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Abstract. The Elements by a System of Transfer equations (EST) method offers exact solutions to various vibration problems
of trusses, beams, and frames. The method can be regarded as an improved or modified transfer matrix method. Using the EST
method, the roundoff errors generated by multiplying transfer arrays are avoided. It is assumed that the bars of trusses are connected
by frictionless joints. Longitudinal vibration of a truss bar is described by a differential equation. In a direction perpendicular to the
longitudinal axis, no bending can occur. In a transverse direction the rigid bar displacements vary linearly. The rigid bar rotational
moment of inertia is taken into account. The transfer equations for the truss bar are presented. The transverse displacements at
the joint (node) of an elastic and a rigid bar are equal. The essential boundary conditions at joints for the differential equation are
the compatibility conditions of the displacements of truss elements. The natural boundary conditions at joints are the equilibrium
equations of longitudinal elastic forces and transverse inertial forces of rigid bars.

Key words: truss bar vibration, transfer equations, essential boundary conditions at joints, natural boundary conditions at joints,
master–slave connectivity, transverse inertial forces.

1. INTRODUCTION

In structural engineering, natural frequency analysis finds the natural or resonant frequencies and the mode
shape of mechanical structures. Natural frequency analysis assumes that a structure vibrates in the absence
of excitation and damping (the so-called free undamped vibration). This kind of analysis of a system is
used to keep the natural frequencies away from excitation. For such analysis finite element techniques –
the finite element method, boundary element method, transfer matrix method, a.o. methods – can be used.
The transfer matrix method (TMM) in the natural frequency analysis for elastomechanical elements was
used by Pestel and Leckie [1]. A good literature review about natural frequency analysis with the TMM can
be found in He et al. [2]. The drawback of this method is numerical difficulties when the transfer matrix
manipulation involves differences of large numbers and roundoff and truncation errors by the progressive
multiplication of transfer matrices [3, p. 236]. This paper outlines the enhancement of the Elements by a
System of Transfer equations (EST) method to include truss vibrational problems. The EST method [4–
6] avoids the progressive multiplication of transfer matrices and the build-up of a sparse system of linear
equations with scaling the displacements and rotations. After solving an asymmetric sparse system of linear
equations, we unscale the initial parameter vectors (state vectors) of the elements.
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The equations system of the EST method contains transfer equations (solutions of differential equations),
which are the basic equations of the method, and the following boundary conditions:
– compatibility equations of the displacements at nodes;
– joint equilibrium equations at nodes;
– side conditions (bending moment, axial and shear force hinges);
– support conditions (restrictions on support displacements).

Thus, the EST method can be regarded as an improved or modified TMM.
There is a wide range of ways to verify the correctness of the solutions obtained by the EST method

[6] for a natural frequency analysis of bars, shafts, Euler–Bernoulli and Timoshenko beams, and frames,
whereas data on natural frequency analysis for trusses are scarce.

For natural frequency analysis of truss structures, the EST method uses the concept of master–slave
connections. The longitudinal vibrations of a truss bar are regarded as master element vibrations. The
rotary inertia of a rigid bar is taken into account through a slave element, which vibrates transversely and is
connected to the master bar at truss nodes. Considering this, the support reactions are as shown in Fig. 1b.

The natural frequencies for a truss structure are calculated by the EST method and are compared with
true frequencies of natural vibration obtained through constraint equations by Ramsay [7]. Our results
coincide exactly with those of [7, fig. 4].

The natural frequencies for a fifteen-bar truss found by the adaptive generalized finite element method
(adaptive GFEM) by Arndt [8, p. 243]) differ (e.g. by 48.3% for the frequences ω1) from the natural
frequencies for a fifteen-bar truss obtained by Braun et al. [9], cited in [10, p. 141]. As pointed out in the
closure of the NAFEMS Benchmark Challenge problem 5 [7], such inaccuracy might be the result of the
failure to take into account the rotary inertia of a rigid bar. To affirm this proposition, we computed the
natural frequencies for a fifteen-bar truss decoupling master–slave connections (see Fig. 1a), i.e. the rotary
inertia of a rigid bar was not considered. Ten digits in each of the 14 frequencies found coincided with the
results obtained by the adaptive GFEM. We believe that we have confirmed the reason of inaccuracy.

The natural frequencies computed by the EST method for a seven-bar truss were compared with the
frequencies obtained by the adaptive GFEM in [11, p. 207] and [8, p. 240], and were found to be different.
We again computed the frequencies without master–slave connections and the results of the calculations for
the six frequencies found matched in 10 digits. We believe that, once again, the reason of the inaccuracy has
been proved.

