УДК 553.1:553.973

Ю. И. ГОРЬКИЙ, Г. П. МАКЕЕВА, З. К. ЛУКЬЯНОВА, В. К. ЖУКОВ, А. Л. ДУДКА

СОСТАВ МИНЕРАЛЬНОЙ ЧАСТИ САПРОПЕЛЕЙ ПО ДАННЫМ РЕНТГЕНОФАЗОВОГО АНАЛИЗА

Сапропели — это специфические природные органо-минеральные образования, представляющие интерес как для научных исследований, например при рассмотрении их в качестве аналогов определенной стадии образования органогенных пород сапропелевого типа, так и дл использования в народном хозяйстве [1]. При том, что содержание в них органи еского вещества (ОВ) изменяется в довольно широких пределах, доля минеральной составляющей в сапропелях ве ьма существенна. Цель настоящей работы — изучение минерального состава сапропеле разной степени преобразованности.

Исследовали современные сапропели, извлеченные из оз. Вечер (Минская область), и погребенные, взятые с глубины 18.0-55.8 м по керну скважин, пробуренных на Червонослободской площади той же области Белорусской ССР. Состав их минеральной части определяли химическим и рентгенофазовым анализом. Химический анализ выполняли по ГОСТу 105380-72, рентгенофазовый — а приборе ДРОН-2. Условия съемки: излучение CuK_a , ток трубки 33 м.А., напряжение 30 кВ, графитовый монохроматор, постоянная времени 5 с; диапазон съемки $3-130^\circ$, щели, мм: 100.50000, 100

Обе пробы современных сапропелей (пробы 1 и 2) значительно различаются содержанием оединений железа и кальция; колебания остальных показателей не столь существенны (табл. 1). Погребенные сапропели были выбраны таким образом, чтобы в широком диапазоне и менялись их карбонатность и содержание соединений кремния и

Таблица 1

Характеристика сапролелей

Hpoóa	Сква- жина	Глубина отбора проб, м	Золь- ность, A^d , %	(СО ₂) ⁴ карбонатов, %	Условная органическая масса,	Основные компоненты золы, 0_0 на сухое вещество				
						SiO	Fe ₂ O ₃	Al ₂ O	CaO	Mg()
Совре	менны	лії сапр п	ель							
	оз. Веч	ер	64,9	14,8	20,3	19,1	14,5	0,8	19,1	0,9
2	**		55,0	19,5	25,5	17,2	2,3	1,3	22,1	1,4
Погре	ебеннь	ій сапрэп	ель							
3	4550	18.0 - 22.0	72,7	2,8	24,5	51,8	4,9	4,1	5,5	0,4
4	4903	45.8 - 47.8	76,6	5,6	17,8	49,3	10,5	5,5	5,0	1,3
5	4906	33.0 - 35.0	60,8	27,8	11,4	13,6	8,0	1,3	34,2	0,9
6	4906	31,0-33,0	59,5	28,2	12,3	10,6	7,2	0,5	37,0	1,1
7	4728	43.6 - 45.6	80,5	8,8	10,7	52,9	5,3	3,3	12,3	1,1
8	4903	53.8 - 55.8	70.2	12,8	17.0	35,1	11,6	1,2	13,8	1,2

кальция. Тем самым определился набор кремнеземистых (пробы 3 и 4) и карбонатных (5 и 6) сапропелей, а также их разновидностей (7 и 8) (табл. 1). Наиболее интенсивное отражение в основном наблюдается при углах 2Θ , равных 29.5-29.7 и 26.8° , что соответствует межплоскостным расстояниям в 3.03-3.00 и 3.31-3.33 Å. В зависимости от соотношения кремнеземистой и карбонатной составляющих в неорганической части сапропелей колеблется интенсивнос в соответствующих им основных пиков на рентленограммах (рис. 1).

