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Abstract. The surface quality of machined parts depends highly on the surface texture that reflects the marks of the tool during 
the cutting process. The traditional theoretical approach indicates that these marks are related to the cutting parameters  
(e.g. cutting speed, feed, depths of cut), the machining type, the part material, the tool, etc. The influence of these factors has  
been widely studied by researchers and they have been considered in milling process models proposed to predict the final  
surface texture. 

Nevertheless, if an accurate prediction is desired, these milling models must include different geometrical errors influencing 
the cutting edges path on the part. In this paper, we present the results of a study showing the influence of real mill-axis inclination 
on 3D surface texture. Therefore, experiments with simple, end mill tool operation, with constant cutting parameters and four 
different cutting directions (the directions that we labelled as North, South, East, and West) in accordance with the machine 
coordinate system were performed. Using optical 3D areal surface texture measurement techniques with the Bruker Contour 
device, we obtained areal surface texture parameters for analysis. Descriptive statistical analysis and one-way ANOVA analysis 
were performed to detect the factor significances and their influence on 3D areal surface texture parameters. The results from 
ANOVA and graphical analysis clearly identified tool-axis inclination in the South and East directions. If a relationship between 
tool-axis inclination and surface texture parameters can be demonstrated, this calculation can be included in the model of 3D 
surface texture formation. Improving the mathematical model with all possible errors occurring in high speed machining 
operations helps to obtain more precise surface height parameter Sz results for simple end mill operation. The model is suitable for 
complicated machining operations with ball end mill tools. 
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1.  INTRODUCTION  

* 
Surface quality, including 3D surface texture, is the 
most important indicator with respect to machined 
surfaces [1]. To ensure high quality of the injection 
                                                           
* Corresponding author, logins.andris @gmail.com 

mould surface, avoiding external finishing operations,  
it is important to take the principle machining techno-
logical factors into account. We are interested in the 
model development to select the appropriate cutting 
conditions that guarantee the mould quality with a 
minimal machining cost. In this field, many researches 
are available, dealing with the mathematical modelling 
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of the cutting process, however, most of them result  
in differences between measured and modelled surface 
roughness parameters. To diminish this error, it is 
important to detect the most important parameters of the 
cutting process, which affect the surface formation 
process. These factors are related not only to cutting 
conditions, but also to factors (tool sharpening error, 
concavity angle on the bottom face) which cannot be 
modified directly. Furthermore, these factors intervene 
during the finishing processes rather than in the rough 
machining. To develop a cutting tool geometrical move-
ment model, such factors as tool deformation errors, 
performed by increased cutting forces during the 
machining process, tool alignment position, and tool 
sharpening error, are important [1,2]. A combination of 
tool manufacturing errors and coupling inaccuracies could 
generate tool radial run-out errors, i.e. discrepancies 
between the theoretical axis and the tool’s real axis  
[1–5]. In Section 2 we give an overview of several 
research works on surface roughness prediction that 
have considered other factors, such as tool run-out, and 
other surfaces such as laterally machined surface. In 
Section 3 and Section 4 the methodology of experimental 
analysis is described and a geometrical model is provided 
accordingly. 
 
 
2. STATE  OF  ART 

 
The authors of several other research projects have 
sought to develop predictive models for the influence of 
tool axial and radial run-out values on surface roughness 
parameters. Baek et al. [2] distributed a simple approxi-
mation to predict surface roughness based on the geo-
metrical dislocation of the tool cutting edges. Franco [6] 
also used a descriptive model to include tool error in  
his surface roughness prediction model. Both of these 
studies, along with others [5,7], include these run-out 
errors in surface roughness predictive models. Tool run-
out errors usually consist of two elements: axial run-out 
that affects the depth of the cut in the axial direction 
of the workpiece and radial run-out, which influences 
the surface roughness mainly owing to the feed per 
tooth and radius of cutting edges [2]. Both the radial 
and axial tool run-outs on the Z-axis affect the surface 
texture formation. The relative displacement of the 
cutting tool tip in the Z direction affects the machined 
surface roughness [2,8]. 

