ГОРЮЧИЕ СЛАНЦЫ OIL SHALE 1986 3/1 https://doi.org/10.3176/oil.1986.1.01

4Han SHO

УДК 662.67.66.060

Л. А. НАППА, И. Р. КЛЕСМЕНТ, Н. П. ВИНК, Х. Э. ЛУЙК

ИССЛЕДОВАНИЕ ГОРЮЧИХ СЛАНЦЕВ СЫСОЛЬСКОГО МЕСТОРОЖДЕНИЯ КОМИ АССР 6. ТЕРМИЧЕСКАЯ ДЕСТРУКЦИЯ В АВТОКЛАВЕ

Цели работы — исследование структуры органического вещества (OB) горючего сланца Сысольского месторождения деструктивными методами — термическим растворением (ожижением), гидрогенизацией, а также водной конверсией в автоклаве — и поиск путей снижения содержания серы в получаемых смолах и тем самым выяснение возможности применения жидких продуктов деструкции в качестве искусственного жидкого топлива. Использован необогащенный сланец, имеющий следующие показатели, $\%: W^a$ 9,4, A^d 65,9, $(CO_2)_M^d$ 5,3, S_t 2,5. Элементный состав OB, %: C 57,5, H 7,0, N 2,0, S 2,8, O 30,7; H/C_{атом} 1,46. Подробная характеристика сланца, а также условия накопления его OB приведены в работе [1].

В ОВ сысольского сланца много кислорода, серы и азота, поэтому выход смолы полукоксования не превышает 29% [2]. Образующаяся при термической переработке смола содержит мало кислорода, зато в ней более 5% серы и довольно много азота (табл. 1). Непосредственное применение такой смолы в качестве топлива невозможно. Восстановительная переработка смолы в автоклаве снижает содержание серы до 2%, но потери сланца при рафинации составляют 16—25% [3]; выход смолы, полученной полукоксованием, ниже, а при гидрогенизации в автоклаве становится еще меньше.

Мы осуществляли непосредственную восстановительную деструкцию сланца в автоклаве. Такая переработка дает возможность не только повысить выход смолы, но и одновременно рафинировать ее, чтобы уменьшить содержание гетероэлементов. Были испытаны три варианта ожижения ОВ, которые уже применялись при автоклавной переработке сернистых сланцев [4]. При термическом растворении в среде низкокипящего растворителя — бензола, находящегося в суперкритических условиях, — из керогена кукерсита смолы образовалось больше [5], а из чаганского сланца меньше, чем при полукоксовании [6]. Кроме растворения в бензоле, был проведен опыт при избыточном давлении инертного газа — аргона. Этот прием используется довольно часто, поскольку, по общему мнению, повышение общего давления способствует растворению керогена. При гидрогенизации с подачей газообразного водорода один из опытов проводили без катализатора, так как известно [7], что сероводород действует как гомогенный катализатор гидрогенизации, а при деструкции сернистых сланцев он образуется в больших количествах. Наконец, несколько опытов осуществили в среде перегретой воды, которая при высокой температуре реагирует с керогеном разрушая его [8]. При этом были использованы растворы щелочи (разрушает связь между ОВ и минеральной частью) и формиата натрия (реагирует с водой выделяя водород) и смесь бензол-вода, которая быстро разрушает кероген кукерсита при 340-360°С.

