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Department of Software Science, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 21, 12618

Tallinn, Estonia

Received 11 March 2020, accepted 12 May 2020, available online 18 June 2020

c© 2020 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. This paper addresses the position tracking control design problem for an autonomous underwater vehicle (AUV). The

vehicle dynamics is subjected to a non-holonomic velocity constraint arising due to fluid interactions, resulting in a differential-

algebraic equation (DAE) formulation for the equations of motion. A reduced order state-space model in a chained form is derived

after solving the constraint force. A hierarchical geometric control law is designed for tracking the position of the centre of mass,

via this chained form so that the tracking error is almost globally exponentially stable. Simulations on a planar AUV model have

been presented to illustrate the performance of the control law.
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1. INTRODUCTION

Nonholonomic mechanical systems are those which velocities are restricted to a distribution (i.e. a subbun-

dle of the tangent bundle of their configuration space), which is not integrable (i.e. not involutive) [25]. The

mathematical theory of nonholonomic systems was introduced already in 1928 in [38], within a differen-

tial geometric framework. This theory was developed further in 1937 by Vagner via the Schouten–Vagner

curvature tensor, republished in [17]. More recently, this mathematical framework has been studied in the

variational context where trajectories of nonholonomic systems are considered as geodesics of the Schouten–

Vranceanu connection [24]. Nonholonomic systems in the control paradigm were studied by Brockett in

1982 [8] within the framework of a singular Riemannian metric. More recently, there has been a significant

body of work such as [2,3,5] in the area of optimal control, time-varying stabilization and motion planning

of nonholonomic systems. In [10], the equations of motion have been studied in a differential-algebraic

framework on manifolds, motivated by the fact that a large class of complex mechanical systems can be

understood as individual components evolving on free configuration manifolds, whose dynamics are related

with one another due to inter-connection, contact or relative motion constraints. The equations of motion

have been derived in the state-space form after solving the algebraic variable, which denotes the reaction

force that is natural to the system, responsible for satisfying the constraint.
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One of the techniques in geometric control theory that has gained wide popularity in recent times is
the extension of classical proportional-derivative (PD) controllers to systems on manifolds. This approach
offers the advantage that the control law is globally defined, and is almost globally exponentially stable.
Moreover, other desirable properties of PD control, such as robustness, transient performance etc., are glob-
ally extended. An important factor that allows these advantages to be used in geometric controllers is that
the control design does not employ local coordinate charts. While using coordinates simplifies the design
process (by working in a Euclidean space with well-known techniques), a disadvantage is that the system is
only defined within the domain of the chart, and encounters singularities at the chart-boundary. This makes
the control system only locally valid. In order to work intrinsically on the manifold, a coordinate invariant
(geometric) definition of proportional and derivative errors is necessary. One way of achieving this is to
exploit certain structures on the manifold, natural to mechanical systems, such as a Riemannian geometric
or Lie group structure. This idea was first developed in [20] for stabilization of fully-actuated mechanical
systems, and later extended for tracking control in [10] and [16]. Some other works in this direction are
[11,12,29,28] for Lie groups and [37,27] for output tracking.

The aforementioned methods, however, can not be applied to nonholonomic systems due to the well-
known Brockett condition, which states that such systems can not be asymptotically stabilized by static feed-
back [9]. Due to this, several methods have been developed for nonholonomic systems, where time-varying
controls are employed, such as [40,18], where accessible nonholonomic systems have been stabilized via
Lie-bracket approximation techniques. Another class of systems for which tracking controllers have been
designed, are those, which can be transformed into chained forms, with a cascade control structure, such as
[34,33,31]. In fact, this method has also been applied to underwater vehicles in [39]. Some other techniques
have been reviewed in [30].

In this paper, we study the dynamics of an underwater robotic vehicle, whose velocity is constrained
to Lie in a distribution that is not integrable. This constraint arises due to the hydrodynamic interaction
with the ambient fluid (see [39]), which allows the vehicle to translate only in the longitudinal direction
of its body frame. The equations of motion of this nonholonomic system are expressed as an index-21

