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Abstract. In this paper, we answer positively the open question, posed in [2], about the existence of pushouts in the category S (B)
of Segal topological algebras.
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A topological algebra is throughout this paper a topological linear space over the field K (where K
stands for either R or C), in which is defined a separately continuous associative multiplication.

In [1], the study of general Segal topological algebras started. We begin with recalling the definitions
from [1].

A topological algebra (A,τA) is a left (right or two-sided) Segal topological algebra in a topological
algebra (B,τB) via an algebra homomorphism f : A → B, if
(1) clB( f (A)) = B;
(2) τA ⊇ { f−1(U) : U ∈ τB};
(3) f (A) is a left (respectively, right or two-sided) ideal of B.

In what follows, a Segal topological algebra will be denoted shortly by a triple (A, f ,B).
From now on, we will fix a topological algebra (B,τB), which we will not change for this paper.
Let us remind to the readers also the definition of the category S (B) of Segal topological algebras,

introduced in [2].
The set Ob(S (B)) of objects of the category S (B) consists of all Segal topological algebras in the

same topological algebra B, i.e., all Segal algebras in the form of triples (A, f ,B),(C,g,B), ....
The set Mor((A, f ,B),(C,g,B)) of morphisms between Segal topological algebras (A, f ,B) and (C,g,B)

consists of all continuous algebra homomorphisms α : A →C, satisfying g(α(a)) = (1B ◦ f )(a) = f (a) for
every a ∈ A.

In [2] we showed that S (B) is really a category, which had, among other categorical constructions, also
pullbacks. The existence of pushouts was an open problem posed in [2].

The present paper answers this open question positively, using some facts from category theory and
results obtained in [2] and [3].
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Let us start with the definition of a pushout in the context of Segal topological algebras (in the category
S (B)).

Definition 1. Let (A, f ,B),(C,g,B),(D, j,B) ∈ Ob (S (B)) with γ ∈ Mor((D, j,B),(A, f ,B)) and
δ ∈ Mor((D, j,B),(C,g,B)). An object (Q,k,B) of the category S (B), together with morphisms
ρ ∈ Mor((A, f ,B),(Q,k,B)) and σ ∈ Mor((C,g,B),(Q,k,B)), is called the pushout of morphisms γ and δ ,
if
(1) ρ ◦ γ = σ ◦δ

(2) for every object (R, l,B) of the category S (B) and such morphisms λ ∈ Mor((A, f ,B),(R, l,B)),
µ ∈ Mor((C,g,B),(R, l,B)) that λ ◦γ = µ ◦δ , there exists unique morphism ν ∈ Mor((Q,k,B),(R, l,B))
such that ν ◦ρ = λ and ν ◦σ = µ .

Let C be any category with the following two properties:
(P1) for any pair of objects A,B ∈ Ob(C ), the coproduct of A and B exists in C ;
(P2) for any pair of objects C,D ∈ Ob(C ) and any pair of morphisms α,β ∈ Mor(C,D), the coequalizer of

α and β exists in C .
In category theory it is known1 that, under these two conditions, for any morphisms γ ∈ Mor(E,F),

δ ∈ Mor(E,G), with E,F,G ∈ Ob(C ), the pushout of γ and δ exists and is constructable in the following
way:
(1) Construct the coproduct (F ⊔G, iF , iG) of F and G with injections iF : F → F ⊔G and iG : G → F ⊔G.

Then iF ◦ γ, iG ◦δ ∈ Mor(E,F ⊔G).
(2) Construct the coequalizer (Q,λ ) of maps iF ◦ γ and iG ◦δ , where λ ∈ Mor(F ⊔G,Q).
(3) The triple (Q,λ ◦ iF ,λ ◦ iG) is then the pushout of γ and δ .

Now we continue with the definitions and descriptions of coproduct and coequalizer in the category
S (B). The material about coproducts comes from [3] and the material about coequalizers comes from [2].

Definition 2. The coproduct of (A, f ,B),(C,g,B) ∈ Ob(S (B)) is a triple ((A ⊔C,h,B),α,β ), where
(A⊔C,h,B) ∈ Ob(S (B)), α ∈ Mor((A, f ,B),(A⊔C,h,B)),β ∈ Mor((C,g,B),(A⊔C,h,B)) such that for
every (X , j,B) ∈ Ob(S (B)) and every pair of morphisms γ ∈ Mor((A, f ,B),(X , j,B)) and
δ ∈ Mor((C,g,B),(X , j,B)) there exists a unique morphism θ ∈ Mor((A ⊔C,h,B),(X , j,B)) such that
θ ◦α = γ and θ ◦β = δ

1 It could be obtained as the dual claim of Corollary 5.8 in [4], p. 82, for example.
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In the following result, we need the notion of a tensor algebra, which is explained in more details in [3].
Suppose that (A, f ,B),(C,g,B) ∈ Ob(S (B)), let T be the tensor algebra of A and C and define a map

hT : T → B as follows:

hT (t) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

h̃T (ti, j,l)

for every element

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni

of T , where

h̃T (ti, j,l) =

{
f (ti, j,l), if ti, j,l ∈ A
g(ti, j,l), if ti, j,l ∈C

.