Из табл. 2 видно, что для погребенных кремнеземистых сапроше ей интенсивный пик на рентгенограмме при угле 2Θ 26,8° обусловлен большим количеством кварца. Пики при углах 2Θ 21,0, 36,2, 39,6 50,5 и 60,2° сопутствуют основному рефлексу кварца. Кроме того в пробе 3 фиксируется присутствие микроклина, имеющего основной рефлекс при этом же угле 2Θ 26,8°, а в пробе 4 — сидерита, что объясняет более высокое содержание оксида железа в ее зольной части.

Погребенные сапропели карбонатного типа имеют характерный пик при угле 2Θ 29.6° и сопутствующие ему пики при углах 2Θ 23.2, 39.6, 43.4, 47.7, 48.7 и 57.6° (рис. 1), что свидетельствует о преимущественном содержании в них кальцита в двух изоморфных модификациях. Рефлексы ми ералов с определяющим межплоскостным расстоянием 3,34 Å в этих пробах несущественны (особенно в пробе 6).

В пробах 7 и 8 пик при угле 2Θ 26,8° по величине приближается к пику при угле 2Θ 29,5—29,7° вследствие уменьшения доли кварца в составе минералов (проба 7) и увеличении доли кальцита (проба 8) как превалирующего среди карбон тных минералов, обнаруженных в сапропелях.

Кроме уже названных минералов, в погребенных кремнеземистых сапропелях обнаружены в небольшом количестве гидратированный сульфат алюминия и кальцит, а в карбонатных и смешанных — силикаты железа, алюминаты, сидерит, а также более сложные карбонаты — тиллеит и хунтит, что определяет соответствующие отклонения в содержании основных компонентов золы сланцев (табл. 1).

Обе пробы современных сапропелей содержат значительное количество карбонатов, и их рентгенограммы имеют обусловленный этим

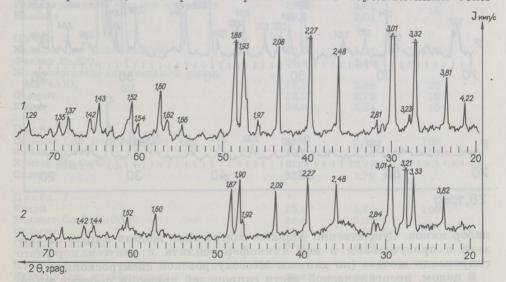
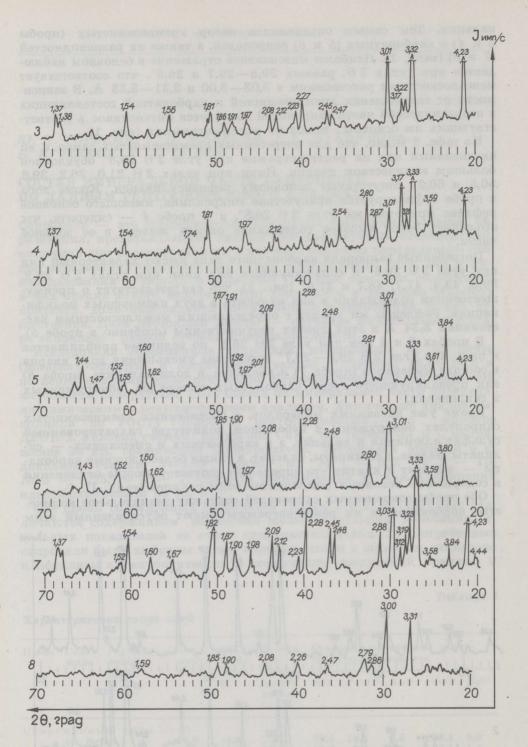



Рис. 1 Рентгенограммы проб современных (1 и 2) и погребенных (3—8) сапропелей. 1-8 — номера проб

набор пиков. Существенно большее содержание железа в пробе 1 связано с присутствием в ней клиноферросилита и рентгенаморфного гидроксида железа (по данным Мёссбауэровской спектроскопии).