differential-algebraic control system, where the algebraic variable represents a reaction force, applied on
the robot by the ambient fluid, in a direction perpendicular to the admissible direction of motion. The
equations of motion are solved by expressing the algebraic variable in terms of the position and velocity,
and thereby eliminating the constraint, yielding a state space model. This model is shown to be in a chained
form, where the control has a hierarchical structure. The tracking control problem is solved by employing
a geometric controller for the inner loop on the unit circle, cascaded with a dynamic-inversion controller
([36]) for the outer loop. This approach is advantageous over [39] because the control law is designed and
stability analysis are carried out directly on the nonlinear manifold without employing local coordinates,
thereby avoiding resulting singularities. The main contribution in this paper is to combine differential-
algebraic equation methods with geometric controllers. Output trajectories, which are consistent with the
constraint, are chosen, and the tracking controller has been numerically simulated for point stabilization
and time-varying tracking cases. It is demonstrated via examples that the tracking has appreciable transient
performance, almost global stability, and robustness to parameter perturbations.

The paper is organized as follows. In section 2, the theory of nonholonomic systems and the output
tracking problem has been recalled. In section 3, the dynamics of the nonholonomic robot has been derived.
The state space model has been derived in section 4, followed by the control design in section 5, and
simulations in section 6, followed by concluding remarks.

2. OVERVIEW OF NONHOLONOMIC CONTROL SYSTEMS

In this section we briefly review the dynamical structure of nonholonomic constrained systems as well as
their control design. The reader is referred to [4,13] for further details. In general, such systems arise

1 The index of a differential-algebraic system is the number of derivatives required to resolve the constraint output.
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when the dynamics are subjected to velocity constraints due to contact and constrained relative motion. The

constrained dynamics are described by a set of differential-algebraic equations (DAE)

q̈ = F(q, q̇)+
p

∑
j=1

λ jAT
j (q)+

m

∑
j=1

Cj(q)u j,

0 = A(q)q̇, (1)

where q ∈ R
n is a vector of coordinates on the configuration manifold M, F(q, q̇) represents forces such as

gyroscopic, friction and potential forces, and the external (control) forces are parameterized by u j along m
independent control vector fields Cj(q). The velocity constraint is determined by a set of p independent,

smooth differential 1-forms which are represented as A j(q) ∈ R
1×n, A(q) = [AT

1 (q), . . . ,A
T
p (q)]

T (with re-

spect to the basis dq). The velocity is constrained to Lie in the kernel of these 1-forms, i.e. in ker A(q).
The Lagrange multipliers λ j(t) represent a parameterization of the reaction forces which are intrinsic to the

system, whose evolution guarantees that the constraint is satisfied. The reaction forces are orthogonal to the

constrained velocity subspace along the vector fields which are represented as AT
j (q) ∈ R

n×1 (with respect

to the basis ∂/∂q). The reader is referred to [1] for the analysis of such DAE systems and [7] for their

numerical treatment.

In certain cases, it may be possible to find p smooth functions φ j(q) satisfying

A j(q) = dφ j(q), j = 1, . . . , p. (2)

Such constraints are called holonomic, and the system can be regarded as restricted to a submanifold which is

the level set S = {q|φ j(q) = c j, j = 1, . . . p}, where c j are determined by the initial conditions. The velocity

constraint ensures that the motion is tangential to S, therefore reducing the problem under consideration to

an unconstrained system on S. We term S as the integral submanifold of {A j(q), 1 ≤ j ≤ p}. In case such

functions do not exist, we call the constraints nonholonomic. The integrability of the set of 1-forms {A j(q)}
can be checked by the Frobenius theorem [6]. Therefore, in order for the system under consideration to be

nonholonomic, the following assumption needs to be satisfied.

Assumption 1. The differential system {A j(q)} is not completely integrable.

Some examples of nonholonomic systems are knife edge dynamics [21], rolling disc [22], unicycle [32],

nonholonomic car [14], and wheeled mobile robots [35].

2.1. Output tracking of nonholonomic systems

We briefly review the general principles involved in designing output tracking control laws for nonholo-

nomic systems. The reader is referred to [4,13,32] for details about control design for various mechanical

systems with nonholonomic constraints.

Consider the problem of tracking a set of independent output configurations y= h(q)= [h1(q), . . . ,hk(q)]T ,

which satisfy the following two conditions in Assumption 2 below.

Assumption 2.
1. The trajectory is consistent with the constraints in (3), i.e. given smooth y(t), there exists a trajectory q(t)

such that

y(0) = h(q(0)),
A j(q(t))q̇(t) = 0, j = 1, . . . , p, ∀ t. (3)

2. y(t) corresponds uniquely to an admissible trajectory q(t) and vice-versa.

