
УДК 665.45:625.65:622

Г. А. МУСАЕВ, Р. Т. ЧЕРДАБАЕВ, Ж. КОШЕБЕКОВ

ОПЫТНАЯ ПЕРЕРАБОТКА НЕФТЕБИТУМИНОЗНЫХ ПОРОД МЕСТОРОЖДЕНИЙ ЗАПАДНОГО КАЗАХСТАНА

Рассматриваемые нефтебитуминозные породы характеризуются значительным содержанием асфальтено-смолистых компонентов, сернистых соединений и высокими выходами светлых фракций [1, 2].

Термокаталитическое крекирование нефтебитуминозных пород месторождений Кольжан, Аралтобе, Есекжал и Акший было осуществлено на стационарной лабораторной установке (рисунок). Реактор из нержавеющей стали (внутренний диаметр 48 мм) помещали в трубчатую печь, что обеспечивало протекание реакции термического крекинга в условиях, близких к изотермическим (перепад температур по высоте реактора составлял 3-7°C), и регенерацию песка. Температуру в реакторе измеряли термопарой с потенциометром; карман с термопарой находился в середине слоя нефтебитуминозных пород.

Лабораторная установка термокаталитического крекирования нефтебитуминозных пород: 1 — электропечь, 2 — реактор, 3 — термопара, 4 — линия подачи киров, 5 — потенциометр, 6 — холодильник, 7 — сборник конденсата, 8 — скруббер, 9 — газовые часы, 10 — выгрузка шлама, 11 — керамические насадки, 12 — линия подачи азота, 13 — сборник газа, 14 — Латр

В материальный баланс опыта входило общее количество природного битума, содержащегося в неорганической матрице нефтебитуминозных пород, с одной стороны, и общее количество жидкого катализата (искусственной нефти), газа и оставшегося на поверхности песка кокса — с другой. Погрешность опытов составляла 0,5%.

Перед опытами установку проверяли на герметичность и продували азотом. Пробу нефтебитуминозных пород, раздробленную до крупности $10-15\,$ мм, нагревали в бункере до температуры $30-40\,^{\circ}\mathrm{C}$ и подавали шнеком в верхнюю часть реактора. Затем температуру поднимали до $450\,^{\circ}\mathrm{C}$ и выше со скоростью $1\,^{\circ}\mathrm{C}/\mathrm{muh}$. Нижняя часть реактора, заполненная инертной (фарфоровой) насадкой, служила испарителем и подогревателем искусственной нефти. Продукты крекинга конденсировались в последовательно соединенных холодильниках и собирались в сборнике конденсата. Неконденсирующаяся часть проходила через скруббер. Газообразные углеводороды собирались в газометре. Оставшийся после крекинга песок регенерировали воздухом при $600-700\,^{\circ}\mathrm{C}$ для удаления полукокса.

Установлено, что при термокаталитическом крекировании нефтебитуминозных пород всех рассматриваемых месторождений при 425 и 450°C выходы искусственной нефти — больше, а кокса и газа — меньше, чем при 400°C (табл. 1).

крекирования нефтебитуминозных пород, %

Материальный баланс процесса термокаталитического

Месторождение	Выход битума, г на 100 г		Искусственная нефть Температура процесса, С							
	породь	4	100	425	iges a	450	500	оцвпо		
Кольжан	19,40		56,18 76,3		82,47		63,04			
Аралтобе	32,50		56,61	73,85		80,00	61,69			
Есекжал	60,70		55,42	74,14		79,08	59,	59,45		
Акший	8,50		58,82	59,41		77,38	60,24			
Месторождение	Кокс			man k	Газ	N. Comment		La lity		
	Температура процесса, С									
	400	425	450	500	400	425	450	5()()		
Кольжан	35,15	12,37	5,67	16,44	8,67	9,28	11,86	20,52		
Аралтобе	34,21	16,61	7,69	19,54	7,18	419,54	12,31	18,77		
Есекжал	32,44	15,48	8,63	18,40	12,14	10,38	12,29	22,14		
Акший	31,75	18,82	4,05	15,29	9,43	11,77	18,57	24,47		

Подъем температуры процесса до 500°С приводит к уменьшению выхода искусственной нефти и, соответственно, к росту отложения кокса на поверхности песка и выхода газов. Причина этих явлений — в значительном содержании асфальтено-смолистых компонентов, за счет которых происходит пиролиз при 500°С и выше. Термокаталитическое крекирование нефтебитуминозных пород при этих температурах приводит также к увеличению содержания в искусственной нефти олефиновых углеводородов — нежелательных компонентов бензиновых, керосиновых и масляных фракций. Значит, для термокаталитического крекирования нефтебитуминозных пород наиболее благоприятны температуры 425 и 450°С.

Состав газообразных продуктов исследовали традиционными методами (табл. 2). Содержание в крекированных газах воздуха, углекислого газа и сероводорода весьма незначительно и практически не зависит от температуры процесса. Преобладают метан, этан, этен, пропан и пропен. По сравнению с процессом при 450°С, при 500°С содержание этена, пропена и бутена возрастает, а остальных газов — несколько уменьшается. Очевидно, при этой температуре также происходит пиролиз нефтебитуминозных пород.

