ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1997
 
TRAMES cover
TRAMES. A Journal of the Humanities and Social Sciences
ISSN 1736-7514 (Electronic)
ISSN 1406-0922 (Print)
Impact Factor (2020): 0.5

A FRAMEWORK FOR THE MEASUREMENT AND PREDICTION OF AN INDIVIDUAL SCIENTIST’S PERFORMANCE; pp. 3–14

Full article in PDF format | https://doi.org/10.3176/tr.2017.1.01

Author
Endel Põder

Abstract

Quantitative bibliometric indicators are widely used to evaluate the performance of scientists. However, traditional indicators do not much rely on the analysis of the processes intended to measure and the practical goals of the measurement. In this study, I propose a simple framework to measure and predict an individual researcher’s scientific performance that attempts to take into account the main regularities of publication and citation processes and the requirements of practical tasks. Statistical properties of the new indicator – a scientist’s personal impact rate – are illustrated by its application to a sample of Estonian researchers.


References

Abramo, G., Cicero, T., and D’Angelo, C. A. (2013) “Individual research performance: a proposal for comparing apples to oranges”. Journal of Informetrics 7, 2, 528–529.
https://doi.org/10.1016/j.joi.2013.01.013

Abramo, G., and D’Angelo, C. A. (2014) “How do you define and measure research productivity?”. Scientometrics 101, 1129–1144. doi: 10.1007/s11192-014-1269-8.
https://doi.org/10.1007/s11192-014-1269-8

Acuna, D. E., Allesina, S., and Kording, K. P. (2012) “Future impact: predicting scientific success”. Nature 489, 201–202.
https://doi.org/10.1038/489201a

Allik, J. (2013) “Factors affecting bibliometric indicators of scientific quality”. Trames 17, 199–214.
https://doi.org/10.3176/tr.2013.3.01

Batista, P. D., Campiteli, M. G., Kinouchi, O., and Martinez, A. S. (2006) “Is it possible to compare researchers with different scientific interests?”. Scientometrics 68, 179–189.
https://doi.org/10.1007/s11192-006-0090-4

Bornmann, L., Mutz, R., Hug, S. E., and Daniel, H. D. (2011) “A meta-analysis of studies reporting correlations between the h index and 37 different h index variants”. Journal of Informetrics 5, 3, 346–359. doi: 10.1016/j.joi.2011.01.006.
https://doi.org/10.1016/j.joi.2011.01.006

Bornmann, L. and Marx, W. (2014) “How to evaluate individual researchers working in the natural and life sciences meaningfully? A proposal of methods based on percentiles of citations”. Scientometrics 98, 1, 487–509.
https://doi.org/10.1007/s11192-013-1161-y

Fiala, D. (2014) “Current index: a proposal for a dynamic rating system for researchers”. Journal of the Association for Information Science and Technology 65, 4, 850–855.
https://doi.org/10.1002/asi.23049

Hirsch, J. (2005) “An index to quantify an individual’s scientific research output”. Proceedings of the National Academy of Sciences 102, 16569–16572.
https://doi.org/10.1073/pnas.0507655102

Hirsch, J. (2007) “Does the h index have predictive power?”. Proceedings of the National Academy of Sciences 104, 19193–19198.
https://doi.org/10.1073/pnas.0707962104

Lehmann, S., Jackson, A. D., and Lautrup, B. E. (2006) “Measures for measures”. Nature 444, 1003–1004.
https://doi.org/10.1038/4441003a

Lindsey, D. (1980) “Production and citation measures in the sociology of science: the problem of multiple authorship”. Social Studies of Science 10, 2, 145–162.
https://doi.org/10.1177/030631278001000202

Mazloumian, A. (2012) “Predicting scholars’ scientific impact”. PLoS ONE 7, 11: e49246. doi:10.1371/journal.pone.0049246.
https://doi.org/10.1371/journal.pone.0049246

Panaretos, J., and Malesios, C. (2009) “Assessing scientific research performance and impact with single indices”. Scientometrics 81, 3, 635–670.
https://doi.org/10.1007/s11192-008-2174-9

Price, D. D. S. (1981) “Multiple authorship”. Science 212, 4498, 986.
https://doi.org/10.1126/science.212.4498.986-a

Põder, E. (2010) “Let’s correct that small mistake”. Journal of the American Society for Information Science and Technology 61, 12, 2593–2594.
https://doi.org/10.1002/asi.21438

Radicchi, F., Fortunato, S., and Castellano, C. (2008) “Universality of citation distributions: toward an objective measure of scientific impact”. Proceedings of the National Academy of Sciences 105, 45, 17268–17272.
https://doi.org/10.1073/pnas.0806977105

Schreiber, M. (2008) “To share the fame in a fair way, hm modifies h for multi-authored manu­scripts”. New Journal of Physics 10, 1–9.
https://doi.org/10.1088/1367-2630/10/4/040201

Schreiber, M. (2015) “Restricting the h-index to a citation time window: a case study of a timed Hirsch index”. Journal of Informetrics 9, 150–155.
https://doi.org/10.1016/j.joi.2014.12.005

Schubert, A., and Braun, T. (1996) “Cross-field normalization of scientometric indicators”. Sciento­metrics 36, 3, 311–324.
https://doi.org/10.1007/BF02129597

Stewart, J. A. (1994) “The Poisson-lognormal model for bibliometric/scientometric distributions”. Information Processing and Management 30, 239–251.
https://doi.org/10.1016/0306-4573(94)90067-1

Van Eck, N. J., and Waltman, L. (2008) “Generalizing the h- and g-indices”. Journal of Informetrics 2, 263–271.
https://doi.org/10.1016/j.joi.2008.09.004

Waltman, L., and Van Eck, N. J. (2013) “A systematic empirical comparison of different approaches for normalizing citation impact indicators”. Journal of Informetrics 7, 4, 833–849.
https://doi.org/10.1016/j.joi.2013.08.002


Back to Issue