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Abstract. The paper studies the possibility of constructing observer-based residuals to detect faults in a nonlinear discrete-time
system. The residuals are generated in such a manner that they detect one specific fault and are not affected by other faults and
disturbances. Thus, a bank of residuals has been found to detect and isolate different faults in the system. An algebraic method
called functions’ algebra is used to construct an algorithm which computes the residuals. The key fact in residual generation is that
any discrete-time observable system can be taken into the extended observer form. This form is used to construct the observer to
estimate the system states under the assumption that there are no faults in the system. The state estimates are then compared to the
measured values of the states. An example is added to illustrate the theoretical results. In the example it is also demonstrated how
to combine the fault detection with the plant reconfiguration step of fault tolerant control.
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1. INTRODUCTION

Fault tolerant control (FTC) is a branch of control engineering that aims at developing control strategies
which can handle possible faults in the system. It means that the system is able to preserve stability, thus
avoiding possible system breakdown and ensuring safety, and at the same time keeping also a satisfactory
level of performance. Generally, FTC methods are classified into two types: passive and active. Passive
controllers are designed to be robust against a class of presumed faults or are adaptive. Active FTC methods
react to faults directly and depend heavily on fault detection and isolation (FDI).

A huge number of publications are available on different aspects of active FTC; see [23] for an overview.
Since FDI is the first and essential part of active FTC, it is the most studied part of the FTC scheme;
see [2,15,22,23] and references therein. There are many different approaches for FDI: model-based and
data-based, quantitative and qualitative. The goal of model-based quantitative FDI methods is to construct
signals, called residuals, which detect faults. The main approaches to the generation of residuals are the
parameter estimation approach [7], parity space approach [20], and observer-based approach [15,17]. In
this paper the observer-based approach is studied for nonlinear discrete-time systems.

In [17] a geometric approach was used to study the so-called fundamental problem of residual genera-
tion for nonlinear continuous-time systems, extending the solution from linear systems. The problem was
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to construct a residual, which is sensitive to one specific fault and not influenced by other faults and distur-
bances affecting the system behaviour. Later, this solution was rewritten in [1] using an algebraic approach
called functions’ algebra, which allowed the generalization of the class of systems from control affine to
general nonlinear systems.

In this paper the fundamental problem of residual generation is studied for nonlinear discrete-time sys-
tems using the functions’ algebra approach. An algorithm is given (similar to the results of [1,17]) to
construct a residual to detect a given fault in the system. The solutions in [1,17], as observer-based FDI
schemes in general, depend heavily on the possibility of constructing an observer for a certain subsystem
of the given system, which is, in general, a very difficult problem for nonlinear systems. In [17] additional
restrictive assumptions were introduced in order to be able to construct the observer. The paper [1] only cites
other articles, where observer construction is studied for nonlinear systems. The algorithm suggested in this
paper does not depend on any restrictions. This is the key aspect and main novelty of our approach. Here
we use the fact that for any observable discrete-time nonlinear system one can always construct an extended
observer (depending also on the past values of outputs and inputs) to find the observer with linear error
dynamics and construct a residual, which solves the fundamental problem of residual generation. That is, in
principle, we do not have to make any additional restrictive assumptions to estimate system outputs, based
on which the residual is constructed. An example of a three-tank system is used to demonstrate the useful-
ness of the approach for residual generation. In the example we also briefly talk about plant reconfiguration,
which is the next possible step after FDI. In [8] the plant reconfiguration problem was studied, which can be
connected with the FDI step described in this paper, since the same methodology is used. Connecting FDI
and the reconfigurable control steps has been one of the main obstacles to applying different FDI approaches
in practice [23].

Unlike the well-known differential geometric approach, used in [17], functions’ algebra suits better for
studying generic, not local properties. This means that we do not fix a point and work in the neighbourhood
of this point; instead, the results of this paper are valid locally around every point where the computations
can be done and all the necessary transformations can be defined uniquely. This allows us to simplify the
presentation of the results compared to the local case, where a working point and its neighbourhood have to
be fixed.