Состав газообразных продуктов, полученных при термокаталитическом крекировании нефтебитуминозных пород различных месторождений, %

Компонент	Местор	ождение	Loren			Kanal si	Tienc	n Rich
	Кольжа	н	Аралто	бе	Есекжа	л	Акший	BLAZO - AX
	Темпер	атура, С	a taly us	mesausis	to cede	ser violen		MINGS
	450	500	450	500	450	500	450	500
Воздух	0,02	0,03	0,03	0,04	0,05	0,03	0.04	0,04
Метан	12,15	8,17	10,14	9,10	14,51	10,00	13,48	8,48
Углекислый	i					OF MINIO	25, 45,	11.16/16/16
газ	0,71	0,65	0,52	0,74	0,84	0,69	0.80	0.78
Этен	18,15	20,24	16,75	19,50	16,66	18,45	14,48	17.67
Этан	16,89	15,41	19,00	16,81	18,60	17,18	19,70	16,00
Сероводород	0,61	0,72	0,58	0.66	0,54	0.71	0,64	0.88
Пропен	20,40	24,0	19,40	22,16	20,00	23,19	20,18	25,74
Пропан	18,00	17,48	17,35	16,46	16,45	15,85	15,85	14,75
Изо-бутан	2,18	3,18	2,85	3,78	3,20	4,15	2,58	5,11
Бутен-1+					Para Maria		THE PARTY OF	,,,,
изо-бутен	6.64	7,00	8,18	8,25	5,17	6,50	6,74	7,35
н-Бутан	4,25	3,12	5,20	2,50	3,98	3,25	5,51	3,20

При условии предварительной очистки от сероводорода полученные газы могут служить дополнительным источником сырья для химической промышленности.

Наряду с искусственной нефтью и газом при термокаталитическом крекировании нефтебитуминозных пород выделяется вода (0.8-5.2%). Ее количество максимально в случае месторождений Акший и Кольжан (от 3 до 5%). С образцами пород проводили специальные опыты. Навески сушили при температуре 110° С для удаления водных следов и только затем крекировали. Вода по-прежнему выделялась, хотя содержание ее уменьшалось на 0.5%. Очевидно, между природным битумом и частицами песка имеется водная пленка (реликтовая вода).

Таблица 3

Химический состав солей, выделенных из воды, образовавшейся при термокаталитическом крекировании нефтебитуминозных пород, %

Соль	Месторожде	Месторождение							
	Кольжан	Аралтобе	Есекжал	Акший					
NaCl	80,96	78,17	86,74	82,28					
MgCl	0,51	0,75	0,64	0,86					
CaCl .	1,19	2,45	1,79	1,93					
Влажность	17,34	18,63	10,83	14,93					

Полученную воду выпаривали, доводя массу остатка до постоянного значения (выход 0.2-0.4%) и исследовали химический состав солей (табл. 3). Оказалось, что в воде содержатся NaCl, MgCl₂ и CaCl₂, при-

чем их содержание не зависит от температуры процесса. Преобладает NaCl — 78—87%. Анализ полученных солей не рентгеновском дифрактометре ДРОН-2 также подтвердил наличие перечисленных солей и преобладание среди них NaCl. Скорее всего содержание солей определяется в основном составом и свойствами реликтовой воды, хотя оно связано и с засоленностью самих месторождений нефтебитуминозных пород.

Выводы

- 1. При термокаталитическом крекировании на лабораторной установке нефтебитуминозных пород месторождений Кольжан, Аралтобе, Есекжал и Акший выход искусственной нефти составляет 69,41-82,47%, а газообразных продуктов 9,28-18,57%. Следовательно, эти породы можно перерабатывать термокаталитическими методами для получения светлых и газообразных продуктов.
- 2. В коде термокаталитического крекирования выделяется газ, который содержит главным образом метан, этан, этен, пропен и пропан и может служить дополнительным источником углеводородного сырья для химической промышленности (при условии предварительной очистки его от сероводорода).
- 3. При термокаталитическом крекировании нефтебитуминозных пород вместе с искусственной нефтью выделяется реликтовая вода, при выпаривании которой образуется солевой остаток (0,2-0,4%), содержащий NaCl, MgCl₂ и CaCl₂, причем преобладает NaCl.

ЛИТЕРАТУРА

- 1. $Ha\partial upos$ H. K. Нефтебитуминозные породы и перспективы их использования. В кн.: Нефтебитуминозные породы; перспективы использования. Алма-Ата, 1982, с. 5—10.
- 2. *Надиров Н. К., Браун А. Е., Трохименко М. С. и др.* Нефтебитуминозные породы Казахстана; проблемы и перспективы. Алма-Ата, 1985.

Представил К. Э. Уров Поступила в редакцию 30.05.1985

Институт химии нефти и природных солей Академии наук Казахской ССР г. Гурьев

PILOT PROCESSING OF OIL-BITUMINOUS ROCKS FROM THE DEPOSITS OF WEST KAZAKHSTAN

It was established that by laboratory thermocatalytic cracking of oil-bituminous rocks from the deposits of Kolzhan, Araltobe, Esekzhal and Akshii synthetic oil yield amounted to 69.41—82.47%, that of gaseous products—9.28—18.57%. As follows from the material balance the oil-bituminous rocks may be treated by thermocatalytic methods in order to obtain light and gaseous products.

Thermocatalytic cracking leads to gas that contains methane (10.0—14.51%), ethane (16.89—19.17%), ethene (14.48—18.15%), propene (19.40—20.40%) and propane (15.85—18.00%), and may serve as an additional source of hydrocarbon raw material for the chemical industry (on condition that hydrogen sulfide

has been previously removed).

By thermocatalytic cracking of oil-bituminous rocks together with synthetic oil relict water separated (0.8-5.2%) whose evaporation results in the formation of salt residue (0.2-0.4%) containing NaCl, MgCl₂ and CaCl₂, with NaCl prevailing (78-87%).

Academy of Sciences of the Kazakh SSR, Institute of Oil and Natural Salts Chemistry Guryev