В целом, неорганической части сапропелей присущи простые минеральные формы — кварц, кальцит, сидерит. После перехода современных сапропелей в ископаемое состояние в них чаще фиксируется сидерит, появляются сульфаты, алюминаты, усложняется состав кар-

бонатов и — отчасти — силикатов. Создается впечатление, что происходит преобразование — хотя и малозаметное — ОВ, в результате которого высвобождаются биогенные элементы, дающие начало новым минеральным формам или усложняющие химический состав имеющихся простых минеральных соединений. Это особенно заметно при сопоставлении минерального состава неорганической части сапро-

Таблица 2 Основные минералы неорганической части сапропелей

Минерал	Угол 2 ⁽⁻⁾ , град	Межплос- костное расстояние, d, Å	Интен- сивность, $I_{\text{отн}}$	
Проба 1	Course S. St.			
Кальцит СаСО3	29,6	3,01)		
Клиноферросилит FeSiO ₃	29,5	3,02	100	
Гиллебрандит Ca ₂ SiO ₄ · 0,3H ₂ O	29,5	3,02		
Микроклин KAlSi ₃ O ₈	26,8	3,33 }	20	
Кварц SiO ₂	26,8	3,34	20	
Проба 2				
Кальцит	29,6	3,01 \	100	
Гиллебрандит	29,5	3,02	100	
Микроклин	26,8	3,33 \	40	
Кварц	26,8	3,34	40	
Проба 3				
Проба З Кварц	26,8	3,34 \		
	26,8	33,3	100	
Микроклин Гидратированный сульфат алюминия	40,0	00,0		
$(H_3O)Al_3(SO_4)_2(OH)_6$	29,6	3,01)		
(11 ₃ 0)A1 ₃ (80 ₄) ₂ (011) ₆ Кальцит	a E Homenco	3,04	30	
MAKEN HOMEPOR O. D. 3.7. P. S. D. D	доп, оп : потано	enerm maps		
Проба 4	26,8	3,34	100	
Кварц			25	
PHCTATUT MgSiO ₃	28,1 32,0	3,17	15	
Сидерит FeCO ₃ Гидратированный сульфат алюминия	29,6	2,79 3,01 }		
Кальцит	29,6	3,01	10	
Проба 5	20.0	2.01	100	
Кальцит (две модификации)	29,6	3,01	100	
Фаялит Fe ₂ SiO ₄	36,2	2,48		
Железомагниево-алюминиевый окисел	36,2	2.19	20	
MgFeAlO ₄		2,48	10	
Сидерит	32,0	2,79		
Кварц	26,9	3,34	10	
Проба 6				
Кальцит (две модификации)	29,6	3,01	100	
Фаялит	36,2	2,48	15	
Хунтит Mg ₃ Ca(CO ₃) ₄	32,0	2,79	7	
Сидерит	32,0	2,79	начео о	
Проба 7				
Кварц	26,8	3,34	100	
Гиллеит $Ca_5Si_2O_7(CO_3)_2$	29,5	3,03)		
Кальцит	29,5	3,03	100	
Геркинит FeAl ₂ O ₄	36,7	2,45		
Trope 8				
Проба 8	29,7	3,00		
Кальцит (две модификации) Кварц	26,9			
	40,9	3,31		
		270\		
кварц Двукальциевый силикат Ca ₂ SiO ₄ Сидерит	32,0 32,0	$2,79 \ 2,79$	25	

пелей и горючих сланцев. В последних, например, нет сидерита, а высокое содержание кремния обусловлено не большой долей кварца, а большим разнообразием силикатов [4].

Относительная интенсивность рефлексов, а фактически, при одинаковых условиях эксперимента, интенсивность основных пиков в ряду органогенных пород: современные сапропели—погребенные сапропели—горючие сланцы снижается в пределах отдельных их типов и при равном содержании в них основных минералов (табл. 2). Например, интенсивность пика при угле 2Θ 29,7° для современных сапропелей составляет 900 и погребенных — 450 имп/с, а для горючих сланцев — 200 имп/с. Скорее всего это можно объяснить, во-первых, более совершенной кристаллографической структурой их минералов и, во-вторых, относительно слабой связью между ОВ и минеральными компонентами в таких сравнительно молодых природных образованиях, как сапропели.