On algebra T we consider the topology τhT = {h−1
T (U) : U ∈ τB}, where τB denotes the topology of B.

Then (T,τhT ) becomes a topological algebra and hT becomes a continuous algebra homomorphism in the
topology τhT (see [3] for details).

Lemma 1. Let (A, f ,B),(C,g,B) ∈ Ob(S (B)) and let T be the tensor algebra of A and C. Define the map
hT : T → B as in (0.1) and equip T with the topology τhT . Let I be the two-sided ideal of T , generated by
the set

{a1 ⊗a2 −a1a2,c1 ⊗ c2 − c1c2 : a1,a2 ∈ A,c1,c2 ∈C}

and A⊔C = T/I be equipped with the quotient topology. Let κI : T → T/I be the quotient map. Then
the triple (A⊔C,h,B), where h(κI(t)) = hT (t) for every t ∈ T and every κI(t) ∈ A⊔C, is an object of the
category S (B).

Proof. For the proof, see the proof of Lemma 2.2 in [3].

The next Proposition describes the coproducts of two elements in the category S (B).

Proposition 1. For any (A, f ,B),(C,g,B) ∈ Ob(S (B)), their coproduct in S (B) exists and is the triple
((A⊔C,h,B),α,β ), where (A⊔C,h,B) is the object of S (B), described in Lemma 1, α : A → A⊔C and
β : C → A⊔C are morphisms, defined by α(a) = κI(a),β (c) = κI(c) for all a ∈ A and c ∈ C, where κI is
the quotient map, defined in Lemma 1.
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Proof. For the proof, see the proof of Proposition 3.2 in [3].

Now we move on to the coequalizers.

Definition 3. Let (A, f ,B),(C,g,B) ∈ Ob(S (B)). The coequalizer of morphisms α,β ∈ Mor((A, f ,B),
(C,g,B)) is a pair ((Q,k,B),λ ) such that
(1) (Q,k,B) ∈ Ob(S (B)) and λ ∈ Mor((C,g,B),(Q,k,B)) with λ (α(a)) = λ (β (a)) for every a ∈ A

(2) for any pair ((R, l,B),µ), where (R, l,B) ∈ Ob(S (B)) and µ ∈ Mor((C,g,B),(R, l,B)) with
µ(α(a)) = µ(β (a)) for every a ∈ A, there exists unique ν ∈ Mor((Q,k,B),(R, l,B)) with ν ◦λ = µ .

Next Proposition describes the coequalizers in the category S (B).

Proposition 2. Let (A, f ,B),(C,g,B) ∈ Ob(S (B)) and I be the smallest two-sided ideal of C, generated by
the set

M = {α(a)−β (a) : a ∈ A}.
Then the coequalizer of morphisms α,β ∈ Mor((A, f ,B),(C,g,B)) is the pair ((C/I, g̃,B), p), where
g̃ : C/I → B is defined by g̃([c]) = g(c) for each [c] ∈ C/I, p : C → C/I is the canonical projection and
C/I is equipped with the quotient topology

τC/I = {V ⊆C/I : p−1(V ) ∈ τC}.

Proof. For the proof, see the proof of Theorem 10 in [2].

Thus, the conditions P1) and P2) are fulfilled for the category S (B). Hence, we can state the main result
of this paper.

Theorem 1. The pushouts exist always in the category S (B).

To illustrate the situation, we give the following commutative diagram,
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which describes the pushout of morphisms γ and δ , if one compares this diagram with diagrams given in
the Definitions 1–3 and takes ρ = λ ◦α and σ = λ ◦β in the diagram of Definition 1.

CONCLUSION

In this paper we showed that the pushouts always exist in the category S (B).
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Väljatõukajatest Segali topoloogiliste algebrate kategoorias S (B)

Mart Abel

Olgu B topoloogiline algebra. On näidatud, et Segali topoloogiliste algebrate kategoorias S (B) leiduvad
kõik väljatõukajad.