		-		-					
Показатель	Полукок- сование, данные [2]	Суперкр ческое р ворение бензоле	ИТИ- acт- в	Гидрогел	низация	Водная	конверсия		
		Началь- ное дав- ление отсутст- вует	Началь- ное дав- ление аргона 5 МПа	Катали- тическая 1% Мо на ОВ	Без ка- 1, тализа- тора	Без реа- гентов	10% NaOH	25% HCC	ONa
(авление, МПа: Рабочее Остаточное	цие. родобо однов однов однов однов бри т бри т	12 0,3	22 4,4	22 0,4	23 0,4	28 0,7	26 0,5	30	00
ыкод, % на ОВ: Смола Кокс Газ+потери	29	27 55 18	30 51 19	52 30 18	49 31 20	13 59 14	22 57 21	38 63 25	
сарактеристика смол: Показатель преломления η ²⁰ Плотность φ ²⁰ Молекулярная масса	$1,564 \\ 0,977 \\ 320$	$1,525 \\ 0,938 \\ 265$	$1,537\\0,941\\351$	$1,557\\0,951\\370$	$1,543 \\ 0,987 \\ 311$	1,537 0,951 290	$1,535\\0,956\\350$	$ \begin{array}{c} 1, \\ 0, \\ 390 \end{array} $	542 980
лементный состав: С Н N S 0	81,2 9,2 1,1 5,1 3,4	83,4 8,2 1,1 4,0 3,3	81,6 8,9 1,4 4,6 3,5	86,1 10,2 1,5 1,9 0,3	81,9 8,9 4,0 4,0	79,6 9,4 0,9 3,5	.83,9 9,4 1,1 2,6 3,0	83,3 10,6 2,2 2,6	0, 10, 01, 00, 00
рупповой состав: Алифатические углеводороды Алкилбензолы	21 18	20 6	20 8	19 11	18 6	18 6	16 4	00 10	
цолициклические ароматиче- ские соединения Мотогостино топости	13	36	25	26	29	28	18	16	
малонолярные тетероатом- ные соединения Высокополярные соединения	24	9	16	17	17	16	17	19	

2

Tabnuya 1

Экспериментальная часть

Опыты (условия приведены в табл. 1) проводили в качающемся автоклаве емкостью 0,5 л при температуре 370°С и выдержке при заданной температуре 4 ч. Соотношение сланец-органический растворитель (вода, водный раствор) 1:3 (40 и 120 г). Во избежание вторичных реакций температура опытов была значительно ниже, чем при промышленном полукоксовании (более 400°С), однако гораздо выше критической температуры бензола (Т_{крит} 289°С) и близка к Т_{крит} воды (374°С). Для повышения выхода смолы было увеличено время опытов. Плотность растворителя в автоклаве в парообразном состоянии была равна 302 г/л, т.е. приближалась к критической плотности обоих растворителей. В опытах с подачей газа — водорода или аргона его давление в автоклаве в начале опыта при комнатной температуре составляло 5 МПа. При каталитической гидрогенизации сланец пропитывали водным раствором молибдата аммония (1% Мо на ОВ); в опытах в водной среде (далее — водная конверсия) использовали также растворы, содержащие 10% NaOH и 25% НСООNа.

Жидкие продукты деструкции разделяли препаративной тонкослойной хроматографией; индивидуальный состав разделенных фракций определяли газохроматографически на анализаторе «Хром-4» по методике [9]; газ деструкции анализировали на аппарате УХ-2 с катарометром. Для смол снимали инфракрасные, а также H-ЯМР-спектры. Твердые остатки двух опытов изучали под электронным микроскопом.

Обсуждение результатов

Результаты гидрогенизации и конверсии горючего сланца Сысольского месторождения (табл. 1) свидетельствуют о том, что выход смолы зависит от условий термической деструкции. Самый большой выход дает каталитическая гидрогенизация в среде бензола — 52%, почти такой же — гидрогенизация без катализатора. Последнее подтверждает, что образующийся сероводород и в самом деле может служить катализатором. Обращает на себя внимание то, что концентрация парафинов в смоле не зависит от выхода смолы (кроме опыта с формиатом натрия). Есть предположение, что алифатические структуры отщепляются от макромолекулы керогена уже в начале термической деструкции, и поэтому смола первого этапа полукоксования обогащена н-углеводородами [11]. В настоящей работе такой последовательности образования компонентов смолы не наблюдалось. Аналогичным образом при автоклавной переработке диктионемового сланца [10] содержание парафинов в смолах было одинаковым независимо от выхода смолы (12-48% от OB). Следовательно, механизмы деструкции при полукоксовании и переработке в автоклаве существенно различаются. Гидрогенизация за счет водорода, получаемого при разложении формиата натрия, дает около 40% смолы, т. е. значительно больше, чем при полукоксовании. При конверсии водным раствором щелочи и особенно водой выход смолы ниже, чем при полукоксовании. Анализ газа показал, что во всех опытах образовалось много двуокиси углерода — ее содержание в газе достигло 60%. Только в водном растворе щелочи, где двуокись углерода растворяется, содержание ее низкое; зато в этом опыте содержание в газе метана доходило до 35%. Обильное образование метана установлено также при конверсии в водном растворе щелочи других сланцев [12, 13]. Высокий выход углекислого газа при деструкции — подтверждение значительной доли кислорода керогена в сложноэфирных группах. Ненасыщенных углеводородов практически не обнаружено, т. к. двойные связи насыщались.