The paper is organized as follows. In Section 2 the problem statement is described. Section 3 gives an
overview of functions’ algebra and Section 4 of observability and observer construction. The main results
are provided in Section 5, where the algorithm for residual generation is presented. The paper ends with an
example and conclusions.

2. PROBLEM STATEMENT

Consider a nonlinear discrete-time system of the form

x(t +1) = f (x(t),u(t),w(t)),
y(t) = h(x(t)), (1)

where x(t) ∈ X ⊂Rn is the state vector, u(t) ∈U ⊂Rm is the input vector, w(t) ∈W ⊂R is the fault signal,
and y(t) ∈ Y ⊂ Rp is the output vector. The functions f and h are assumed to be analytic. The goal of
fault detection is to construct a signal r(t), called a residual, which is equal to zero when there is no fault
(w(t) = 0) and becomes non-zero when the fault occurs (w(t) ̸= 0).

The basic idea of observer-based residual generation is the following. Based on the system equations
and the outputs/measurements, one can construct an observer for estimating the states of the system in the
fault-free case. Then the residual can be constructed as difference between the estimated and measured
functions. For instance, when we want to detect the fault w(t) in the system

x1(t +1) = x2(t)+w(t),
x2(t +1) = u(t),

y(t) = x1(t),
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it is enough to construct an observer for the case w(t) = 0 and define the residual as r(t) = y(t)− x̂1(t),
where x̂1(t) is the estimate of the state variable x1(t). The observer together with r(t) = y(t)− x̂1(t) is called
a residual generator.

In this paper we assume additionally that the system equations depend also on some disturbances d(t) ∈
D ⊂ Rq:

x(t +1) = f (x(t),u(t),w(t),d(t)),
y(t) = h(x(t)). (2)

Now the situation is more complex, since to be able to construct an observer, one has to find a subsystem,
which does not depend explicitly on the disturbances. Finding a residual r(t) that detects the fault but does
not depend explicitly on the disturbances, and converges asymptotically to zero in the fault free-case, is
called the fundamental problem of residual generation.

Moreover, when there are multiple faults, it is also important to isolate them, i.e., to determine which
fault affects the system. Let w̄(t)∈W̄ ⊂Rs be a vector of faults. Then it may be possible to construct a vector
of residuals r̄(t)∈Rs such that every residual r̄i(t) detects exactly one fault w̄i(t) and is not affected by other
faults. For that purpose one has to take w(t) = w̄i(t) and d(t) = (w̄1(t), . . . , w̄i−1(t), w̄i+1(t), . . . , w̄s(t))T for
all i in the problem statement above and check the solvability conditions (Theorem 2 below) for every i.

Finally, note that the results of this paper are not global, but we study the generic case.

3. FUNCTIONS’ ALGEBRA

In this section the method of functions’ algebra is briefly described. In what follows, the notations x, x[k],
k ∈ Z are used, instead of x(t) and x(t + k). Similar notations are used for the other variables as well as for
functions. Compared to x(t + k) the element x[k] must be understood as a variable and not as a function of
time t.

The approach is developed for a discrete-time system given by its state-space equations, such as (1) (to
describe the approach, we take w(t) = 0). Consider an infinite set of variables

V = {x,u,u[1], . . . ,u[k], . . .}

and denote by F a set of analytic functions1 in a finite number of variables from the set V . A specific subset
of F is the set Fx, which is used to denote the set of analytic functions depending only on the variables x.
In functions’ algebra we work with the vectors (of any finite dimension) whose elements are functions from
F or Fx. Denote the corresponding sets of vectors by SF and SFx , respectively. The elements of SF or
SFx are called vector functions. On the set SF we define a preorder ≤.

Definition 1. Given α,β ∈ SF , one says that α ≤ β if there exists a function γ such that β = γ(α).

Based on the preorder ≤, one defines the equivalence relations ∼=: the vector functions α,β ∈ SF satisfy
the relation ∼= if α ≤ β and β ≤ α .