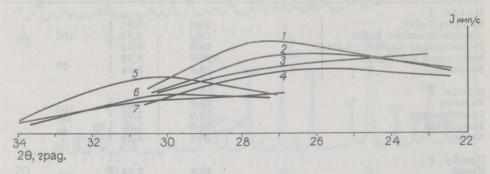


Рис. 2 Диффузный максимум на рентгенограммах горючих сланцев (1, 2, 4, 5) и сапропелей (3, 6, 7), различающихся содержанием углекислоты карбонатов: по порядку номеров — 0.5, 3.7, 2.8, 5.6, 19.6, 12.8, 19.5

При сравнении рентгенограмм сапропелей и сланцев заметно (особенно среди малокарбонатных проб) различие в величине диффузного максимума в интервале углов 2Θ $23,0-30,0^{\circ}$ (рис. 2). Из рисунка видно, что для сланцев максимум тем больше, чем больше в них некарбонатной (глинистой) минеральной составляющей (содержание ОВ в пробах примерно одинаково). Вероятно, в пробах содержится различное количество рентгенаморфного неорганического вещества, обусловливающего отмеченную выше зависимость. Но вместе с тем, определенная связь величин максимумов с содержанием глинистой минеральной составляющей в сланцах и значительно меньший максимум у погребенных сапропелей с аналогичным содержанием глинистой минеральной составляющей наводят на мысль о том, что в данном случае величина максимума, наряду с другими факторами (содержание органического и аморфного неорганического вещества), косвенным образом свидетельствует о прочной связи ОВ с глинистыми минералами в исследованных пробах. В сланцах — генетически более зрелых образованиях — эта связь прочнее, чем в сапропелях, что подтверждает и более трудное их обогащение [5]. Согласно [6], в сапропелях следовало бы ожидать значительно большего количества рентгенаморфной фазы по сравнению со сланцами, у ко орых коллоидная система подверглась старению и кристаллизации в процессе литогенеза. Однако полученные данные этого не подтверждают. Очевидно, что природа диффузного максимума исследованных органогенных пород сапропелевого типа весьма сложна и не может быть обусловлена лашь наличием в исследованной пробе органического и аморфного неорганического вещества.

В целом же, изучение минерального состава сапропелей показало существенную его неоднородность, что необходимо учитывать при решении практических задач. Кроме того, установлена некоторая аналогия в минеральном составе органогенных пород сапропелевого типа.

ЛИТЕРАТУРА

- 1. *Лопотко М. З.* Сапропели БССР, их добыча и использование. Минск, 1974.
- 2. ASTM Diffraction data cards and alphabetical and grouped numerical index of X-ray diffraction data. Philadelphia, 1946—1963.
- 3. *Михеев В. Н.* Рентгенометрический определитель минералов. М., 1959.
- 4. Горький Ю. И., Лукьянова З. К., Жуков В. К. и др. Состав минеральной части горючих сланцев Белоруссии. Горючие сланцы, 1984, 1, № 4, с. 355—362.
 - 5. Горький Ю. И., Лукьянова З. К., Стельмах Г. П., Яременко И. А. Проблемы комплексного использования горючих сланцев Белорусской ССР. Минск, 1983.
 - 6. Стадников Г. Л. Глинистые породы. М., 1957.

Институт торфа Академии наук Белорусской ССР г. Минск Представил А. Я. Аарна Поступила в редакцию 04.06.1985

Yu. I. GORKY, T. P. MAKEJEVA, Z. K. LUKYANOVA, V. K. ZHUKOV, A. L. DUDKA

MINERAL COMPOSITION OF SAPROPELS ON THE BASIS OF X-RAY ANALYSIS DATA

The mineral composition of recent and buried sapropels from the Minsk region of Byelorussia was investigated by using X-ray diffraction methods. It was established that they contain mainly quartz and calcite and to a lesser extent — microcline, siderite, silicate and aluminate.

In general, inorganic sapropels are characterized by elementary mineral

forms.

Academy of Sciences of the Byelorussian SSR, Institute of Peat Minsk