Молекулярные массы смол составляют от 270 до 370, причем меньшие значения соответствуют низким выходам смолы.

В смолах термической обработки сланца в автоклаве серы меньше, чем в смоле полукоксования, где ее 5,1%. Как и следовало ожидать, самое значительное снижение содержания серы наблюдалось при подаче водорода извне, т. е. при каталитической гидрогенизации в среде бензола. В этом случае оно уменьшалось до 1,9%, тогда как при конверсии в водном растворе формиата натрия было не менее 2,2%. Другие варианты водной конверсии также давали небольшое снижение содержания серы: конверсия водным раствором щелочи до 2,6, с водой — до 3,5%. В смолах, полученных в других условиях, серы было не менее 4,0%. Аналогичное снижение содержания серы в смолах термической деструкции в автоклаве по сравнению со смолой полукоксования наблюдалось и для горючего сланца Чаганского месторождения [4]. Там самой эффективной в этом отношении также оказалась каталитическая гидрогенизация.

По общим параметрам — плотности и показателю преломления смолы автоклавной обработки почти не различаются между собой и не отличаются от смолы полукоксования. Для группового состава

4

Рис. 1

Хроматограммы алифатических углеводородов в смоле водной конверсии (a) и каталитической гидрогенизации (б): 11-30 — *н*-парафины, i17-i20 — изопреноидные углеводороды; числа при пиках соответствуют количеству атомов углерода. Колонка 3,6 м×3 мм, 4% Е 301 на хроматоне N AW DMCS

полученных смол, в отличие от смолы полукоксования, характерно более высокое содержание ароматических углеводородов и наличие высококонденсированных гетероатомных соединений, содержащих серу и остающихся при хроматографическом разделении на стартовой линии пластинки.

Основные пики на хроматограммах суммарных смол автоклавной переработки сланца, как и на хроматограмме смолы полукоксования [2], — это пики *н*-парафинов; видны также пики алкил- и полиароматических соединений, а на хроматограммах смол конверсии — и пики кетонов. На рис. 1 представлены хроматограммы парафиновых фракций смол водной конверсии и каталитической гидрогенизации, которые соответствуют наименьшему и наибольшему выходам смолы от ОВ. Присутствуют *н*-парафины C_{11} — C_{30} , а также изопреноиды iC_{15} — iC_{20} . В отличие от смолы полукоксования, где концентрация парафинов с удлинением углеродной цепи изменяется монотонно, у парафинов водной конверсии в пределе C_{15} — C_{25} превалируют «нечетные» гомологи. Слабый перевес *н*-парафинов C_{15} , C_{17} и C_{19} сохраняется

19

Рис. 2

Хроматограмма нейтральных кислородсодержащих соединений смолы водной конверсии. Двойные нумерованные пики соответствуют *н*-алкилкетонам, первый пик — карбонильная группа, расположенная в середине углеродной цепи, второй пик — 2-алканон; номер соответствует количеству атомов углерода в молекуле. Характеристику колонки см. в подписи к рис. 1

и при каталитической гидрогенизации, но при более длинной цепи наблюдается неожиданное изменение: большую концентрацию приобретают «четные» гомологи. Повышение нечетности парафинов при водной конверсии при низком выходе смолы установлено и для кукерсита [14]. Это явление может быть обусловлено или более селективным α-отщеплением алифатических цепей керогена в мягких условиях деструкции, или декарбоксилированием сложных эфиров «четных» жирных кислот, присутствующих в структуре керогена. Преимущественное образование «четных» или «нечетных» парафинов в зависимости от метода деструкции наблюдается нами впервые. «Четные» парафины могут образоваться при β-расшеплении нечетных цепей, связанных с ароматической частью макромолекулы керогена (в случае ароматической структуры происходит преимущественно β-отщепление боковых цепей). Ароматизация может проходить в ходе каталитической гидрогенизации. Различия в составе описанных парафинов свидетельствуют о том, что парафины $\leq C_{19}$ и $\geq C_{20}$ связаны с разными структурными элементами.