The equivalence relation ∼= divides the elements of SF into the equivalence classes. Let SF\ ∼= be
the set of the equivalence classes. The relation ≤ was defined on the set SF , but can also be understood2

as a relation on SF\ ∼=, where it becomes a partial order. Then the pair (SF\ ∼=,≤) becomes a lattice,
since 0 := [x,u, . . . ,u[k]]≤ α ≤ 1 for all α ∈ SF\ ∼=, where k is chosen high enough. The vector function 1
corresponds to the equivalence class containing constant vector functions.

Remark 1. In the rest of the paper the equivalence classes are identified by their representatives, which are
vector functions from SF or SFx and thus, a vector function should always be understood as an equivalence

1 Here we limit ourselves to analytic functions, but in principal one can consider a more general class of functions, such as
smooth or even some non-smooth functions.

2 When an equivalence class is represented by an element (a vector function) of this equivalence class.
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class. The operations ×, ⊕, m, M and the relation ∆, below, are defined on the set of equivalence classes,
although in terms of the representatives. Also, since we work with equivalence classes, the sign “=” should
be understood as “∼=”.

Since (SF\ ∼=,≤) is a lattice, we can define the binary operations × and ⊕ as

α ×β := inf(α,β ), α ⊕β := sup(α,β ) (3)

for all α,β ∈ SF\ ∼=. In (3) the infimum and supremum are considered with respect to the partial-order
relation ≤. Similarly, the notions of maximal/minimal vector function mean maximality/minimality with
respect to ≤.

The lattice (SF\ ∼=,≤) will be connected to the system dynamics f (·) through the binary relation ∆.
Note that ∆ is defined only on SFx\ ∼=.

Definition 2. Given α,β ∈ SFx\ ∼=, one says that the ordered pair (α,β ) satisfies the binary relation ∆,
denoted as α∆β , if for all x ∈ X and u ∈U there exists a function f∗ such that

β ( f (x,u)) = f∗(α(x),u). (4)

The binary relation ∆ is used for the definition of the operators m and M.

Definition 3. (i) m(α) is a minimal vector function β ∈ SFx\ ∼= that satisfies α∆β ;
(ii) M(β ) is a maximal vector function α ∈ SFx\ ∼= that satisfies α∆β .

By Mk we denote the consecutive application of the operator M, i.e., Mk(β ) = M(Mk−1(β )) for k ≥ 1,
where M0(β ) := β .

Important concepts in functions’ algebra are the invariant vector functions.

Definition 4. The vector function δ is said to be invariant with respect to the system dynamics f (·) or, said
alternatively, f -invariant if δ∆δ . The vector function δ is said to be (h, f )-invariant if [δ ×h]∆δ .

4. OBSERVER CONSTRUCTION

In this section we study the observability property and observer construction for a nonlinear discrete-time
system. An algorithm that computes the maximal observable subspace of the state space is given. Also,
a method to construct an observer for an observable system is described. Observer construction is a key
element in the solution of the residual generation problem in Section 5.

Consider a nonlinear discrete-time system of the form

x(t +1) = f (x(t),u(t)),
y(t) = h(x(t)), (5)

where x(t), u(t), y(t), f , and h are as above.

Assumption 1. System (5) is reversible.

The use of analytic functions in (5) and Assumption 1 guarantee that single-experiment observability
of system (5) (necessary for observer construction) is equivalent to the multiple-experiment observability
(easily studied by the methods of functions’ algebra), see [21]. Therefore, in what follows, we just speak
about the observability of system (5).
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4.1. Observability

Some preliminary results on observability, using functions’ algebra, are given in [12].
In plain words, observability means a possibility of recovering the state x of system (5) from the know-

ledge of the output y, the input u, and a finite number of their forward-shifts y[k], u[k], k ∈ N. A formal
definition is given via the observable space O(x), which, in terms of functions’ algebra, can be defined as

O(x) := x⊕ [h×h[1]×·· ·×h[n−1]×u×·· ·×u[n−2]]T. (6)

Now the observability can be defined.

Definition 5. System (5) is called observable if O(x) = x. A vector function λ (x) ∈ SFx is said to be
observable if O(x)≤ λ (x).