In general, the dimension of the configuration space may be higher than the output space. However,

local invertibility may still be guaranteed due to velocity constraints which restrict the space of admissible

trajectories.

(3)

(1)
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We additionally assume that the set of admissible velocities, i.e. ker {A j(q)}, can be spanned by n− p
independent vector fields {G j(q)}, in which case the velocity can be parameterized as

q̇ =
n−p

∑
j=1

G j(q)v j. (4)

Given a reference trajectory yr(t) we first consider the kinematic control problem of determining v(t) =
[v1(t), . . . ,vn−p(t)] such that y(t) asymptotically tracks yr(t). We refer the reader to [4] for details about

kinematic controllability and control design. Subsequently, we determine the control force u(t), required

to ensure that the velocity q̇(t) →
p
∑
j=1

G j(q)v j(t) asymptotically. Such a control law u(t) exists under the

following assumption:

Assumption 3. The control vector fields, when projected onto the constrained velocity subspace, span the

entire subspace, i.e.

rank (GT (q)C(q)) = rank (G(q)), ∀q ∈ M, (5)

where G(q) = [G1(q), . . . ,Gn−p(q)], C(q) = [C1(q), . . . ,Cm(q)].

3. NONHOLONOMIC ROBOT DYNAMICS

The simplified dynamical model of the planar AUV is represented by the following DAE system [10].

q̇ = Rη ,

η̇ = f (q,η)+λRT AT (q)+Bū,
0 = A(q)q̇, (6)

where in (6)

• the configuration q = [q1,q2,q3]
T is a vector consisting of two coordinates of the centre of mass position,

and the orientation angle of the longitudinal axis;

• η is the velocity in the body-fixed frame;

• the rotation matrix from the body-fixed frame to the inertial frame (alternatively called global fixed-frame)

is represented as

R =

⎡
⎣

cosq3 −sinq3 0

sinq3 cosq3 0

0 0 1

⎤
⎦; (7)

• f (q,η) are forces represented in the body frame;

• the control inputs are allocated as ū = [ū1, ū2]
T ,

ū1 = u1 cosu2, ū2 = u1 sinu2 (8)

(note that the controls are well defined when u1 �= 0 i.e. when the robot is under a non-trivial thrust);

• the control coefficient matrix is defined as

B = [B1,B2] =

⎡
⎢⎢⎢⎢⎣

α1 0

0 α2

0 α3

⎤
⎥⎥⎥⎥⎦

(9)

α1,α2;

(6)
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• the velocity of the centre of mass (q̇1, q̇2) is constrained to be along the longitudinal axis. Hence, A(q) is

obtained as

A(q) = [−sinq3 cosq3 0]; (10)

• the term λRT

⎡
⎣
−sinq3

cosq3

0

⎤
⎦ represents the reaction force (parameterized by λ (t) ∈ R) which acts on the

robot due to its interaction with the ambient fluid. The evolution of λ (t) is implicitly determined in order

to satisfy the velocity constraint.

We now express (6) in the standard form as (1). The first equation in (6) is differentiated to obtain:

q̈ = Ṙη +Rη̇ . (11)

By differentiating (7), we obtain
Ṙ = Rω̂,

ω̂ =

⎡
⎣

0 −q̇3 0

q̇3 0 0

0 0 0

⎤
⎦. (12)

We substitute Ṙ from (12) and η̇ from (6) into (11) to obtain the dynamics in the form of (1) as

q̈ = F(q, q̇)+λAT (q)+C(q)ū,
0 = A(q)q̇, (13)

where F(q, q̇) and C(q) are defined as

F(q, q̇) = Rω̂RT q̇+R f (q, q̇), C(q) = [C1(q),C2(q)] = [RB1,RB2]. (14)

We analyse the integrability of the constraints by using the Jacobian of A(q):

∂A(q)
∂q

=

⎡
⎣

0 0 −cosq3

0 0 −sinq3

0 0 0

⎤
⎦. (15)

If the constraint would be integrable, i.e. A(q) = dφ(q) for some smooth function φ , then
∂A(q)

∂q
=

∂ 2φ(q)
∂q2

would have been symmetric, which is not the case. Note that this is a simplified version of the Frobenius

theorem [25]. Hence, the constraint satisfies Assumption 1 and the system is indeed nonholonomic.