In the finite element method (FEM), the mass of the truss bar is lumped to the nodes. Let the truss
structure with massless bars (Fig. 1c) have the total lumped mass M at joint 2. The inertial forces ω2Mu and
ω2Mw will appear in the structure vibrating at a frequency ω . To produce a lumped mass matrix in FEM,
direct mass lumping and variational mass lumping that produce diagonally (directly) lumped mass (DLM)
and consistent mass (CM), respectively, are widely used [12; 13, pp. 12–14].

The usual equilibrium equations for an unloaded two-bar joint (node 2, Fig. 1a) are

ΣX = 0, −N1 −N2 cosα = 0; ΣZ = 0, N2 sinα = 0. (1)
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It follows that N1 = 0 and N2 = 0, which means that the elastic forces at the unloaded node are trivially
equal to zero. These equations alone are not suitable as natural boundary conditions.

According to the d’Alembert principle, in truss vibration problems both the longitudinal elastic forces
N1, N2 and the transverse inertial forces R f

1 , R f
2 of a rigid bar are necessary to find natural boundary

conditions at a truss bars joint. Therefore, let us write the equations of joint equilibrium (natural boundary
conditions) at truss node 2 (Fig. 1b):

ΣX = 0, −N1 −N2 cosα −R f
2 sinα = 0, (2)

ΣZ = 0, N2 sinα +R f
1 −R f

2 cosα = 0. (3)

We use similar equilibrium equations as the boundary conditions at a truss bars joint.
The compatibility conditions of truss elements at the hinged joint 2 (Fig. 1b), i.e. the essential boundary

conditions, are

u1 −u2 cosα −w2 sinα = 0, (4)
u2 sinα −w1 +w2 cosα = 0. (5)

These equations express the equality of the displacements of the truss bars in global coordinates at joint 2.

2. TRANSFER EQUATIONS OF A TRUSS BAR

2.1. Longitudinal vibration of a truss bar

Let us now apply the local right-handed coordinate system (x,z) to the truss element shown in Fig. 2 [14,
p. 384]. Here, sign convention 2 [5, p. 18] is used for the directions of displacements and forces.

The transfer equations for longitudinal vibration of a truss bar (cf. axial vibration of a bar [15, p. 36])
are

uL = uA cosκℓ− NA

EA
1
κ

sinκℓ, (6)

wL = wA −φAℓ, (7)
φL = φA, (8)
NL = −uAEAκ sinκℓ−NA cosκℓ, (9)

where
uA, uL – axial displacements at the beginning A and at the end L of the element, respectively;
wA, wL – transverse displacements at A and L;
φA, φL – rotation at A and L;
NA, NL – axial forces at A and L;
κ = ω

√
m/EA = ω

√
ρ/E – wavenumber;

ω – frequency of vibration;
m = ρA – mass per unit length;
ρ – mass density;
A – cross-sectional area;
E – elastic or Young’s modulus;
ℓ – length of the element.

In this paper the master element is subjected to longitudinal vibrations of a truss bar and its vibrations
can be written as tranfer equations in matrix form

ZL = U ·ZA, (10)
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Fig. 2. Truss bar.

where ZL and ZA are the initial and end parameters (also called state vectors of the output and input end [2]),

ZL =


uL
wL
φL
. . .
NL

 , ZA =


uA
wA
φA
. . .
NA

 , (11)

and the transfer matrix U is

U =



cosκℓ 0 0
... − 1

EA
1
κ sinκℓ

0 1 −ℓ
... 0

0 0 1
... 0

. . . . . . . . .
... . . .

−EAκ sinκℓ 0 0
... −cosκℓ


. (12)

2.2. Transverse vibration of a truss bar

The slave element is considered to be a rigid bar that vibrates transversely (Fig. 3). The degrees of freedom
at connection nodes can be defined as masters and slaves [16]. Kinematic constraints between the slave and
master degrees of freedom represent the equality of transverse displacements: w f

A = wA and w f
L = wL (see

Fig. 3).
The transverse displacement w(x) of the rigid bar of length ℓ varies linearly:

w(x) =
ℓ− x
ℓ

wA +
x
ℓ

wL. (13)
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Fig. 3. Rigid bar.
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Let the sum of moments about point L be equal to zero:

ΣML = 0; RQ
A ℓ+

∫ ℓ

0
mω2w(x) (ℓ− x) dx = 0. (14)