By Definition 5 the observable space O(x) is a minimal vector function, in terms of ≤, which is observ-
able.

Lemma 1. The vector function λ (x) ∈ SFx is observable if and only if

λ (x)≥ h(x)×M(h(x))×·· ·×Mk(h(x))

for some k.

Proof. By the definition of operator M

h[k] ≥ Mk(h)×u×u[1]×·· ·×u[k−1].

The definition of the observable space and the observable vector function λ (x) yield

λ ≥ h×h[1]×·· ·×h[n−1]×u×·· ·×u[n−2]. (7)

Therefore, the observability of a vector function λ (x) ∈ SFx is equivalent to

λ ≥ h×M(h)×·· ·×Mn−1(h)×u×·· ·×u[n−2],

which, in turn, is equivalent to

λ (x)≥ h(x)×M(h(x))×·· ·×Mk(h(x)),

since λ (x), h(x), and Mk(h(x)), k ≥ 1, do not depend on u[ j], j ≥ 0.

Algorithm 1 below computes the observable space of system (5).

Algorithm 1. Compute the sequence of vector functions θi, for i ≥ 0, as

θ0 = h(x),
θi+1 = M(θi)×h.

Theorem 1. The limit of Algorithm 1 is the observable space of system (5).
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Proof. As proved in [24], M(δ1×δ2) = M(δ1)×M(δ2) for any two vector functions δ1,δ2 ∈ SFx\∼=. Thus,
Algorithm 1 defines a decreasing (in terms of ≤) sequence of vector functions

θ0 = h(x),
θ1 = [h(x),M(h(x))]T,
θ2 = [h(x),M(h(x)),M2(h(x))]T,

...
θi = [h(x),M(h(x)), . . . ,Mi(h(x))]T,

...

Since x ≤ θi for all i ≥ 0, at some point j one has θ j+1 = θ j, i.e.,

h(x)×M(h(x))×·· ·×M j(h(x))≤ M j+1(h(x)).

Define O(x) = θ j. Now, by Lemma 1, clearly all vector functions θi are observable and thus also O(x) is
observable.

An obvious consequence of Theorem 1 is

Corollary 1. The vector function O(x) is f -invariant.

4.2. Observer

Observer construction with linear error dynamics is in general a difficult problem for nonlinear discrete-
time control systems. However, the problem becomes relatively easy when the state equations are in the
observer form. Unfortunately, the conditions for transforming system equations (5) into such a form by state
transformation are extremely restrictive [3,14]. One possibility of weakening the conditions is to search for
an extended state transformation φ(·,ξ1, . . . ,ξ2N) : X → X , parametrized by (ξ1, . . . ,ξ2N) and defined by

z(t) = φ(x(t),y(t −1), . . . ,y(t −N),u(t −1), . . . ,u(t −N)), (8)

such that in the new coordinates system (5) is transformed into the so-called extended observer form with
buffer N ∈ {1, . . . ,n−1}:

z(t +1) = Az(t)+Φ(y(t), . . . ,y(t −N),u(t), . . . ,u(t −N)),
y(t) = Cz(t), (9)

where the pair (C,A) is in dual Brunovsky form as defined in [13] and Φ is an n-dimensional column vector.
For system (9) one can construct an extended observer with buffer N

ẑ(t +1) = Aẑ(t)+K(y(t)− ŷ(t))+Φ(y(t), . . . ,y(t −N),u(t), . . . ,u(t −N)),
ŷ(t) = Cẑ(t), (10)

where matrix K is chosen such that the eigenvalues of A+KC are inside the unit circle. It has been proven
in [5] that any single-output observable discrete-time system without inputs can be taken into the extended
observer form with buffer n−1. The proof carries over to the input-dependent and multi-input multi-output
case (MIMO). Thus, in principle, one can always construct an extended observer for an observable nonlinear
discrete-time system with linear error dynamics that converges asymptotically to zero. In some cases it is
possible to choose the buffer N smaller than n−1. The existence of the extended state transformation (8) to
transform a given system (5) into the extended observer form (9) with buffer N ∈ {1, . . . ,n− 1} is studied
for special cases in [4,6,9,11] and the general solution for MIMO systems is presented in [10].

