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Abstract. The current study focuses on the evaluation of the Haar wavelet method, i.e. its comparison with widely used strong 
formulation based methods (FDM-finite difference method and DQM-differential quadrature method). A solid element 3D finite 
element model is developed and the numerical results obtained by using simplified approaches are confirmed. 
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1.  INTRODUCTION 
* 
Accuracy and complexity are two key factors charac-
terizing any numerical method. The Haar wavelet 
method (HWM) considered in the current study was 
introduced by Chen and Hsiao in [1,2] almost 20 years 
ago and up to now it has been applied for solving a wide 
class of differential and integral equations covering 
engineering, economic, etc. problems [3–7]. An overview 
of the applications of the HWM is given in [8]. The 
wavelet techniques based on the use of an operational 
matrix of integration are developed for solving ordinal 
and partial differential equations in [1–10] and for integral 
equations in [11–13]. All these studies implement the 
strong formulation based approach of the HWM. The 
weak formulation based approach of the HWM was 
introduced in [14].  

Most of the authors characterize the HWM as a 
simple and effective method [3–9]. These estimates 
cover mainly implementation of the HWM, less its 

                                                           
* Corresponding author, Maarjus.Kirs@ttu.ee 

accuracy and convergence results, which are still under 
development. It is shown in [15] that in the case of 
function approximation with direct expansion into the 
Haar wavelet the convergence is of order one. However, 
according to the HWM approach considered, the highest 
order derivative included in the differential equation is 
expanded into a series of Haar functions. Thus, the 
estimate given in [15] holds good for estimating the 
accuracy of the highest order derivative, but not the 
solution of the differential equation. Recently, the 
convergence theorem of the HWM was proved in [16] 
for the nth order ordinal differential equations (ODEs) 
( 2n  ). It was stated that the order of convergence of 
the HWM is equal to two. In [17] the accuracy estimates 
for the extrapolated results in the case of the fourth 
order ODE are derived, and it is shown that the order of 
convergence of the extrapolated results is equal to four 
(Richardson extrapolation is applied). 

The application area of new simple methods often 
includes problems with advanced material models, 
constitutive laws, etc., which are not yet (well) covered 
by commercial software. 
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A new trend in the development of wavelet methods 
can be outlined as solution of fractional differential and 
integral equations [15,18–24], which is an area not 
yet well covered by commercial software (finite element 
method (FEM), etc.). It is observed in [21] that in the 
case of fractional ODE the order of convergence of  
the HWM is equal to two if higher order derivative α  
in the fractional differential equation exceeds one 
(α > 1). However, in the case of 0 < α < 1 the order of 
convergence of the HWM tends to the value 1 + α. 

In [25,26] the HWM was adapted for the analysis of 
structures of functionally graded material (FGM). In the 
current study the vibration analysis of the FGM beams 
is performed and the results obtained by the HWM are 
compared with the corresponding results obtained by 
using the finite difference method (FDM) and the 
differential quadrature method (DQM). Selection of FDM 
and DQM for comparison of results was motivated by 
the fact that these methods are widely used numerical 
methods in engineering and are based on strong 
formulation (the complexity of implementation is similar). 
The methods considered are implemented by the authors 
in the MATLAB code. 

In order to verify the obtained results and prepare 
solution procedures for structures with complex geometry 
and loading cases, the solid element 3D finite element 
model was developed.  

 
 

2.  BASICS  OF  HAAR  WAVELETS 
 
The Haar function is defined in [8,9] as  
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In (1) 1i m k   , 2 jm  is the maximum number  
of square waves that can be sequentially deployed in 
interval  ,A B and the parameter k indicates the location 
of the particular square wave, 
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The Haar functions are orthogonal to one another and 
form a good transform basis 
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Any function ( )f x  that is square integrable and finite 
in the interval ([A, B] can be expanded into Haar 
wavelets as 
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The integrals of the Haar functions (1) of order n can be 
calculated analytically as [9] 
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The integrals of the Haar functions determined by (5) 
are continuous functions in the interval  ,A B . 
 