At milling operations, where surface geometry has 
been generated with the bottom face of the end mill, the 
path of the end mill tool follows a curvilinear trajectory. 
This trajectory is caused by tool deflection errors, cutting 
forces, tool-axis inclination, and machine head/spindle 

inaccuracy, as well as by alignment errors. Therefore, it 
is also necessary to include the effect of cutting forces 
and vibrations in the geometrical simulation, as Dang  
et al. [9] and Arizmendi et al. [10] suggested. In such 
situations, the cutter path influences the geometry of the 
surface cut by the machined bottom [8]. All these run-
out errors affect the machined areal surface texture. 
Most of them are used to predict 2D surface roughness 
parameters [1–3,6,11], but it is more important to describe 
3D surface texture, as it reflects the overall surface quality 
and errors. The above publications mostly consider run-
out errors resulting from tool edge displacements or 
vibrational effect, as well as tool geometry. However, 
the errors between predicted and measured values hint 
at other important cutting process parameters, such as 
tool-axis inclination due to machine inaccuracy. If surface 
heights (irregularities) depend on the machining direction, 
there may exist a constant tool-axis inclination error due 
to the interaction of machine inaccuracies, mounting 
inaccuracy, and tool sharpening error. The goal of the 
present research is to determine mathematically the 
influence of the tool-axis inclination angle error, relative 
to the plane of the tool path, on the areal surface height 
parameter Sz. This article analyses and explains the 
influence of the tool-axis inclination angle on the change 
of size for the surface texture descriptive parameter (Sz), 
in the vertical (Z) direction, depending on the direction 
of the machining. 

 
 

3.  METHODOLOGY 
 

In this section the influence of the actual mill axis 
direction on surface texture is considered. Theoretically, 
the end mill axis (Z direction) is perpendicular to the 
machined part (XY plane), but the real flat-end mill 
direction will be different as a consequence of not only 
tool deflection originated from cutting forces but also of 
the tilting axis of the machine head. 

To check whether an error variable exists, it is 
necessary to perform experimental analysis. As the ball-
end milling process involves complex tool and envelope 
geometry caused by the cutting edge [5], it is easier to 
use an end mill tool to describe the tool-axis inclination 
error. This is the easiest way to check the behaviour 
of the machining system and prove the influence of the 
tool alignment between the spindle axis and the tool’s 
theoretical axis on the formation of surface roughness. 
The experimental operations were performed with two 
flute-end mill tools, to represent each cutting edge move-
ment over the material’s surface. The same approximation 
can be integrated subsequently for a model with a ball-
end mill tool.  
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To make a model more like a real experimental 
situation, we applied the same cutting conditions as used 
in previous research [12] on high-speed ball-end milling  
to the flat-end milling experiments. This article describes 
the influence of the cutting tool-axis inclination error  
on the parameters of 3D surface texture. The cutting 
conditions used are widely employed in die and mould 
manufacturing. 

The experiment was designed to collect data on 
machine accuracy and to prove its influence on machined 
surface texture. In the experiment, samples with four 
different cutting directions were developed. These 
samples provide a tool-axis inclination test against the 
workpiece. In theory [4,7] the milling tool has some 
inclination error affecting the tool’s rotational movement 
against the workpiece; analysis of this sample should 
prove that this is the case. 

The cutting was performed using rectangular tool 
movement to ensure straight tool movement in any 
direction. A KONDIA B500 CNC milling machine was 
used. The schematics of one of the samples processed is 
illustrated in Fig. 1. 

The tool was only used in the indicated area (light 
grey slot). A MITSUBISHI end mill tool, MS2MSD1000 
with the cutting diameter of 10 mm (Fig. 2) was selected 
for the machining process. This is a tungsten carbide 
(WC) cutting tool with a MITSUBISHI UWC – TiAlN 
(MIRACLE) coating. The whole tool diameter engage- 
ment was used in the cutting process. Both, DOWN 
(climb) and UP (conventional) milling modes appeared 
in each cut due to full tool engagement. It is possible to 
observe the movement of the tool tip point more clearly 
all over the contact area.  

Figure 2 represents the tool end surface concavity 
angle  = 2° and therefore, the tool tip point compli-
mentary angle '' = 88°. 

 
 

 
 

Fig. 1. Sample machining and sampling scheme. The numbers 
indicate the measurement order. 

 
 

Fig. 2. MS2MSD1000 tool angles. 

 
 
The cutting conditions were the same as in our 

previous research [12]: 
(a)  tool diameter: D = 10 mm; 
(b)  feed per tooth, fz: 0.1 mm/tooth; 
(c)  spindle speed, n: 4775 rpm, equivalent to 150 m/min 

cutting speed Vc; 
(d)  axial cutting depth: 0.3 mm. 