For continuous-time systems the extended observer form depends not on the past values of y(t) and u(t)
but on their derivatives [18]. In this case the conditions for the existence of the extended state transformation
remain restrictive (though less restrictive than in the case when derivatives are not allowed), even when the
derivatives up to the order n−1 are chosen.
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5. RESIDUAL GENERATION

The method described below for finding residual generators consists roughly of three steps:
1. Find a subsystem of (2), not depending explicitly on disturbances d;
2. Find the observable space of the subsystem, computed in the previous step;
3. Construct an observer.

Step 1. First, let α0(x) be a minimal vector function, such that α0( f (x,u,w,d)) does not depend on the
disturbance d. Define also the vector function β 0(x), similar to α0(x), except that now we require that
β 0( f (x,u,w,d)) should not depend on the fault w.

The next algorithm computes the minimal (h, f )-invariant vector function α , which satisfies α0 ≤ α .

Algorithm 2. Given α0, compute the sequence of non-decreasing vector functions

α0 ≤ α1 ≤ ·· · ≤ α i ≤ ·· ·

by using the formula
α i+1 = α i ⊕m(α i ×h) (11)

for i ≥ 0.
The sequence α i, i ≥ 0, of vector functions converges, i.e., for some j, α j+1 = α j. It has been proven

in [19] that α := α j is the minimal (h, f )-invariant vector function that satisfies α0 ≤ α .

Now, based on the vector function α and assuming that h(x)⊕α(x) ̸= 1, one can construct the subsystem
of (2), by defining z = α(x):

z(t +1) = F(z(t),u(t),y(t),w(t)),
ỹ(t) = h̃(z(t)),

(12)

where h̃(z(t)) is the vector function h(x)⊕α(x), written in terms of z = α(x). In (12) u(t), y(t), and w(t) are
considered input variables. Note that the function F(·) in (12) does not depend on the disturbance d, since
by definition, the forward shift of α0 does not depend on the disturbance and, because α0(x) ≤ α(x) = z,
the forward shift of z does not depend on the disturbance either.

Step 2. The next step is to compute the observable space of system (12). This can be done via Algorithm 1.
Let β be the result of the application of Algorithm 1 to system (12). By Corollary 1 the vector function β is
F-invariant and one can construct the observable subsystem of (12):

η(t +1) = G(η(t),u(t),y(t),w(t)),
ȳ(t) = h̄(η(t)), (13)

where η = β (z) and h̄ is the function h̃ rewritten in η variables.
Step 3. The final step is to construct an observer for system (13) in the case when w(t) = 0. In order to be
able to construct a residual for system (2), the condition β 0 ×β = x must be true. Note that the dimension
of vector β 0 is always n−1. Therefore, if β depends on the fault w, then the condition β 0 ×β = x has to be
satisfied. If the condition β 0 ×β = x is violated, then system (13) does not depend on the fault w and one
cannot construct a residual. The residual is defined as

r(t) = ȳ(t)− ˆ̄h(η̂(t)),

where η̂(t) and ˆ̄h are the estimates of η(t) and h̄, respectively, in the case when w(t) = 0. Clearly, in the
fault-free case r(t) converges asymptotically to zero, since r(t) is defined as difference between measured
and estimated functions and the error dynamics converges to zero. In the case when fault w(t) occurs, the
residual r(t) ̸= 0 since (13) depends on the fault w(t). Also, since system (13) does not depend explicitly on
the disturbances d(t), the residual r(t) is not influenced by changes in d(t).