 
3.  FREE  VIBRATION  ANALYSIS  OF  THE  

FGM  BEAM 
 
In the following the free vibration analysis of the FGM 
beam is considered [27–29]. It is assumed that the 
material properties of the beam of length L vary axially. 
The governing differential equation of the beam can be 
written as  
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The varying properties of the bending stiffness 
( )EI x  and the distributed mass per unit length ( )A x  

are described by exponential functions as 
 

 2 / 2 /( ) (0) , ( ) (0)x L x LEI x EI e A x A e    . (7) 
 

The reference values of the bending stiffness and 
distributed mass per unit length at x = 0 are denoted 
by (0)EI  and (0),A  respectively. Relation (7) is used 
in a number of papers [27–29]. The volume fractions of 
the material corresponding to relation (7) can be derived 
as  
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The wavelet method approach considered can be 
applied for a wide range of functions describing 
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properties of FGM. In the following a more general 
power law relation for describing FG materials is 
considered: 
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Here k is the non-negative power-law exponent 
describing the material variation profile along the 
length of the beam and the indexes L and R stand for 
the values of the material properties on the left and 
right support of the beam, respectively. Relations 
(9)–(10) seem to be the most widely used relations for 
describing FGM properties found in the literature [30]. 

In the following the solution of the partial differential 
equation (6) is assumed in the form  
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Considering Eqs (7) and (11), the governing differential 
equation (6) can be rewritten in a non-dimensional 
form as 
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As a result, the vibration analysis problem of the FGM 
beam considered above is converted to solving the 
ordinal differential equation (12). The particular boundary 
conditions are introduced in Section 7. 
 
 
4.  THE  HAAR  WAVELET  DISCRETIZATION  

METHOD 
 
Herein the most commonly used approach of the HWM 
is employed. According to this method, the highest 
order derivative existing in a differential equation is 
expanded into Haar wavelets. Thus, Eq. (12) implies 
that the fourth order derivative should be expanded into 
Haar wavelets as 
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where N = 2M is the resolution used. 

The solution of the differential governing equation 
(12) W(X) can be obtained by integrating the expansion 
(14) four times with respect to X as  
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In (15) the operational matrix of integration (4)P  is 
defined by formulas (5) and Ta is a vector of coefficients. 
The integration constants c0,…,c3 can be determined 
for each particular boundary condition separately. 
Corresponding expressions of the integration constants 
are omitted for conciseness sake. 

Inserting the solution of (15) in the differential 
equation (12) and assuming uniform grid points in the 
form 
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one obtains a linear system of algebraic equations, which 
can be solved with respect to coefficient vector Ta . 
Finally, substituting the values of Ta in (15) gives the 
solution of the posed problem in an analytical form. 
 
 
5.  CONVERGENCE  AND  ACCURACY  

ESTIMATES 
 
The convergence theorem for the HWM is given in [16] 
for the nth order ODE ( 2n  ) as 
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Then the HWM, based on the approach in [1,2], will be 
convergent, i.e. ME  will vanish as the number of 
collocation points approaches N infinity. The convergence 
is of the order two  
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The proof of the theorem is given in [16]. Further-
more, the quadrate of the 2L -norm of the error function 
can be estimated as 
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In the case of the considered problem the highest order 
derivative in differential equation equals four ( 4)n   
and formula (19) reduces to 
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Furthermore, it is proved in [17] that in the case of 
the general fourth-order ODE the accuracy of the results of 
the HWM can be improved from two to four by applying 
Richardson’s extrapolation method. The theoretical 
estimates pointed out above are validated numerically 
in the following section.  
 
 
6.  FEM  SIMULATION  MODEL 
 
Commercial analysis software Mechanical APDL 16.0 
was used to develop a 3D finite element simulation model 
for free vibration analysis of an axially functionally 
graded beam. The FGM beam was partitioned through 
its length into a number of strips with constant material 
properties inside the strip (see Fig. 1). 