Then the dynamic support reaction RQ
A can be written as

RQ
A =−1

ℓ

∫ ℓ

0
mω2w(x)(ℓ− x) dx =−mℓω2

(
1
3

wA +
1
6

wL

)
. (15)

Now we consider the sum of moments about point A to be equal to zero:

ΣMA = 0; RQ
L ℓ+

∫ ℓ

0
mω2w(x) xdx = 0. (16)

Hence the dynamic support reaction RQ
L can be written as

RQ
L =−1

ℓ

∫ ℓ

0
mω2w(x) xdx =−mℓω2

(
1
6

wA +
1
3

wL

)
. (17)

The support reactions RQ
A and RQ

L can also be found from the rigid bar transverse inertial force F f and
angular momentum M f (see Fig. 4 and Eqs (20), (21)).

F f =−mℓẅ
(
ℓ

2

)
=−mℓ

[
−ω2w

(
ℓ

2

)]
= mℓω2w

(
ℓ

2

)
, (18)

M f =−mℓ3

12
φ̈ =−mℓ3

12
(
−ω2φ

)
=

mℓ3

12
ω2φ, (19)

ΣMyL=0 | RQ
A ℓ+F f ℓ

2
+M f = 0, (20)

ΣMyA=0 | M f −F f ℓ

2
−RQ

L ℓ= 0, (21)

φ ≈ tanφ =
wA −wL

ℓ
. (22)

Equations (10), (15), and (17) are the basic equations of the EST method [4,5] for a truss master-and-
slave element.

ÛI6×12 · Ẑ = 0. (23)

Here ÛI6×12 is the augmented transfer matrix.
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Fig. 4. Inertial force and angular momentum of a rigid bar.
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[
uA wA φA NA

... RQ
A w f

A

∣∣∣

ÛI =



cosκℓ 0 0 −i0 1
EA

1
κ sinκℓ

... 0 0

0 1 −ℓ 0
... 0 0

0 0 1 0
... 0 0

− 1
i0

EAκ sinκℓ 0 0 −cosκℓ
... 0 0

· · · · · · · · · · · · · · · · · · ·

0 0 0 0
... 1 1

i0
mℓ ·ω2(1/3)

0 0 0 0
... 0 − 1

i0
mℓ ·ω2(1/6)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
uL wL φL NL

... RQ
L w f

L

]
−1 0 0 0

... 0 0

0 −1 0 0
... 0 0

0 0 −1 0
... 0 0

0 0 0 −1
... 0 0

· · · · · · · · · · · · · · · · · · ·

0 0 0 0
... 0 1

i0
mℓ ·ω2(1/6)

0 0 0 0
... −1 − 1

i0
mℓ ·ω2(1/3)


(24)

and

Ẑ =

[
ZA
ZL

]
, (25)

where

ZA =



uA
wA
φA
. . .
NA

RQ
A

w f
A


, ZL =



uL
wL
φL
. . .
NL

RQ
L

w f
L


. (26)

The basic equation for a truss master-and-slave element with a CM or a DLM is

ÛI8×16 · Ẑ = 0, (27)

where ẐT =

[
uA wA φA NA RN

A RQ
A u f

A w f
A

... uL wL φL NL RN
L RQ

L u f
L w f

L

]
.
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Let us now consider how to form a matrix ÛI8×16 from ÛI6×12 of Eq. (24). We transform the transfer
matrix (12) into a master element transfer matrix of a massless truss bar. The following limits (λ = κℓ→ 0)

limλ→0U11 = limλ→0 cosλ = 1, limλ→0U14 =− ℓ
EA limλ→0

sinλ
λ =− ℓ

EA ,

limλ→0U41 = limλ→0−EA
ℓ λ sinλ = 0, limλ→0U44 = limλ→0−cosλ =−1

(28)

give the transfer matrix for truss statics problems [14, p. 385]. We replace the converted components in
matrix ÛI8×16.

The longitudinally vibrating mass of Eq. (12) is taken into account through a slave element (rigid bar):

limEA→∞U44 = limE→∞

(
E Aω

√
ρ
E sin

(
ω ℓ

√
ρ
E

))
= ρAℓω2.