The previous discussion is now concluded in Algorithm 3 below, which can be used to construct the
residual r(t) to detect the fault w(t) in (2).
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Algorithm 3. Given system (2), compute the following:
1. Find α0 and β 0.
2. Compute the vector function α by Algorithm 2. Check whether h(x)⊕α(x) ̸= 1. If not, then stop, the

method cannot be used to compute the residual.
3. Construct system (12), where z = α(x) and h̃(z(t)) is the vector function h(x)⊕α(x), written in terms of

z = α(x).
4. Check whether system (12) satisfies Assumption 1. If not, then stop, otherwise compute the observable

space β of system (12) as the limit of Algorithm 1.
5. Check whether β ×β 0 = x. If not, then stop, the method cannot find a residual to detect the fault w.
6. Construct system (13), where η = β (z) and h̄ is the function h̃ rewritten in η variables.
7. Find an observer for system (13), taking w = 0.
8. Define r(t) = ȳ(t)− ˆ̄h(η̂(t)), where η̂(t) and ˆ̄h are the estimates of η(t) and h̄, respectively.
The section can be concluded by the following theorem.

Theorem 2. Under the assumption that subsystem (12) satisfies Assumption 1, one can construct a residual
to detect the fault w(t) in system (2) if h⊕α ̸= 1 and β ×β 0 = x.

Proof. When the conditions h⊕α ̸= 1 and β ×β 0 = x are satisfied, then, under the assumption that subsys-
tem (12) is reversible, Algorithm 3 yields always a residual to detect the fault w.

5.1. Comparison

A similar method for residual generation as described above has been used before for continuous-time input-
affine systems of the form

ẋ = f (x)+g(x)u+ ℓ(x)w+ p(x)d,
y = h(x)

by using a differential geometric approach [17] or for general nonlinear continuous-time systems by func-
tions’ algebra [1]. Below, some comparisons are made with these papers.

All the specific vector functions and algorithms, described in this section, have direct counterparts in
terms of differential geometry, as shown in Table 1, where the notations from [17] are used. In Table 1,
P = span{p1, . . . , pd}, where p = (p1, . . . , pd).

Note that in [17] there is no condition corresponding to α ⊕ h ̸= 1. This condition is checked while
computing o.c.a.((ΣP

∗ )
⊥), which stands for the maximal observability codistribution contained in (ΣP

∗ )
⊥.

That is, if α ⊕h = 1, then the algorithm in [17] gives o.c.a.((ΣP
∗ )

⊥) = 0, which corresponds to β = 1.
The results of [17] were rewritten in terms of functions’ algebra in [1]. Moreover, in [17] and [1] not

much is said about observer construction, which is a difficult problem for nonlinear systems, but necessary
for residual construction. In [17] a residual is constructed under additional restrictive assumptions on the
analogue of system (13).

6. EXAMPLE

Consider the control system

x+1 = (u1 +w1)/ϑ1 −θ1(w2)
√

x1 − x2 + x1,
x+2 = u2/ϑ2 +θ1(w2)

√
x1 − x2 −θ2

√
x2 − x3 + x2,

x+3 = θ2
√

x2 − x3 −θ3
√

x3 −ϑ7 + x3,
y1 = x1,
y2 = x2,

(14)

where the coefficients are: θ1(w2) = ϑ4(w2)
√

2ϑ8/ϑ1, θ2 = ϑ5
√

2ϑ8/ϑ2, θ3 = ϑ6
√

2ϑ8/ϑ3.
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Table 1. Comparison between the vector functions used
in this paper and corresponding objects, used in [17]

Functions’ algebra Differential geometry

α0 P⊥

β 0 (span{ℓ})⊥

α (ΣP
∗ )

⊥

β o.c.a.((ΣP
∗ )

⊥)

β 0 ×β = x (span{ℓ})⊥+
o.c.a.((ΣP

∗ )
⊥) = T ∗X

? ?

-

u1 +w1 u2

Fig. 1. Three-tank system.

Equations (14) constitute a modified sampled-data model of the well-known example of the three-tank
system ([16], see Fig. 1). The system consists of three consecutively united tanks with areas of the cross-
section ϑ1, ϑ2, and ϑ3. The tanks are linked by pipes with areas of the cross-section ϑ4 and ϑ5. The liquid
flows into the first and the second tank and out of the third one through the pipe with the area of the cross-
section ϑ6 located at height ϑ7; ϑ8 is the gravitational constant. The levels of liquid in the tanks are x1, x2,
and x3, respectively. The liquid levels in the first and the second tank are measured. Assume that two faults
may occur. The first fault w1 is an actuator fault that results in inaccurate addition of liquid into the first
tank. The second fault w2 is in the plant, which results in ϑ4 being a function of w2.