Figure 1 shows the mesh of the zoomed right-hand 
side of the beam corresponding to the third row of 
Table 1 (5 elements in the thickness and width directions 
and 500 elements in the length direction). The elements 
considered were cubical 3D 8-Node Homogeneous 
Structural Elements SOLID185. The detailed mesh values 
used are given in column 1 of Table 1. 

The geometrical parameters of the beam considered 
are width (b), height (h), and length (L). The material 
properties of the steel and aluminium used in the FEM 
analysis are given in Table 2. The boundary conditions 
considered correspond to a cantilever beam. The results 
obtained from FEM analysis were originally in the 
 

 

 
 

Fig. 1. FGM beam. Mesh, zoomed right end of the beam. 

Table 1. FEM model. First three values of frequency parameter, 
pinned–pinned beam 
 

N Ω1 Ω2 Ω3 

2700  
(3 × 3 × 300) 

8.4522 41.2579 91.5302 

6400  
(4 × 4 × 400) 

8.4366 41.1807 91.3549 

12500 
(5 × 5 × 500) 

8.4276 41.1363 91.2543 

100000 
(10 × 10 × 1000) 

8.4136 41.0672 91.0984 

 
 

Table 2. Material properties of FG steel/aluminium material 
 

Property Unit Steel Aluminium 

E GPa   210     70 
 Kg/m3 7800 2600 

 
 

dimensional form, i.e. computed for a particular beam 
with the given geometry, rigidity, and mass per unit 
length values. In order to compare these results with  
the results of the FDM, DQM, and HWM, the frequency 
parameter was converted into the non-dimensional form 
using the following formula: 
 

 (0)2
(0)2 ,A

EIfL    (21) 
 
where f stands for natural/dimensional frequency 
parameter value (in Hz). The FEM results are discussed 
in detail in the following section. 
 
 
7.  NUMERICAL  RESULTS 
 
In the following five different boundary conditions  
of the FGM beam are considered (see Fig. 2) and the 
results obtained by applying HWM, FDM, and DQM 
are compared (two symmetric and three non-symmetric 
conditions).  

The first two values of the fundamental frequency 
parameter  are presented in Tables 3 and 4 for a pinned–
pinned beam, in Tables 5 and 6 for a clamped–clamped 
beam, in Tables 7 and 8 for a clamped–pinned beam,  
in Tables 9 and 10 for a pinned–clamped beam, and in 
Tables 11 and 12 for a clamped–free beam). 

Note that in the FE model all supports with pinned 
boundary conditions (a, c, and d) have the ability to 
move in the horizontal direction ( 0, 0)y z xu u u   .  

In Tables 1–10 the properties of the beam are 
considered to vary according to formula (7), i.e. by 
exponential functions.  
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Fig. 2. Boundary conditions of the FGM beam. 
 
 

Table 3. Fundamental frequency parameter Ω1 ( = 2, exact 
solution 8.41047573) 
 

N HWM FDM DQM 

4 7.235577 8.157141  
8 8.118951 8.332735 8.40822662 
16 8.337942 8.390010 8.41047574 
32 8.392365 8.405292 8.41047574 
64 8.405950 8.409176 8.41047568 
128 8.409344 8.410150 8.41047711 
256 8.410193 8.410394 8.41047514 
FEM results (10 × 10 × 1000 el.) 8.4136 

 
 

Table 4. Second natural frequency parameter Ω2 ( = 2, exact 
solution 41.07055822) 
 

N HWM FDM DQM 

4 36.595239 34.453858  
8 39.999094 39.252370 41.07596761 
16 40.805039 40.603112 41.07055821 
32 41.004320 40.952833 41.07055821 
64 41.054008 41.041072 41.07055830 
128 41.066421 41.063183 41.07055855 
256 41.069524 41.068714 41.07056029 
FEM results (10 × 10 × 1000 el.) 41.0672 

Table 5. Fundamental frequency parameter Ω1 ( = 2, exact 
solution 24.78955023) 
 