We add into matrix (24), in addition to the transversal reactions RQ
A and RQ

L , the two equations of inertial
forces (acceleration–reaction forces) RN

A and RN
L caused by consistent mass matrix (CMM) oscillations ω:[

RN
A

RN
L

]
+

ρ ·A · ℓ ·ω2

6

[
2 1
1 2

][
u f

A

u f
L

]
=

[
0
0

]
,

[
RQ

A

RQ
L

]
+

ρ ·A · ℓ ·ω2

6

[
2 1
1 2

][
w f

A

w f
L

]
=

[
0
0

]
. (29)

In the truss master-and-slave element with diagonally (directly) lumped mass matrix (DLMM) the inertial
forces (acceleration–reaction forces) RN

A and RN
L from matrix ÛI8×16 were replaced by the inertial forces

below:[
RN

A
RN

L

]
+

ρ ·A · ℓ ·ω2

6

[
3 0
0 3

][
u f

A

u f
L

]
=

[
0
0

]
,

[
RQ

A

RQ
L

]
+

ρ ·A · ℓ ·ω2

6

[
3 0
0 3

][
w f

A

w f
L

]
=

[
0
0

]
. (30)

2.3. Modal analysis of a truss

In a modal analysis, for the system of equations (31) the load vector is set to zero. To get the nontrivial
solution ΦΦΦi of the homogeneous system (31), we will choose a free variable in accordance with the natural
frequency ωi of a truss structure.

spA(ωi) ·ΦΦΦi = 0, (31)

where the components of vector ΦΦΦi are Φ1,i, Φ2,i, ..., ΦN,i. Here N is the number of components of the state
vectors and support reactions.

The work of support reactions for a conservative system is zero (Ci · ∆i = 0). Here the support
displacement ∆i = 0, or the support reaction Ci = 0 (side conditions enforce zero support reactions at a
sliding or roller support). In a master–slave element model the rigid body (slave element) motion is coupled
with the elastic element (master element) deformation at nodes except for the truss support nodes [16]. At
a support node in the constraint direction of an elastic truss we rule this connection out. We also restrain
the rigid body (slave element) displacement in that direction. In joint equilibrium equations (boundary
conditions) in constraint direction we do not include inertial force (R N∨Q

i = 0).
The linear system (31) is homogeneous. To obtain a non-trivial solution, we pick a value ωi that will

make the determinant of the system singular:

det(spA(ωi)) = 0, (32)

where ωi denotes different natural frequencies, characteristic or normal values of the truss structure, and
are found here numerically by the bisection method. These values are conventionally arranged in sequence
from smallest to largest (ω1 < ω2 < .. .ωn).



A. Lahe et al.: An exact solution of truss vibration problems 251

For all the frequencies picked out from (32), the given boundary conditions and transfer equations are
met. Equation (32) for bars, shafts, and beams gives the expression for frequency equation or characteristic
equation [6].

The truss master-and-slave element with a CM was tested with a fifteen-bar truss presented in [9; 10,
p.141], whose eigenvalues were computed by the Jacobi method with a CMM. All 14 natural frequencies
found by the EST method coincide exactly with those found by Braun et al. [9], cited in [10, p. 141].
A GNU Octave script compiled and solved the linear equations involving sparse matrices (Compressed
Column Sparse (rows = 244, cols = 244, nnz = 698 [1.2%])) for a fifteen-bar truss relatively
quickly.

The basic equation (27) for a truss master-and-slave element is used in our next examples to find the
natural frequencies with CMM and DLMM lumping.

The results of the calculation are presented in Tables 1 and 2. The density of the sparse matrix spA in
the linear system of equations (44) for finding boundary values Z with CMM lumping is 2.6% (Compressed
Column Sparse (rows = 116, cols = 116, nnz = 350 [2.6%])) and with DLMM lumping 2.4%
(Compressed Column Sparse (rows = 116, cols = 116, nnz = 322 [2.4%])).

Example 2.1 (free vibrations of a truss structure). Find the natural frequencies of the truss structure
shown in Fig. 5.

Length ℓ and height h of a cantilever truss structure are 1.0m, cross-sectional area of a bar is Ar = Ad =
3.14×10−4 m2, elastic or Young’s modulus E = 210GPa, and mass density ρ = 7.80× 103 kg/m3 (cf. [7,
fig. 1]).
Solution. The system of EST method equations is

spA ·Z = 0, (33)

where Z is the vector of unknowns that includes support reactions C1, C2, C3, and C4:

Z =



Z(1)
Z(2)
Z(3)
Z(4)
Z(5)
Z(6)
· · ·

Z(25)
Z(26)
Z(27)
Z(28)


=



u(1)A

w(1)
A

φ(1)
A

N(1)
A

RQ(1)
A

w f (1)
A
· · ·
C1
C2
C3
C4



. (34)

The components of the state vector Z (i) (i = 1, 2, ..., 28) in the index notation are shown in Fig. 6.
In the system of EST method equations (33), the first 12 equations represent the basic equation of the

EST method for a truss Eq. (23) (see Fig. 7). The next four equations coupling transverse displacements
(displacements indices are shown in Fig. 6) express master–slave connections (see Fig. 7):

w(1)
A = w f (1)

A , Z(2) = Z(6) ,
w(1)

L = w f (1)
L , Z(8) = Z(12) ,

w(2)
A = w f (2)

A , Z(14) = Z(18) ,
w(2)

L = w f (2)
L , Z(20) = Z(24) .