Концентрации изопреноидов в рассмотренных парафинах примерно одинаковы, но при наличии в водной среде щелочи или формиата натрия концентрации пристана iC_{19} и фитана iC_{20} выше — так же, как концентрации близкокипящих *н*-парафинов C_{17} и C_{18} . Следовательно, щелочи способствуют выделению из керогена изопреновых углеводородов.

На хроматограмме кетонов преобладают кетоны с нечетным числом атомов углерода (рис. 2). Представлены как метилкетоны, так и кетоны с карбонильной группой в центральном положении, а также их изоструктуры. От C_{10} до C_{19} доминируют метилкетоны, а начиная с C_{20} увеличивается концентрация кетонов с карбонильной группой в центральном положении. В смоле полукоксования доля кетонов незна-

Таблица 2

Длина волны, см ⁻¹	Полу- коксо- вание, данные [2]	Суперкрити- ческое раст- ворение в бензоле		Гидрогени- Во, зация		Водная	ная конверсия			
		Началь- ное дав- ление отсутст- вует	Началь- ное дав- ление аргона 5 МПа	Катали- тическая 1% Мо на ОВ	Без ,ката- лиза- тора	Без реа- гентов	10% NaOH	25% HCOONa	Вода — бензол 1:1	
720	0,30	0,37	0,19	0,26	0,23	0,21	0,17	0,16	0,18	
745	0,53	0,50	0,50	0,50	0,49	0,30	0,31	0,19	0,30	
815	0,52	0,37	0,52	0,36	0,53	0,50	0,34	0,17	0,32	
880	0,34	0,20	0,30	0,20	0,27	0,18	0,19	0,10	0,13	
1380	0,87	0,70	0,76	0,53	0,79	0,75	0,77	0,76	0,77	
1600	0,76	0,62	0,65	0,49	0,65	0,56	0,57	0,49	0,61	
1700	0,93	0,41	0,64	0,70	0,62	0,82	0,66	0,73	0,81	
2930	0,83	1,06	1,01	1,60	1,20	1,19	1,14	1,22	1,15	
2960	0,79	0,98	0,98	1,04	1,04	1,04	1,01	1,04	1,00	
320	0,35	0,70	0,56	0,61	0,58	0,52	0,51	0,50	0,57	
3050	0,26	0,54	0,52	0,63	0,53	0,50	0,47	0,44	0,50	
3400	0,50	0,37	0,40	0,47	0,40	0,45	0,44	0,44	0,49	
$\frac{2930}{2960}$	1,02	1,63	1,03	1,76	1,15	1,14	1,13	1,17	1,15	
$\frac{3050}{2930}$	0,32	0,51	0,52	0,35	0,44	0,42	0,41	0,36	0,43	

Характеристика ИК-спектров смол переработки горючего сланца Сысольского месторождения, полученных по методике [15]

7

чительна, не наблюдается и преобладания кетонов с нечетным числом атомов углерода.

Среди полициклических ароматических соединений идентифицированы нафталин, α- и β-метилнафталины, диметилнафталины, фенантрен и др.

Рис. 3

ИК-спектры смол гидрогенизации и конверсии: 1 — гидрогенизация формиатом натрия, 2 — конверсия 10%-ным водным раствором щелочи, 3 — конверсия водой, 4 — конверсия смесью вода бензол (1:1), 5 — каталитическая гидрогенизация, 6 — гидрогенизация без катализатора

По инфракрасным спектрам видно (табл. 2, рис. 3), что смолы полукоксования и автоклавной переработки имеют некоторые структурные особенности. Так, поглощение при 1600 см⁻¹, соответствующее валентному колебанию бензольного кольца, для смолы полукоксования больше, чем для смол гидрогенизации и конверсии. Аналогичное явление наблюдается при поглощении, характерном для карбонильной (1700 см⁻¹) и метиловой групп при 1380 см⁻¹, зато увеличивается соответствующее метильным и метиловым группам поглощение при 2930 и 2960 см⁻¹. Повышается доля С—Н-групп ароматического ядра (3020, 3050 см⁻¹), а также соотношение ароматики и алифатики — 3050/2930. В целом ИК-спектры подтверждают, что смолы водной конверсии менее ароматичны, зато содержат значительно больше карбонильных групп, чем смолы, полученные в безводных условиях.