6.1. Fault detection

Our goal is to construct a residual to detect the actuator fault w1. Thus, we look at w2 as disturbance d. To
construct the residual r(t), we apply Algorithm 3 to system (14).
1. The straightforward computations yield α0 = [x1 + x2,x3]

T and β 0 = [x2,x3]
T.

2. Compute by (11)

α1 = α0⊕m(α0×h) = [x1+x2,x3]
T⊕m([x1,x2,x3]

T) = [x1+x2,x3]
T⊕ [x1,x2,x3]

T = [x1+x2,x3]
T = α0

and therefore, α = α0 = [x1 + x2,x3]
T.

3. The first condition of Theorem 2 is satisfied since α ⊕ h = x1 + x2 ̸= 1. Thus, one can construct system
(12):

z+1 = (u1 +w1)/ϑ1 + z1 +u2/ϑ2 −θ2
√

y2 − z2,
z+2 = θ2

√
y2 − z2 −θ3

√
z2 −ϑ7 + z2,

ỹ = z1,
(15)

where z = α(x) = [x1 + x2,x3]
T and ỹ = α ⊕h = x1 + x2.

4. System (15) is obviously reversible and thus one can utilize Algorithm 1 to compute the observable space
of system (15) when w1 = 0:

θ0 = h̃ = z1,

θ1 = h̃×M(θ0) = z1 ×M(z1) = z1 × [z1,z2]
T = [z1,z2]

T.

Thus, β = [z1,z2]
T = [x1 + x2,x3]

T.
5. The condition β ×β 0 = [x1 + x2,x3]

T × [x2,x3]
T = [x1,x2,x3]

T is satisfied and therefore, by Theorem 2,
one can construct a residual to detect the fault w1.

6. Since system (15) is observable, system (13) is equal to (15) for this example, i.e., η = z and ȳ = ỹ.
7. Following the work in [10], system (15), where w1 = 0, can be transformed into an extended observer

form with buffer 1 and thus an extended observer can be constructed to estimate the variables z1 and z2:

ẑ1(t +1) = ẑ2(t)+K1(ỹ(t)− ŷ(t))+φ(·),
ẑ2(t +1) = K2(ỹ(t)− ŷ(t)),

ŷ(t) = ẑ1(t),
(16)
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Fig. 2. Fault signal in simulations. Fig. 3. Residual signal in simulations.

where

φ(·) = ỹ(t)+u1(t)/ϑ1 +u2(t)/ϑ2 −θ2
√

y2(t)−ϕ(·),
ϕ(·) = θ2

√
y2(t −1)−ψ(·)−θ3

√
ψ(·)−ϑ7 +ψ(·),

ψ(·) = y2(t −1)− 1
θ 2

2

(
ỹ(t)− ỹ(t −1)−u1(t −1)/ϑ1 −u2(t −1)/ϑ2

)2
.

8. The residual to detect the fault w1 can be written as r(t) = ỹ(t)− ẑ1(t) or in terms of original system
outputs r(t) = y1(t)+ y2(t)− ẑ1(t).
Simulation results are presented in Figs 2 and 3, which show the effectiveness of the residual. Through-

out the simulation the constant inputs u1 = 0.003, u2 = 0 and constant disturbance w2 = 0.001 are used.
Initial values are chosen as: x1(0) = 3, x2(0) = 2, x3(0) = 1, ẑ1(0) = 5, and ẑ2(0) = 0. The fault w1 appears
at the time instant t = 80 and is generated as a random sequence of values between –0.001 and 0.001 (see
Fig. 2). At first, the residual (Fig. 3) converges to zero as the estimate ẑ1(t) converges to the measured value
of y1(t)+ y2(t). After the occurrence of the fault w1 the residual clearly becomes nonzero. It is common
that a fault is detected if the residual signal exceeds some threshold. This adds more robustness to fault
detection. In our setting we have decoupled system disturbances from the residual signal, which means that
we can possibly take this threshold smaller than with other methods.