4. REDUCED STATE SPACE REPRESENTATION

In this section we perform kinematic reduction of the constrained system which satisfies the assumptions

in section 2.1, in order to obtain a reduced order state space model for control design. Since the algebraic

constraint is implicitly satisfied for each q, the velocity q̇ must be in ker A(q).
Define

G(q) =

⎡
⎣

cosq3 0

sinq3 0

0 1

⎤
⎦, (16)

which spans ker A(q), i.e. that satisfies

A(q)G(q) = 0. (17)

(13)



ε < ω < ω1 − ε︸ ︷︷ ︸
1st interval

, ω1 + ε < ω < ω2 − ε︸ ︷︷ ︸
2nd interval

, ω2 + ε < ω < ω3 − ε︸ ︷︷ ︸
3rd interval

, ..., ωn + ε < ω < ωn+1 − ε︸ ︷︷ ︸
nth interval

, n = 1,2,3, ...,7.

On the frequency axis, the singular points 1, 3, 5, 7 are star points and 2, 4, 6 are saddle points.

Th l ti U f th b E (60) i l l t d ith Si ’ l
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Then, the constrained kinematics can be written as (see (4))

q̇ = G(q)v, (18)

where v = [v1,v2]
T is a parameterization of ker A(q). In order to obtain the dynamics v̇, we project q̈ as

obtained in (13) and on differentiating (18), onto G(q) = ker A(q) as follows:

GT (q)q̈ = GT (q)G(q)v̇+GT (q)Ġ(q)v
= GT (q)[F(q, q̇)+λAT (q)+C(q)ū].

(19)

Observe that in (19) GT (q)G(q) = I and GT (q)A(q) = 0. Therefore,

v̇ =−G(q)Ġ(q)v+GT (q)[F(q, q̇)+C(q)ū]. (20)

The matrix of control vector fields is obtained after substituting for G(q) from (16) and C(q) from (14) as

GT (q)C(q) =
[

α1 0

0 α3

]
. (21)

Since α1 and α2 are non-zero constants, the control matrix is uniformly non-singular. From the above

equation, it can be seen that condition (5) in Assumption 3 is satisfied, thereby allowing us to construct a

control law which can track v.

In order to linearize the dynamics in (20) with respect to the control, we define the following regular

static state feedback

ū =

[
α−1

1 0

0 α−1
3

]
[G(q)Ġ(q)v−GT (q)F(q, q̇)+ û],

(22)

which, when substituted into (20), results in

v̇ = û. (23)

Equations (18) and (23) constitute the reduced explicit state equations of the nonholonomic constrained

dynamics, described in terms of the original variables as

q̇1 = v1 cosq3,

q̇2 = v1 sinq3, (24)

q̇3 = v2,

v̇ = û. (25)

5. HIERARCHICAL CONTROL DESIGN

In this section, a position tracking feedback law is designed for the state equations (24)–(25). The tracking

outputs y = [y1,y2]
T are chosen as

y1 = q1, y2 = q2. (26)

Let yr = [y1r ,y2r ]
T denote the reference output trajectory.

(19)

(22)

g

q̇1 = v1 cosq3,

q̇2 = v1 sinq3,

(25)

(24)
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Given an output trajectory y(t) such that ẏ(t) 6= (0,0)T , a configuration trajectory can be obtained as
q1(t) = y1(t), q2(t) = y2(t), and q3(t), i.e. the angle made by the axis of the robot is oriented in the
direction of ẏ(t). Hence, all output trajectories whose velocities do not vanish, are consistent according to
the condition (3) in Assumption 2. However, when the velocity of the output trajectory passes through the
origin, the corresponding configuration trajectory may encounter a discontinuity.

A hierarchical output tracking controller is designed based on the inner-outer loop paradigm which is
explained as follows. In the outer loop (24), q3 and v1 are assumed as virtual control inputs for which
feedback laws q3r and v1r are computed in order to track q1 and q2. Subsequently in the inner loop (25),
a feedback control law for û is designed in order to ensure that q3 and v1 track q3r and v1r . As described
in [26], hierarchical controllers stabilize the tracking errors provided that the dynamics of the inner loop is
significantly faster than that of the outer loop.