^ГH-ЯМР – спектры (рис. 4, табл. 3) подтверждают, что основная часть водорода (37—39%) представлена метиленовым водородом в прямолинейных цепях алканов, находящихся в β-положении к ароматическому ядру и дальше от него (1,0—1,6 м. д.). Это почти на 10% больше, чем в смоле полукоксования [2]. В метиленовых группах, связанных с ароматическим ядром, в α-положении содержится около

10% водорода. Водород одно-, двух- и трехъядерной ароматики (6,0—8,3 м. д.) составляет около 11%. Все спектры схожи, следовательно, соединения в смолах имеют похожие углеводородные скелеты. Судя по ¹Н-ЯМР-спектрам, смолы непосредственной гидрогенизации и конверсии сысольского сланца более ароматичны, чем смолы, полученные в результате этих же процессов из смолы полукоксования сланца. Распределение водорода в смолах гидрогенизации и конверсии горючего сланца Сысольского месторождения по ¹Н-ЯМР-спектрам, полученным по методике [16]

Пики	Хими- ческие сдвиги	Гидрогенизация		Водная конверсия			
		Катали- тическая 1% Мо на ОВ	Без ,катали- затора	Без реа- гентов	10% NaOH	25% HCOONa	Вода — бензол 1:1
Концевые СН ₃ -группы СН ₂ -группы прямо- линейных цепей в положении βСН ₂ и βСН ₃ к аро-	0,5—1,0	14,8	14,0	12,9	12,7	13,9	13,2
матическому ядру Нафтеновый, в в-положении к аро-	1,0—1,6	37,5	39,3	37,0	37,6	39,3	32,2
матическому ядру Метиловый, в а-положении к аро-	1,6—1,9	9,4	11,3	9,3	9,2	11,3	8,2
матическому ядру Метиленовый, в	1,9—2,3	8,6	9,3	9,4	10,1	9,3	10,0
матическому ядру Олефиновый Бензольный Нафталиновый Триароматический	$\begin{array}{c} 2,3-4,0\\ 4,0-6,0\\ 6,0-7,2\\ 7,2-7,8\\ 7,8-8,3\end{array}$	$18,4 \\ 0,3 \\ 2,4 \\ 5,1 \\ 3,5$	17,11,32,43,71,7	18,4 0,9 3,5 5,8 2,8	$19,6 \\ 0,4 \\ 1,9 \\ 5,2 \\ 3,2$	$17,1 \\ 1,3 \\ 2,3 \\ 3,7 \\ 1,7$	21,13,33,04,94,0

На рис. 5 приведены электронно-микроскопические снимки твердых остатков — кокса конверсии и гидрогенизации (электронный микроскоп «Тесла БС 300», ускоряющее напряжение 25 кВ, ток зонда 100 мА). Видно, что исходные структуры сильно разрушены, разложение вещества прошло равномерно и никаких комков — особых структур — не осталось.

Рис. 5

Электронно-микроскопические снимки твердого остатка: *а* — после конверсии водой, *б* — после каталитической гидрогенизации

Выводы

Термическая переработка сысольского сланца в автоклаве — особенно каталитическая гидрогенизация — дает возможность, с одной стороны, увеличить выход смолы на 20% по сравнению с выходом при полукоксовании, а с другой — снизить содержание серы в смоле с 5 (в смоле полукоксования) до 2,0%. ОВ сысольского сланца содержит больше гетероэлементов и меньше водорода, чем более южные сланцы того же мегабассейна (Куйбышевской и Оренбургской областей), поэтому и выход смолы из него ниже. Введение в процесс дополнительных количеств водорода может способствовать росту выхода смолы до 50% и более, что довольно много для подобных сланцев. Есть основания полагать, что если поднять температуру каталитической гидрогенизации выше 400°С, содержание серы в смоле не будет превышать 1%.

Авторы благодарят А. Паюмяэ за электронно-микроскопические снимки образцов.