6.2. Plant reconfiguration

In active FTC the FDI part is followed by fault accommodation or plant reconfiguration steps. Linking these
parts together is one of the main challenges in active FTC [23]. Thus we shortly demonstrate how to use
functions’ algebra for the plant reconfiguration part in this example.

After detecting the fault w1 in system (14), one can use the results of [8] on plant reconfiguration to
find a maximal subsystem of (14), which can be decoupled from the effects of the fault w1. Thus one can
control the subsystem normally even when the fault w1 appears. The paper [8] uses also functions’ algebra
to achieve its goal and therefore can be combined with the results of this paper. Assume now that the fault
w2 is not present and apply the results of [8] (more precisely Algorithm 3 in [8]) to show that the subsystem
corresponding to the state variables x2 and x3 can be decoupled from the fault w1. Therefore we show that
one can control the liquid levels of the second and third tanks even when the fault w1 occurs. Note that the
starting point in [8] is the vector function β 0.

Now one can check that the vector function ξ = [x2,x3]
T can be decoupled from the fault w1 by a static

output feedback
u2 = ϑ2v2 +ϑ2θ1

√
y1 − y2. (17)
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After applying the feedback (17), system (14), where the fault w2 is not present, takes the form

x+1 = (u1 +w1)/ϑ1 −θ1
√

x1 − x2 + x1,
x+2 = v2 −θ2

√
x2 − x3 + x2,

x+3 = θ2
√

x2 − x3 −θ3
√

x3 −ϑ7 + x3,
y1 = x1,
y2 = x2.

(18)

7. CONCLUSIONS

The problem of fault detection and isolation has been studied in this paper for nonlinear discrete-time sys-
tems. An algorithm has been derived to compute a residual, which detects exactly one fault and is not
affected by other faults or disturbances. The solution is based on the construction of an observer for the
subsystem, which depends on the specific fault but not on the other faults and disturbances. Since one can
always construct an extended observer for any observable nonlinear discrete-time system, it is enough to
check whether it is possible to construct subsystem (13), depending on the fault. The same mathematical
approach (i.e., functions’ algebra) has previously been used to study the plant reconfiguration problem [8],
which possibly allows unifying the problems in the future studies.
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Olekutaastajal põhinev veatuvastussignaali arvutamine diskreetaja mittelineaarsetele
süsteemidele

Arvo Kaldmäe ja Ülle Kotta

On uuritud võimalusi veatuvastussignaalide leidmiseks mittelineaarses diskreetaja süsteemis, kasutades sel-
leks süsteemi olekute hinnanguid. Kirjeldatud signaalid konstrueeritakse nii, et nende väärtused oleksid nul-
lid, kui süsteemis puudub konkreetne viga, sõltumata teistest vigadest ja häiringutest, ning nende väärtused
muutuvad antud vea tekkimisel nullist erinevaks. See võimaldab automaatselt tuvastada ka vea asukoha ja
liigi. Veatuvastusalgoritmi tuletuskäik kasutab võreteoorial põhinevat matemaatilist aparatuuri. Tulemuste
uudsus seisneb selles, et algoritmis kasutatakse ära diskreetaja süsteemide omadust, mis võimaldab alati ja
suhteliselt lihtsa vaevaga hinnata vaadeldava süsteemi olekuid eeldusel, et süsteemis puuduvad vead. Neid
hinnanguid võrreldakse olekute mõõdetud väärtustega, mis erinevad hinnangutest juhul, kui viga mõjutab
süsteemi. Artiklis kirjeldatud meetodit on kasutatud populaarse kolme anuma näite puhul. Lisaks on näites
demonstreeritud, kuidas ühildada veatuvastuse protsess kontrolleri ümberarvutamisega, mis on veakindla
juhtimise üks võimalikest järgmistest sammudest pärast vea tuvastamist.


