
predictive models based on infrared spectra to predict four basic oil parameters 
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(specific gravity, refractive index parameter, average boiling point, and average 
molecular weight) in terms of narrow boiling range distillation fractions (or 
pseudocomponents). It was found that, for batch distillation fractions from 
Kukersite oil shale oil of varying compositions, in a way that is similar to 
energy parameters (parameters that are more closely related to the types 
of bonds and functional groups, with these here being the specific gravity 
and the refractive index parameter) the size parameters (parameters that are 
more closely related to the size of the molecules, with these here being the 
molecular weight and the average boiling point) can be reliably predicted from 
FTIR spectra. Therefore the spectra can both directly and indirectly contain 
significant amounts of information which will help to predict the property. 
However, it was also seen that the models gave somewhat better results for 
physical parameters that were related more to the molecular structure than for 
those that were more closely related to the molecular size. For generalization, 
FTIR-based models could be a useful “tool” for both determining/predicting 
various thermodynamic properties and for detecting random experimental 
errors (identifying outliers) of the measured data during a measurement 
project (if the FTIR analysis is included in the project).

Although not directly comparable, the comparison with performance 
parameters of the more commonly used bulk property correlations (which 
have been developed for conventional oils) suggests that predictive models 
that are based on infrared spectra could be used to reduce the experimental 
data required when developing other predictive methods, or even to use as 
a substitute for other prediction methods. Although issues do exist such as, 
for example, over-fitting the data, the problematic transfer of correlations 
to another spectrometer, or the questionable application to samples that are 
not included in the calibration set, thermodynamic and property correlations 
which are based on infrared spectra would still be advantageous to current 
prediction methods in some situations and applications.
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