ЛИТЕРАТУРА

- 1. Бондарь Е. Исследование горючих сланцев Сысольского месторождения Коми АССР. 1. Общая характеристика сланцев. — Горючие сланцы, 1985, 2, № 3, с. 246—253.
- 2. Салусте С., Клесмент И., Кягу К. Исследование горючих сланцев Сысольского месторождения Коми АССР. 3. Групповой состав смолы полукоксования. Горючие сланцы, 1985, 2, № 4, с. 329—340.
- Наппа Л., Клесмент И., Винк Н., Луйк Х. Исследование горючих сланцев Сысольского месторождения Коми АССР. 5. Превращения смолы полукоксования в автоклаве. — Изв. АН ЭССР. Хим., 1986, 35, № 1, с. 7—18.
- 4. Наппа Л., Клесмент И., Винк Н. Гидрогенизация и конверсия горючего сланца Чаганского месторождения. Изв. АН ЭССР. Хим., 1984, 33, № 2, с. 87—94.
- 5. Наппа Л., Клесмент И., Винк Н., Кайлас К. Низкотемпературное разложение органического вещества горючих сланцев в присутствии раст-

ворителей. 1. Кукерситовые сланцы. — Изв. АН ЭССР. Хим., 1982, **31**, № 1, с. 17—24.

- 6. Клесмент И., Наппа Л., Побуль Л., Салусте С. Состав битумоида и продуктов термической деструкции органического вещества горючего сланца Чаганского месторождения. — Горючие сланцы, 1984, 1, № 2, с. 147—154.
- 7. Baldwin R. M., Vinciguerras S. Coal liquefaction catalysts. Iron pyrite and hydrogen sulphids. Fuel, 1983, 62, N 5, p. 498-501.
- Klesment I., Nappa L. Investigation of the structure of Estonian oil shale kukersite by conversion in aques suspension. — Fuel, 1980, 59, N 2, p. 117—122.
- 9. Klesment I. Application of chromatographic methods in biogeochemical investigations. J. Chromatogr., 1974, 91, p. 705-713.
- Наппа Л., Клесмент И., Викк Н., Кайлас К. Низкотемпературное разложение органического вещества горючих сланцев в присутствии растворителей.
 Диктионемовые сланцы. Изв. АН ЭССР. Хим., 1982, 31, № 2, с. 103—108.
- 11. Уров К. Э. Термическая деструкция сланца-кукерсита в вакууме. Химия тв. топлива, 1976, № 5, с. 33—38.
- 12. Наппа Л., Клесмент И., Винк Н. Исследование состава и генезиса карпатских менилитовых сланцев. 3. Гидрогенизация и конверсия. — Изв. АН ЭССР. Хим., 1982, **31**, № 4, с. 292—295.
- 13. Наппа Л., Клесмент И., Винк Н., Кайлас К. Исследование деструктивной гидрогенизацией рабдописситового угля Липовецкого месторождения. — Изв. АН ЭССР. Хим., 1981, **30**, № 1, с. 10—16.
- 14. Клесмент И., Наппа Л. Ожижение органического вещества горючих сланцев при 250—300°С в перегретых низкокипящих растворителях. Горючие сланцы (в печати).
- 15. Глебовская Е. А. Применение инфракрасной спектрометрии в нефтяной геохимии. Л., 1971.
- Netzel D., Miknis F. N. m. r. study of Eastern and Western shale oils prodused by pyrolysis and hydropyrolysis. — Fuel, 1982, 61, p. 1101—1109.

Институт химии Академии наук Эстонской ССР г. Таллин Представил К. Э. Уров Поступила в редакцию 1.07.1985

L. A. NAPPA, I. R. KLESMENT, N. P. VINK, H. E. LUIK

INVESTIGATION OF SYSOLA OIL SHALE, KOMI ASSR

6. THERMAL DECOMPOSITION IN AUTOCLAVE

Results of thermal decomposition — liquefaction, hydrogenation and conversion in water suspension of Sysola oil shale are discussed. Experiments were carried out in an autoclave under various pressures at a temperature of 370°C for 4 h. The oil yield depends on destruction conditions, the highest yield — 52% was obtained in catalytic hydrogenation, the lowest by conversion in water. The Sysola oil shale is characterized by a high sulfur content. High was the sulfur content also in semicoking oil (5%), but after autoclaving, especially by catalytic hydrogenation it decreased to 2%. The hydrogenates obtained are characterized by straight-chain *n*-paraffins C_{11} — C_{30} . Figure 1 shows that up to C_{19} «odd» paraffins predominate, while after C_{19} «even» homologs prevail. Conversion in water yielded also straight-chain alkyl ketones with a specific composition. The ketones are shown to be abundant in «odd» carbon-numbered methyl ketones. According to IR-spectra the hydrogenates are more aromatic than the oils obtained by conversion in water.

Academy of Sciences of the Estonian SSR, Institute of Chemistry Tallinn