5.1. Outer loop tracking

Define the tracking error of the outer loop as

e1 = (y− yr) (27)

and specify the error dynamics by
ė1 =−k1e1, (28)

where K1 is a positive definite gain matrix. This ensures that e1 is exponentially stable.
Using (27), (26), (28) and (24) one can write:[

v1 cosq3
v1 sinq3

]
= ẏr− k1e1. (29)

We solve (29) for v1 and q3 by computing the magnitude and phase of the right hand side and denote the
solutions as

v1r = ||ẏr−K1e1||2,
q3r = ∠(ẏr−K1e1),

(30)

where ∠ denotes the angle (or unit-vector evolving on S1).

5.2. Inner loop tracking

The feedback û is computed in order to track q3r and v1r in the subsystem (25) rewritten as

v̇1 = û1,
q̇3 = v2,
v̇2 = û2.

(31)

Tracking v1: Define a tracking error
e2 := v1− v1r (32)

and specify its stable dynamics by
ė2 =−k2e2, (33)

where k2 is a positive constant. From (33) we get

û1 =−k2e2 + v̇1r , (34)

thereby ensuring exponential stability of e2.
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Tracking q3 on the unit circle S1: A nonlinear feedback controller is designed for the angle q3 ∈ S1.
Define θ := (q3−q3r). A Lyapunov function is chosen as

V (θ , θ̇) = k3(1− cosθ)+
1
2
(θ̇ + sinθ)2. (35)

The above Lyapunov function is based on the Morse function approach as described in [10], which is com-
monly used in geometric control of mechanical systems. A control law for û2 is designed as

û2 = ẍ5r − θ̇ cosθ − k4(θ̇ + sinθ)− k3 sinθ , (36)

where k3 and k4 are positive constants. From this, the derivative of V is obtained as

V̇ =−k3 sin2(θ)− k4(θ̇ + sinθ)2. (37)

We now employ the LaSalle-Yoshizawa theorem [23].

Theorem 5.1 (LaSalle–Yoshizawa). Let x = 0 be an equilibrium point of the system ẋ =F (x) and suppose
F is locally Lipschitz in x, uniformly in t. Let V (x) be a continuously differentiable, positive definite function
such that

lim
||x||→∞

V (x) = ∞,

and
V̇ (x)≤−W (x)≤ 0, ∀x. (38)

Then, all solution trajectories are globally uniformly bounded and satisfy

lim
t→∞

W (X(t)) = 0. (39)

In the context of the tracking problem, we consider the (closed-loop) system under the control law û2

θ̈ =−θ̇ cosθ − k4(θ̇ + sinθ)− k3 sinθ , (40)

where V (θ , θ̇) is defined as in (35) and W (θ , θ̇) = k3 sin2
θ + k4(θ̇ + sinθ)2. It can be observed that

W → 0 =⇒ θ →{0,π}, θ̇ → 0, (41)

i.e. θ converges to 0 or π . In order to ensure that the tracking errors converge to zero, it is necessary for the
orientation error θ to converge to zero. Hence, the error equilibrium (θ , θ̇) = (π,0) is undesired. We now
employ Chetaev theorem [19] in order to show that the error equilibrium (π,0) is unstable, and therefore
almost all trajectories converge to the desired error equilibrium (θ , θ̇) = (0,0).

Theorem 5.2 (Chetaev). Let xe be an equilibrium point of the system ẋ=F (x). Let V1(x) be a continuously
differentiable function such that V1(xe) = 0 and V1(x)> 0 for some x with ||x− xe|| being arbitrarily small.
Define a set U = {x ∈ Br(xe)|V1(x)> 0}, where Br is an open ball of radius r. Suppose that V̇1(x)> 0 in U,
then xe is an unstable equilibrium point.

Consider a function V1 = 2k3−V which vanishes at (π,0). From the continuity of V1, it can be observed
that in any neighbourhood of (π,0), there exist points, where V1 > 0. Further, in an open neighbourhood of
the equilibrium point, excluding it, we observe that V̇1 =−V̇ > 0. Hence, Chetaev theorem proves that the
undesired error equilibrium (π,0) is locally unstable. From the feedback law û, one can solve for ū from
(22) and then u from (8).
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6. SIMULATION RESULTS

The drift forces and control coefficients for the model (6) were taken as

f (q,η) =

⎡
⎢⎢⎣
− (Yv̇−m)η2η3+Duη1

m−Xu̇

− (Xu̇−m)η1η3+Dvη2

m−Yv̇

− (Xu̇−Yv̇)η1η2+Drη3

Izz−Nj̇

⎤
⎥⎥⎦, (42)

α1 =
1

m−Xu̇
, α2 =

1

m−Yv̇
, α3 =

1

Izz −Nj̇

l
2
, (43)

where the parameters (in SI units) are m = 3.04 is the mass, l = 0.5 is the vehicle’s length, Xu̇ = −0.3852,

Yv̇ =−2.5166, Nj̇ =−0.0091 are the added mass parameters, Du =−0.18, Dv =−19.9, Dr =−1.8 are the

drag parameters. The above model is based on [15]. We present the simulation results of the closed-loop

system governed by the equations (24) and (25), under the control law û.

