back to contents
back to journal
back to publisher 

Proceedings of the Estonian Academy of Sciences.

Chemistry

 

Volume 55 No. 3 September 2006

 

Some small weakly coordinating anions based on carboranes; 145–154

Lauri Lipping, Ilmar A. Koppel, Ivar Koppel, and Ivo Leito

Abstract. The intrinsic gas-phase acidities of CB4XnH5–nH and CB5XnH6–n (X º F, Cl or CF3) were calculated using the DFT B3LYP method at the 6-311+G** level. For comparison also the 6-31+G* basis set was used for fluorinated species. The results of the two calculation levels correlated satisfactorily. As the most favourable protonation site of these anions, the facet on the opposite side from the carbon-peaked polyhedron was found. When ordering the substituent groups in terms of increasing acidity of the carboranes, the order F < Cl < CF3 was obtained.

Key words: carboranes, superacids, weakly coordinating anions.

 

 

References

 

1. Strauss, S. H. The search for larger and more weakly coordinating anions. Chem. Rev., 1993, 93, 927–942. doi:10.1021/cr00019a005

 

2.  Krossing, I. & Raabe, I. Noncoordination anions – fact or fiction? A survey of likely candidates. Angew. Chem., Int. Ed., 2004, 43, 2066–2090. doi:10.1002/anie.200300620

 

3.  Reed, A. C. Carboranes: a new class of weakly coordinating anions for strong electrophiles, oxidants, and superacids. Acc. Chem. Res., 1998, 31, 133–139. doi:10.1021/ar970230r

 

4.  Knoth, W. H. 1-B9H9CH and B11H11CH. J. Am. Chem. Soc., 1967, 89, 1274–1275. doi:10.1021/ja00981a048

 

5. Pleđek, J., Jelínek, T., Drdáková, E., Heřmánek, S. & Đtíbr, B. A convenient preparation of 1-CB11H12 and its C-amino derivatives. Collect. Czech. Chem. Commun., 1984, 49, 1559–1562.

 

6. King, B. T., Zharov, I. & Michl, J. Alkylated carborane anions and radicals: tools for organic and inorganic chemists. Chem. Innov., 2001, 12, 23–31.

 

7.  Reed, C. A., Kim, K.-C., Bolskar, R. D. & Mueller, L. Taming superacids: stabilization of the fullerene cations HC60+ and C60+. Science, 2000, 289, 101–104. doi:10.1126/science.289.5476.101

 

8.  Juhasz, M., Hoffmann, S., Stoyanov, E., Kim, K.-C. & Reed, C. A. The strongest isolable acid. Angew. Chem., Int. Ed., 2004, 43, 5352–5355. doi:10.1002/anie.200460005

 

9.  Reed, C. A. Carborane acids. New “strong yet gentle” acids for organic and inorganic chemistry. Chem. Commun., 2005, 1669–1677. doi:10.1039/b415425h

 

10.  Koppel, I., Lipping, L., Leito, I., Burk, P., Mishima, M. & Sonoda, T. Carborane derivatives - the least coordinating anions and the strongest acids. In KISPOC 9 Symposium, Book of Abstracts. Fukuoka, 2001, 183–186.

 

11.  Koppel, I. A., Burk, P., Koppel, I., Leito, I., Sonoda, T. & Mishima, M. Gas-phase acidities of some neutral Br¸nsted superacids: a DFT and ab initio study. J. Am. Chem. Soc., 2000, 122, 5114–5124. doi:10.1021/ja0000753

 

12.  Stoyanov, E. S., Hoffmann, S. P., Juhasz, M. & Reed, C. A. The structure of the strongest Br¸nsted acid H(CHB11Cl11). J. Am. Chem. Soc., 2006, 128, 3160–3161. doi:10.1021/ja058581l

 

13.  King, B. T. & Michl, J. The explosive “inert” anion CB11(CF3)12. J. Am. Chem. Soc., 2000, 122, 10255–10256. doi:10.1021/ja001573e

 

14.  Stasko, D. & Reed, C. A. Optimizing the least nucleophilic anion. A new, strong methyl+ reagent. J. Am. Chem. Soc., 2002, 124, 1148–1149. doi:10.1021/ja0118800

 

15.  Balarayan, P. & Gadre, S. H. Why are carborane acids so acidic? An electrostatic interpretation of Br¸nsted acid strengths. Inorg. Chem., 2005, 44, 9613–9615. doi:10.1021/ic051347b