N HWM FDM DQM 

4 21.242723 21.212781  
8 24.016796 23.517337 24.24277247 
16 24.602325 24.432036 24.78954915 
32 24.743104 24.697286 24.78955023 
64 24.777961 24.766296 24.78955023 
128 24.786654 24.783725 24.78955013 
256 24.788826 24.788093 24.78955092 
FEM results (10 × 10 × 1000 el.) 24.8074 

 

 

Table 6. Second natural frequency parameter Ω2 ( = 2, exact 
solution 64.70943426) 
 

N HWM FDM DQM 

4 57.202697   
8 62.966887 57.405312 65.21032574 
16 64.287324 62.612504 64.70946202 
32 64.604874 64.163748 64.70943427 
64 64.683357 64.571582 64.70943427 
128 64.702919 64.674880 64.70943434 
256 64.707806 64.700790 64.70943804 
FEM results (10 × 10 × 1000 el.) 64.7032 

 

 

Table 7. Fundamental frequency parameter Ω1 ( = 2, exact 
solution 11.18278324) 
 

N HWM FDM DQM 

4 8.764599 9.455451  
8 10.647800 10.572089 11.17258124 
16 11.052596 11.012971 11.18278324 
32 11.150448 11.139111 11.18278324 
64 11.174712 11.171786 11.18278327 
128 11.180766 11.180029 11.18278302 
256 11.182279 11.182094 11.18278285 
FEM results (10 × 10 × 1000 el.) 11.1901 

 

 

Table 8. Second natural frequency parameter Ω2 ( = 2, exact 
solution 48.26066843) 
 

N HWM FDM DQM 

4 41.945882 35.930268  
8 46.799191 43.888087 48.31401606 
16 47.903565 47.016589 48.26066840 
32 48.171942 47.938093 48.26066844 
64 48.238522 48.179262 48.26066848 
128 48.255134 48.240268 48.26066852 
256 48.259285 48.255565 48.26066842 
FEM results (10 × 10 × 1000 el.) 48.2589 
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Table 9. Fundamental frequency parameter Ω1 ( = 2, exact 
solution 20.777978) 
 

N HWM FDM DQM 

4 18.799637 19.770973  
8 20.309972 20.506995 20.77852832 
16 20.662461 20.708729 20.77797932 
32 20.749190 20.760567 20.77797932 
64 20.770788 20.773620 20.77797931 
128 20.776182 20.776889 20.77797921 
256 20.777530 20.777707 20.77797837 
FEM results (10 × 10 × 1000 el.) 20.7897 

 

 
Table 10. Second natural frequency parameter Ω2 ( = 2, exact 
solution 56.294438) 
 

N HWM FDM DQM 

8 54.965168 52.599124  
16 55.969009 55.338806 56.09705480 
32 56.213501 56.053355 56.29443879 
64 56.274230 56.234028 56.29443858 
128 56.289388 56.279327 56.29443857 
256 56.293176 56.290660 56.29443848 
FEM results (10 × 10 × 1000 el.) 56.2907 

 

 
Table 11. Fundamental frequency parameter Ω1 ( = –0.549306) 

 
N HWM FDM DQM 

8 4.884627 4.842031 4.87118515 
16 4.874540 4.863858 4.87119849 
32 4.872033 4.869360 4.87119848 
64 4.871407 4.870739 4.87119797 
128 4.871251 4.871084 4.87120621 
256 4.871212 4.871170 4.87220829 
FEM results (10 × 10 × 1000 el.) 4.8758 

 

 
Table 12. Second natural frequency parameter Ω2 ( = – 0.549306) 

 
N HWM FDM DQM 

8 24.798280 23.143597 24.41704668 
16 24.517676 24.092313 24.42645172 
32 24.449153 24.342014 24.42645172 
64 24.432120 24.405285 24.42645167 
128 24.427868 24.421156 24.42645138 
256 24.426806 24.425128 24.42665633 
FEM results (10 × 10 × 1000 el.) 24.4397 

 

 
In Tables 3–10 the value of the parameter  is taken 

equal to 2. The exact solutions computed based on 
transcendental algebraic equations derived in [27] are 
given in the headings of Tables 3–10. Obviously,  
the convergence of the HWM (also of the FDM and 
DQM) to the exact solution can be observed in all 
these tables. 