(35)
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The following 12 equations are those of displacements compatibility, joint equilibrium at nodes, and the
support conditions (restrictions on support displacements).

The equation of compatibility (see Fig. 7) at node 2:[
1 0
0 1

][
u(1)L

w(1)
L

]
−
[
−0.70711 −0.70711
0.70711 −0.70711

][
u(2)A

w(2)
A

]
=

[
0
0

]
. (36)

0 6 12 18 24

0

6
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18

24

spy(spA) − the sparse matrix spA(28,28)  non−zero elements nnz = 70 [8.9%] 

Compatibility equations of displacements 17−18

Joint equilibrium equations 19−24

Restrictions on support displacements 25−28

Basic equations 1−12

Master−slave connectivity equations 13−16

Fig. 7. Sparsity pattern of matrix spA of the cantilever truss structure.
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Equations of joint equilibrium (see Fig. 7) at
node 1: [

1 0
0 1

][
N(1)

A

RQ(1)
A

]
−
[

C1
C2

]
=

[
0
0

]
, (37)

node 2: [
1 0
0 1

][
N(1)

L

RQ(1)
L

]
+

[
−0.70711 −0.70711
0.70711 −0.70711

][
N(2)

A

RQ(2)
A

]
=

[
0
0

]
, (38)

node 3: [
−0.70711 −0.70711
0.70711 −0.70711

][
N(2)

L

RQ(2)
L

]
−
[

C3
C4

]
=

[
0
0

]
. (39)

Equations of support conditions (restrictions on support displacements) (see Fig. 7) at
node 1: [

1 0
0 1

][
u(1)A

w(1)
A

]
=

[
0
0

]
, (40)

node 3: [
−0.70711 −0.70711
0.70711 −0.70711

][
u(2)L

w(2)
L

]
=

[
0
0

]
. (41)

The sparsity pattern of the coefficient matrix spA of the system of equations (33) is shown in Fig. 7.
Next we find the frequencies when the determinant of the coefficient matrix of equations (33) is zero,

i.e. det(spA) = 0. The first six natural frequencies of the truss structure (Fig. 5) are shown in Table 1. With
CM and DLM, the natural frequencies are calculated by the EST method [6, p. 205].

Figure 8b shows the dependence of the determinant of the coefficient matrix (33) on the angular
frequency ω of the cantilever truss structure. Figures 8a and 8c depict the dependence of the determinant
on the angular frequency calculated by the EST method with CM and DLM.

The natural frequencies calculated by the EST method with a GNU Octave script coincide with the exact
ones in [7].

Table 1. Natural frequencies of the truss structure

Natural EST method
frequency DLM lumping Difference DM fre- Difference CM lumping DM fre-

frequency from DLM quency from CM frequency quency
f [Hz] [%] f [Hz] [%] f [Hz] ω

[
s−1]

1 369.13 18.11 450.74 −0.30 452.09 2 832.1
2 910.05 11.39 1 027.00 −8.53 1 114.60 6 452.8
3 2 210.70 13 890.1
4 4 164.70 19 844.3
5 580.00 26 167.9
6 5 392.80 33 883.8
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Fig. 8. Natural frequencies of the truss structure.

2.4. Mode displacements of the truss structure

For the nontrivial solution ΦΦΦi of the homogeneous system (42), we will choose a free variable in accordance
with the natural frequency ωi of a truss structure.

spA(ωi) ·ΦΦΦi = 0, (42)

where the components of vector ΦΦΦi are Φ1,i, Φ2,i, ..., ΦN,i. Here N is the number of components of the state
vectors and support reactions (in this example, N = 28).

The next step is to find a vector ΦΦΦi that matches ωi. If we scale the free variable Φ j,i by any real number,
the scaled nontrivial solution ΦΦΦi is still a solution to Eq. (42).

