back to contents
back to journal
back to publisher 

Proceedings of the Estonian Academy of Sciences.

Chemistry

 

Volume 55 No. 3 September 2006

 

Thermoluminescent dosimeter Li2B4O7:Mn,Si – a false-dose problem; 123–131

Mikhail Danilkin, Mihkel Kerikmäe, Aleksei Kirillov, Aime Lust, Arno Ratas, Lilli Paama, and Viktor Seeman

(full article in PDF format)

Abstract. The false-dose effects are investigated in the thermoluminescent detectors of ionizing radiation based on Li2B4O7:Mn,Si. To reveal the mechanism of daylight sensitivity, thermoluminescence, EPR, and luminescence excitation studies and technological experiments were undertaken. A 400 nm light was shown to be most effective to store the dose and to excite the luminescence band near 600 nm. A charge-transfer complex of a casual titanium impurity is supposed to be responsible for daylight false-dose storage. Another mechanism of a false-dose storage is supposed to be caused by a thermally induced stress, which yields a high-temperature thermoluminescence of Li2B4O7:Mn,Si detectors. Increasing the temperature of the sintering of tablets eliminates both false-dose effects. Possible models of energy storage are discussed.

Key words: thermoluminescence, dosimetry, false dose, lithium tetraborate, daylight sensitivity, luminescence spectra, EPR spectra.

 

 

References

 

1. Kuznetzov, A. Yu., Isaenko, L. I., Kruzhalov, A. V., Ogorodnikov, I. N. & Sobolev, A. B. Electronic structure of single crystals of lithium tetraborate Li2B4O7. Cluster calculations and Roentgen photoelectron spectroscopy. Fizika Tverdogo Tela, 1999, 41(1), 57–59 (in Russian).

 

2. Kitis, G., Furetta, C., Prokic, M. & Prokic, V. Kinetic parameters of some tissue equivalent thermoluminescence materials. J. Phys. D: Appl. Phys., 2000, 33, 1252–1262. doi:10.1088/0022-3727/33/11/302

 

3. Mahesh, K., Weng, P. S. & Furetta, C. Thermoluminescence in Solids and Its Applications. Nuclear Technology, Ashford, UK, 1989.

 

4. Lust, A., Paama, L., Kerikmäe, M., Must, M. & Perämäki, P. Determination of manganese in thermoluminescent materials by inductively coupled plasma atomic emission spectrometry and spectrophotometry. Proc. Estonian Acad. Sci. Chem., 2002, 51, 126–133.

 

5. Prokic, M. Dosimetric characteristics of Li2B4O7:Cu,Ag,P solid TL detectors. Radiat. Prot. Dosim., 2002, 100(1–4), 265–268.

 

6. Takenaga, M., Yamamoto, O. & Yamashita, T. Preparation and characteristics of Li2B4O7:Cu phosphor. Nucl. Instrum. Methods, 1980, 175, 77–78. doi:10.1016/0029-554X(80)90259-1

 

7. Sristava, J. K. & Supe, S. J. The thermoluminescent characterisation of Li2B4O7 doped with Cu. J. Phys. D, 1989, 22, 1537–1543. doi:10.1088/0022-3727/22/10/020

 

8. Christensen, P. Manganese activated lithium borate as a thermoluminescent dosimetry material. Risó Rep. 161, 1967.

 

9. Gesell, T. F. Environmental monitoring with thermoluminescence dosimetry. TEEE Trans. Nucl. Sci., 1982, NS-29(3), 1225–1232.

 

10. Griscom, D. L. & Griscom, R. E. Paramagnetic resonance of Mn2+ in glasses and compounds of the lithium borate system. J. Chem. Phys., 1967, 47(8), 2711–2722. doi:10.1063/1.1712288