The numerical rates of the convergence, computed 
for the solutions presented in Table 3, are presented in 
Table 13. 

In Table 13 the values of N start from 16 because 
each rate of convergence was computed on the basis of 
three consecutive values of the solution [16]. The rate of 
the convergence of the HWM and FDM obviously tends 
to two, but the DQM has an ultrafast rate for N ≤ 32 and 
a negative rate for N > 32 (loss of accuracy). 

In Table 14, the convergence rates of the extrapolated 
results of the HWM are given for four different boundary 
conditions considered above. The Richardson extrapolation 
method was applied, and it can be seen from Table 14 that 
the order of the convergence of extrapolated results tends 
to four in the case of all boundary conditions considered. 

Based on results given in Tables 3–12, it can be 
concluded that in the case of the posed problem the 
highest accuracy was achieved by applying the DQM, 
also in most cases the accuracy of the results obtained 
by the HWM is higher than that obtained by the FDM 
(there fundamental frequencies in Tables 3 and 7 are 
exceptions). Detailed analysis of DQM results shows 
that the maximum accuracy was achieved extremely 
quickly with N = 16 or N = 32; thereafter the accuracy 
of the solution decreased with increasing resolution. 
These results are in agreement with the theoretical 
concept of the DQM (it is based on the use of high order 
polynomials whose denominator vanishes for large N) 
and results found in the literature.  

It can be seen from Fig. 3 that in the case of the 
parameter value k = 1.5 the functions of the elasticity 
modulus corresponding to the exponential and power law 
functions (7) and (9) are close (here a steel/aluminium 
cantilever beam with  = – 0.549306 is considered). 

 
 

Table 13. Rates of convergence corresponding to results given 
in Table 3  
 

N HWM FDM QDM 

16 2.0122 1.6163 – 
32 2.0086 1.9060 23.8789 
64 2.0023 1.9766 – 8.6258 
128 2.0006 1.9942 – 4.6331 
256 2.0001 1.9985 – 0.4590 

 
 

Table 14. Fundamental frequency parameter Ω1, convergence 
rates of extrapolated results 
 

N Pinned– 
pinned 

Clamped– 
clamped 

Clamped– 
pinned 

Pinned– 
clamped 

32 2.514821 4.2685 4.3015 4.1711 
64 3.916921 4.0516 4.0774 4.0425 
128 3.984539 4.0120 4.0191 4.0105 
256 3.996411 4.0029 4.0047 4.0026 
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Fig. 3. Variation of elastic modulus. 
 

 
In Tables 11 and 12 the FG material properties 

corresponding to steel/aluminium are considered with 
steel in the left and aluminium in the right support. The 
particular values of the material used are presented in 
Table 2. 

The exponential model (7) does not include directly 
material properties at the right end of the beam. The 
required values of the material are obtained by deter-
mining the value of the parameter  ( = – 0.549306). 

The first four mode shapes for the above-considered 
FG steel/aluminium cantilever beam are depicted in 
Fig. 4. The corresponding mode shapes obtained by a 
FEM are shown in Figs 5–8. 

The results given in Table 15 were obtained by 
applying the HWM with the general power law function 
(9)–(10).  

The steel/aluminium FGM with properties given in 
Table 2 is considered and the value of the exponent is 
taken equal to 1.5 (k = 1.5). The boundary conditions for 
a clamped–clamped beam are applied. 

 
 

 
 

Fig. 4. First four mode shapes of a cantilever FGM beam. 

 
 

Fig. 5. First mode shape of a cantilever FGM beam in FEM. 
 
 

 
 

Fig. 6. Second mode shape of a cantilever FGM beam in 
FEM. 