Next we extract the state vectors input ends (initial parameters) ZA (11) of elements from vector ΦΦΦi.
The mode shape displacements of the elements are computed with the transfer equations (10).
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In a similar way, the mode shape displacements of bars, shafts, and beams of the Euler–Bernoulli
and Timoshenko beam theories were computed in [6]. The results obtained in all of these cases are
consistent with the results found in the literature. For the mode shape of frames, longitudinal and transversal
displacements were determined. Due to the difference (ca 400-fold) of the values of the axial rigidity EA and
the flexural rigidity EI of the rigid portal frames observed, the longitudinal and transversal displacements
were significantly different. The boundary conditions guarantee the compatibility of the displacements in
global coordinates.

To express the mode–shape longitudinal and transversal displacements of the truss structure bar, the
transfer equations (10) are used. To find the true input ends (initial parameters) of the state vectors, we
implement the dynamic support reactions R f (1)

L = −mℓ1ω2 1
3 w(1)

L (17) and R f (2)
A = −mℓ2ω2 1

3 w(2)
A (15) at

node 2 (38). In other words, at node 2, there is variational mass lumping in local coordinates.
For the free scaled variables of the nontrivial solution ΦΦΦi of the homogeneous system (42), we give

the following values: Φ18,1 = 1.0, Φ12,2 = 0.24668, Φ12,3 = 0.5, Φ18,4 = 0.5, Φ12,5 = 0.5, Φ18,7 = 0.2,
Φ18,7 = 0.2, ..., where Φ12,i and Φ18,i are the displacements w f (1)

L and w f (2)
A of slave elements 1 and

2, respectively (see Fig. 6). The extracted state vectors (initial parameters) of the transfer equations
(10) for computing ith mode shape displacements of bar 1 are Z(1)

A = [Φ1,i Φ2,i Φ3,i Φ4,i]
T , and of bar 2,

Z(2)
A = [Φ13,i Φ14,i Φ15,i Φ16,i]

T (see Fig. 6).
To check the compatibility of the displacements at node 2, we transform the displacements of bar 2 from

the local coordinate system to the global coordinate system (Fig. 6).[
U
W

]
=

[
cosα −cosβ
cosβ cosα

]
=

[
−0.70711 −0.70711
0.70711 −0.70711

][
u
w

]
. (43)

Figure 9 depicts the displacements of the first five natural modes of the truss structure.
The displacements U2 and W2 at node 2 of both bars in global coordinates are equal.
The first three natural mode longitudinal displacements (Fig. 9 a, c, and e) are comparable to those in

[7, fig. 5].
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Fig. 9. Natural modes of a truss structure. (Continued on the next page.)
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Fig. 9. Continued.

Example 2.2 (free vibrations of a seven-bar truss). Find the natural frequencies of the seven-bar truss
shown in Fig. 10.

The truss span ℓ = 4.0 m and height h = 2.0 m, panel length d = 2.0 m, cross-sectional area of bar is
A = 1.0×10−3 m2, elastic or Young’s modulus E = 210GPa, and mass density ρ = 8.0× 103 kg/m3 (cf.
[11, p. 207]).

1 2
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4

5 6

71
3

2 4

5

h

l

Fig. 10. Seven-bar truss.
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Solution. To calculate the natural frequencies of the seven-bar truss, the EST method is used. The system of
the EST method equations is

spA ·Z = 0, (44)

where Z is the vector of unknowns that includes support reactions C1, C2, C3, and C4:

Z =



Z(1)
Z(2)
Z(3)
Z(4)
Z(5)
Z(6)
· · ·

Z(85)
Z(86)
Z(87)
Z(88)


=



u(1)A

w(1)
A

φ(1)
A

N(1)
A

R f (1)
A

w f (1)
A
· · ·
C1
C2
C3
C4



. (45)

The components of the state vector Z (i) (i = 1, 2, ..., 88) in the index notation are shown in Fig. 11.
In the system of equations (44), the first 42 equations represent the basic equation (23) of the EST

method for a truss. The next 14 equations coupling transverse displacements (Fig. 11) express master–
slave connectivity. The following 18 equations describe the compatibility of displacements. The next ten
equations are joint equilibrium equations. The last four equations are support conditions – restrictions on
support displacements.

The sparsity pattern of the coefficient matrix spA of the system of equations (44) is shown in Fig. 12.
With the GNU Octave script we find the frequencies when the determinant of the coefficient matrix

of equations (44) is zero. The first eleven natural frequencies of the seven-bar truss (Fig. 10) are given
in Table 2. In addition to the frequencies presuming distributed mass (DM), the frequencies of the truss
determined with CM and DLM are presented.
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Fig. 11. Indices of state vector components for a seven-bar truss with distributed mass.
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Basic equations 1−42

Compatibility equations of displacements 57−74

Joint equilibrium equations 75−84

Restrictions on support displacements 85−88

Master−slave connectivity equations 43−56

28
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56

70

84

0
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  spy(spA) − the sparse matrix spA(88,88) non−zero elements nnz = 257 [3.3%]

Fig. 12. Sparsity pattern of the matrix spA of a seven-bar truss.