In the first simulation, a constant reference trajectory is chosen as yr(t) = (5,−5). The initial conditions

are chosen as q1(0) = q2(0) = q3(0) = 0, and v(0) = 0. Next, a time-varying reference trajectory is chosen

as yr(t) = (5cos(t),5sin(t)). The initial conditions are chosen as q1(0) = q2(0) = q3(0) = 0, and v(0) = 0.

Such a trajectory is chosen as it ensures that the underwater robot goes through all angles during the tracking

phase.

Figure 1 shows the evolution of the vehicles configuration during the stabilization maneuver. Figure 2

shows the output error during stabilization, and Fig. 3 shows the corresponding control trajectories. It can

be seen that the output converges exponentially, despite the errors in model due to inaccurately prescribed

gyroscopic force components. Figures 4, 5, and 6 show the evolution of the configuration, output error,

and control, respectively, while tracking a circular trajectory. Here it can be seen that the output error

converges exponentially with appreciable transient performance. It can be seen that there is a slight steady

state error, due to modelling inaccuracies; however the control action is appreciably robust, which is an

intrinsic characteristic of geometric PD controllers.

Figure 1. Configuration q(t) during stabilization maneuver.Fig. 1.

Time (s)

5 

4 

3 

2 

1 

0 

–1 

–2 

–3 

–4 

–5
0        2        4         6        8        10      12       14      16       18      20

q 
(t)



224 Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 215–227

Figure 2. Output error y(t)− yr(t) during stabilization maneuver.

Figure 3. Control input û during stabilization maneuver.

Figure 4. Configuration q(t) during tracking maneuver.
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Figure 5. Output error y(t)− yr(t) during tracking maneuver.

Figure 6. Control input û during tracking maneuver.

7. CONCLUDING REMARKS

An output tracking control law for a general class of nonholonomic systems with outputs, whose trajectories

were consistent with the constraints and invertible with respect to state trajectories, was developed. The

Euler–Lagrange equations of motion were presented in a differential-algebraic framework, and a constraint

elimination based reduction process was described for deriving the state space equations. This approach was

demonstrated on a model of an underwater vehicle with nonholonomic velocity constraints. The derived

state space model was shown to possess a control structure in a chained form. The hierarchical structure of

the state space model was exploited to design a tracking controller for the position of the vehicle. A coordi-

nate invariant geometric controller was employed in the inner loop, with a dynamic inversion controller in

the outer loop. Since the controller did not use local coordinates, it was free from singularities due to co-

ordinate charts, and exhibited (almost) global, exponential stability, and robustness to parameter variations.

Some avenues for further research include tracking of outputs with internal dynamics, tracking on a general

class of manifolds and approximate tracking of non-consistent output trajectories.
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Geomeetriline lähenemine mitteholonoomse allveesõiduki asendi trajektoori järgimiseks

Ashutosh Simha ja Ülle Kotta

On käsitletud juhtimisseaduse leidmist autonoomsele mehitamata allveesõidukile, mis kindlustab, et sõiduki

massikese järgib etteantud trajektoori. Et sõiduki dünaamika allub vee interaktsioonidest põhjustatud kit-

sendustele, on liikumisvõrrandid kirjeldatud mittelineaarsete diferentsiaal- ja algebraliste võrrandite süstee-

mina. Sellest esitusest on esmalt tuletatud madalamat järku klassikalised olekuvõrrandid. Seejärel on hie-

rarhiline juhtimisseadus konstrueeritud selliselt, et vea dünaamika sõiduki keskme ja etteantud trajektoori

vahel on peaaegu kõikjal ekponentsiaalselt stabiilne. Simulatsioonid illustreerivad juhtimisseaduse tõhusust

ja näitavad, et see kindlustab etteantud trajektoori järgimisel nõutud täpsuse.
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