 
 

 
 

Fig. 7. Third mode shape of a cantilever FGM beam in FEM. 
 
 

 
 

Fig. 8. Fourth mode shape of a cantilever FGM beam in FEM. 
 
 

Table 15. First three values of fundamental frequency parameter 
(k = 1.5, power law) 
 

N Ω1 Ω2 Ω3 

8 22.573818 62.648322 124.802042 
16 22.559805 62.097576 122.045771 
32 22.552926 61.958469 121.384345 
64 22.548905 61.920592 121.216644 
128 22.546296 61.908898 121.172322 
256 22.544517 61.904408 121.159519 

 
 

The FEM results computed for all boundary con-
ditions considered above are given in the last row of each 
table. The number of elements used is 10 × 10 × 1000. 
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Obviously, the values of the frequency parameters 
computed using 3D FEM analysis are in excellent 
agreement with those given in Tables 3–12, obtained by 
applying the HWM, DQM, and FDM.  

An example of the results of more detailed FEM 
analysis is given in Table 15. In this table the first free 
frequencies for a pinned–pinned beam are presented. 
The convergence of the solution with increasing mesh 
can be observed. The results are in agreement with 
corresponding results obtained by applying the HWM, 
FDM, and DQM given in Tables 3 and 4. 

 
 

8.  CONCLUSIONS 
 
Three strong formulation based numerical methods 
(HWM, FDM, and DQM) were applied for the analysis 
of the FGM beam and the obtained results were 
compared. The algorithms for all methods were coded 
by the authors in MATLAB. Good performance was 
observed in the case of all three methods used.  

It can be concluded that in the case of the considered 
problem the accuracy of the solutions obtained by 
applying the HWM and FDM was in the same range. 
However, in most cases the accuracy of the results of 
the HWM outperformed that of the FDM. The accuracy 
of the DQM appears to be higher than that of the HWM 
and FDM. The convergence results presented in Table 13 
confirm the accuracy of the HWM, FDM, and DQM. 
Similar accuracy was observed also for cylindrical 
shells in [16]. 

The obtained numerical results were validated with 
the solid element 3D finite element model developed for 
analysing more complex FGM structures. The results 
obtained with applying the 3D FEM and HWM were 
found to be in good (rather excellent) agreement.  

Our future studies will focus on the application of 
the HWM for the analysis of nanostructures and solving 
fractional differential equations, which are not yet well 
covered by commercial software solutions. An interesting 
subtopic, whose research is underway, is adaption of 
global optimization methods and techniques, developed 
by the workgroup of design composite structures [31–36] 
to design nano- and graphene structures. 
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Funktsionaalgradientmaterjalist  tala  vabavõnkumised:   
Haari  lainikute  meetodi  evalveerimine  

 
Maarjus Kirs, Kristo Karjust, Imran Aziz, Erko Õunapuu ja Ernst Tungel 

 
Uurimistöös on keskendutud Haari lainikute meetodi evalveerimisele. Haari lainikute meetodi abil saadud tulemusi 
on võrreldud insenerirakendustes laialdaselt kasutatavate tugeval formulatsioonil põhinevate meetodite, nagu lõplike 
vahede meetodi ja diferentsiaalkvadratuuride meetodi tulemustega. Vaadeldava ülesande korral on Haari lainikute 
meetod lõplike vahede meetodist täpsem. Diferentsiaalkvadratuuride meetod osutus väiksema kollokatsioonipunktide 
arvu korral Haari lainikute meetodist täpsemaks, kuid selle rakendamine suurema kollokatsioonipunktide arvu korral 
on komplitseeritud. Samuti on loodud 3D lõplike elementide meetodil põhinev mudel ja selle rakendamisel saadud 
tulemused on eeltoodud meetodite tulemustega kooskõlas. Haari lainikute meetodi abil saadud lahendi ja ekstra-
poleeritud tulemuste koonduvuskiirus on kooskõlas vastavate koonduvusteoreemidega tõestatud teoreetiliste tulemustega.  