Table 2. Natural frequencies of the seven-bar truss

Natural EST method
frequency DLM lumping Difference DM fre- Difference CM lumping DM fre-

frequency from DLM quency from CM frequency quency
f [Hz] [%] f [Hz] [%] f [Hz] ω

[
s−1]

1 176.72 7.910 191.89 −0.59 193.02 1 205.659502
2 181.40 9.190 199.76 −0.53 200.81 1 255.115771
3 344.44 21.290 437.62 −4.12 455.67 2 749.664532
4 451.49 20.833 570.30 −3.34 589.33 3 583.285360
5 466.14 19.631 580.00 −4.12 603.91 3 644.248531
6 516.23 24.135 680.46 −0.96 686.98 4 275.458665
7 1 168.50 7 342.131902
8 1 280.90 8 047.936312

In Table 3, the calculation results of the seven-bar truss without master–slave connections are presented.
The first six frequencies determined by the EST method coincide exactly with those obtained by the adaptive
GFEM in [11, p. 208].

Figure 13b shows the dependence of the determinant of the coefficient matrix of Eq. (44) on the angular
frequency ω of the seven-bar truss. Figures 13a and 13c depict the dependence of the determinant on the
angular frequency calculated by the EST method with CM and DLM, respectively.
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Table 3. Calculation results of the seven-bar truss without
master–slave connections

Pseudonatural EST method
frequency Frequency f [Hz] Frequencyω

[
s−1]

1 1 262.25 1 647.784428
2 1 277.06 1 740.839797
3 1 495.18 3 111.322715
4 1 726.04 4 561.817307
5 1 767.64 4 823.248678
6 1 174.50 7 379.482322
7 1 193.50 7 499.144048
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Fig. 13. Natural frequencies of the seven-bar truss.
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Computing diary excerpt 2.1 (TrussAMShapes.m)
ModeShape 1

wf = 1205.7, baasi0=E, E=2.1E+11 # Pa

# baasi0 - scaling multiplier for displacements

===============================================

Displacements in global coordinates X-Z at the

beginning and end of the bar

No UA WA UL WL

-----------------------------------------------

1 0.000 -0.000 0.166 0.657

2 0.166 0.657 -0.000 1.000

3 0.000 -0.000 -0.000 1.000

4 0.166 0.657 -0.166 0.657

5 -0.000 1.000 -0.166 0.657

6 -0.166 0.657 -0.000 -0.000

7 -0.000 1.000 -0.000 -0.000

-----------------------------------------------

Computing diary excerpt 2.2 (TrussAMShapes.m)
ModeShape 2

wf = 1255.1, baasi0=E, E=2.1E+11 # Pa

# baasi0 - scaling multiplier for displacements

===============================================

Displacements in global coordinates X-Z at the

beginning and end of the bar

No UA WA UL WL

-----------------------------------------------

1 0.000 -0.000 1.000 0.074

2 1.000 0.074 0.248 0.000

3 0.000 -0.000 0.248 0.000

4 1.000 0.074 1.000 -0.074

5 0.248 0.000 1.000 -0.074

6 1.000 -0.074 0.000 0.000

7 0.248 0.000 0.000 0.000

-----------------------------------------------

2.5. Mode displacements of a seven-bar truss

For the nontrivial solution ΦΦΦi of the homogeneous system (46), we will choose a free variable in accordance
with the natural frequency ωi of a seven-bar truss.

spA(ωi) ·ΦΦΦi = 0, (46)

where the components of vector ΦΦΦi are Φ1,i, Φ2,i, ..., ΦN,i. Here N is the number of components of the state
vectors and support reactions (in this example, N = 88).

The next step is to find a vector ΦΦΦi that matches ωi. If we scale the free variable Φ j,i by any real number,
the scaled nontrivial solution ΦΦΦi will still be a solution to Eq. (46).

Next we extract the input ends (initial parameters of the state vectors) ZA and ZL (11) of the elements
from vector ΦΦΦi. We calculate the transversal displacement shapes 1–10 for the seven-bar truss modes with
the master–slave connection (see Fig. 14 and computing diary excerpts 2.1, 2.2).

The rotary inertia of a rigid bar was not taken into account in calculating frequencies in [8, p. 241; 17,
p. 653] and displacement shapes for seven-bar truss modes in [17, p. 654].
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Fig. 14. Transversal displacement shapes of bars for seven bar truss modes. (Continued on the next page.)



A. Lahe et al.: An exact solution of truss vibration problems 261

0 1 2 3 4
x [m]

0

1

−3

−2

−1z 
[m

]

2

3

4

1 2

3

4

5 6

7
1 5

Mode shape 3 

(c) Shape at ω3 = 2.749664532×103 s−1

0 1 2 3 4
x [m]

0

1

−3

−2

−1z 
[m

]

2

3

4

1 2

3

4

5 6

7
51

Mode shape 4 

(d) Shape at ω4 = 3.583285360×103 s−1

0 1 2 3 4
x [m]

0

1

−3

−2

−1z 
[m

]

2

3

4

1 2

3

4

5 6

7 51

Mode shape 5 

(e) Shape at ω5 = 3.644248531×103 s−1

0 1 2 3 4
x [m]

0

1

−3

−2

−1z 
[m

]

2

3

4

1 2

3

4

5 6

7
1 5

Mode shape 6 

(f) Shape at ω6 = 4.275458665×103 s−1

0 1 2 3 4
x [m]

0

1

−3

−2

−1z 
[m

]

2

3

4

1 2

3

4

5 6

7

Mode shape 7 

51

(g) Shape at ω7 = 7.342131902×103 s−1

0 1 2 3 4
x [m]

−3

−2

−1z 
[m

]

0

1

Mode shape 8 

2

3

4

1 2

3

4

5 6

7
51

(h) Shape at ω8 = 8.047936312×103 s−1

0 1 2 3 4
x [m]

−3

−2

−1z 
[m

]

0

1

Mode shape 9 

2

3

4

1 2

3

4

5 6

7
51

(i) Shape at ω9 = 8.125812636×103 s−1

0 1 2 3 4
x [m]

z 
[m

]

0

1

−3

−2

−1

2

3

4

1 2

3

4

5 6

7
51

Mode shape 10 

(j) Shape at ω10 = 9.041134841×103 s−1

Fig. 14. Continued.
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3. CONCLUSIONS

Transfer equations for truss bar vibration have been developed. An exact solution for boundary value
problems of truss vibration is presented. The method is exact as no approximations were made to derive
the transfer equations and, in principle, all the natural frequencies can be found by finding more roots for
the determinant of the coefficient matrix. In addition, the differential equations related to the system of
transfer equations are all solved as exactly as needed by the bisection method. The equilibrium equations
of longitudinal and transverse inertial forces of the bar serve as natural boundary conditions at joints. In the
transverse direction, no bending can occur (the bar remains straight), the displacements vary linearly, and
transversely the bar vibrates as a rigid body.

By using the EST method, the solutions gained by the directly lumped mass (DLM) or consistent mass
(CM) matrices – approximations often used by the finite element analysis – give either lower (DLM) or
higher (CM) natural frequencies than the distributed mass (DM) solution.
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Sõrestiku võnkumisülesande täpne lahendus

Andres Lahe, Andres Braunbrück ja Aleksander Klauson

On välja töötatud EST-meetodi rakendus sõrestike omavõnkesageduste täpseks määramiseks. Sõrestiku
varda ülekandevõrrandid on koostatud vastavalt sõrestikskeemi määratlusele. Sõrestiku varraste ülekande-
võrrandid ühendatakse süsteemiks oluliste ehk kinemaatiliste rajatingimuste ja loomulike ehk staatiliste
rajatingimuste abil. Saadud hõreda ülekandevõrrandite süsteemi determinandi nullid määravad täpselt
sõrestiku omavõnkesagedused. Meetodit võib nimetada täpseks, kuna sõrestiku definitsiooni piires po-
le varda ülekandevõrrandite süsteemi tuletamisel tehtud lihtsustusi ega ole lähendatud ühtki süsteemi
diferentsiaalvõrrandit. Omavõnkesagedused on määratud numbriliselt, kasutades determinandi nullkoha
määramiseks lõigu poolitamise meetodit. Lõplike elementide meetodiga arvutades koondatakse sõrestiku
varraste mass sõlmedesse. EST-meetodiga võrreldes saadakse siin konsistentse massimaatriksiga arvutades
suuremad omavõnkesagedused ja diagonaalile keskendatud massimaatriksiga arvutades väiksemad
omavõnkesagedused.