The 3D surface measurements were performed  
in the Department of Mechanical and Industrial 
Engineering, Tallinn University of Technology. The 
measurements were made with a Bruker Contour GT3 
optical measuring device following the instructions 
presented below:  
(1) prepare the device for 3D surface topography 

measurements, take the environmental conditions 
into account, and calibrate the measurement device;  

(2) place the measurement sample on the machine table 
and adjust the level of it;  

(3) adjust the settings of the measurement device for the 
type of material and reflection of the surface; 

(4) adjust the cutting direction according to the machine, 
to ensure the same measurement alignment for all 
samples;  

(5) take a control measurement, apply the filters, and 
check the obtained surface parameters; 

(6) if the control measurement is successful, make the 
main measurements; if not, adjust the machine.  
All the results recorded following the measurement 

protocol were saved in a data file with the numbering of 
sample, measurements, and location specification. After 
the measurements, the data was processed with self-
developed surface texture analysis software, based on 
the Python programming language. An example of areal 
texture after the cutting process is represented in Figs 3 
and 4. 
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4.  RESULTS 
 

The first step involved a visual analysis of the obtained 
measurement images, showing the measured surface 
texture. Afterwards, we performed a descriptive analysis 
of the measurement data. Descriptive analysis provides 
a description of the basic features of the data in a study. 
It offers a simple summary of the sample and the 
measurements. 

Visual sample analysis (Figs 3 and 4) indicates 
that the surface pattern is dependent on the tool feed 
direction. The flattest surface peak slope decreases in 
the cutting feed direction. This slope results from the 
cutter’s clearance side of the cutting edge. The distances 
between the highest peaks coincide with the cutting feed 
per tooth, fz = 0.1 mm. Between these highest points 
there are smaller peaks, resulting from the tool rotation 
direction. In future research, the appearance of those 
points will be analysed. 

Before starting ANOVA analysis, it is necessary  
to determine the independent and dependent process 
parameter variables. As tool deflection has a geometrical 

behaviour, the surface roughness is affected in absolute 
values. If there were no significant changes in the values 
of the average height parameters of 3D surface texture, 
i.e. Sa (average height of the surface in m) and Sq (root 
mean square roughness), there would be an absolute 
surface height value which could be dependent on 
geometrical tool deformations and tool orientation errors. 
Furthermore, the measured Sa and Sz values indicate 
smoother value changes due to feed direction change. 
The Sz parameter is the maximum height of the surface 
(according to ISO 25178-2:2012) and it is the most 
indicative parameter to describe a theoretically machined 
surface. At this stage, a null hypothesis (H0) was 
defined and the analysis was conducted to confirm or 
reject it. The null hypothesis H0 means that the tool 
movement direction has no effect on the surface texture 
parameter Sz. 

Descriptive analysis contributes to the obtained 
measurement values. Table 1 shows that the statistical 
skewness for the average surface height parameter Sa  
is close to standard deviation. There are no unreliable 
measurement values and the distribution corresponds to  

 

 

 

 
 
 
 

Fig. 3. Sample 3D texture measurements for
the South cutting direction; Vf is feed speed
(mm/min). 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 4. Sample 3D texture measurements for
the North cutting direction; Vf is feed speed
(mm/min). 
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Table 1. Factors and measurements 
 

Sample Direction Sa, m Sz, m 

111 South 1.017 33 10.604 45 
112 South 1.160 82 9.191 31 
121 West 1.148 25 8.292 17 
122 West 0.890 45 8.460 29 
131 North 1.125 16 8.083 3 
132 North 1.162 29 7.898 54 
141 East 1.000 01 9.337 74 
142 East 1.097 79 10.041 44 

———————— 
Sample – sample number; Direction – machining direction from 
top view; Sa, Sz – surface texture parameters. 

 

 
normal distribution. Therefore, the kurtosis coefficient 
indicates that data repetition frequency is concentrated 
more around the mean value, compared to normal dis-
tribution. Table 1 represents a part of the experimental 
factors and areal texture parameters of the measured 
surface.  

On the other hand, the analysis of the parameter Sz 
showed high skewness and even higher kurtosis 
parameters, which drew our attention due to high data 
variation. To check the reliability of the measured data, 
a frequency histogram of all measured Sz values is 
presented in Fig. 5. 

Table 2 displays the descriptive statistics of such 
variables as mean values, standard deviation, minimum 
and maximum parameter values, skewness and kurtosis  
 

 

 
 

Fig. 5. Frequency distribution histogram of the surface maximum 
height parameter Sz. 

Table 2. Statistics of measurement data; Sa and Sz are surface 
texture parameters  
 

 Sa, m Sz, m 

Mean 1.075 262 50 8.988 655 0 
Std. deviation 0.097 389 548 0.974 998 79 
Variance 0.009 0.951 
Skewness –1.056 0.599 
Kurtosis 0.267 –0.932 
Minimum 0.890 450 7.898 54 
Maximum 1.162 290 10.604 45 

 
 

of data distribution. The descriptive analysis defined the 
standard deviation of the parameter Sz as 0.974 998 79. 
All variables belong to 3 standard deviation, representing 
data reliability. 

The next step was to analyse the significance of the 
feed direction for the surface texture parameter Sz. By 
applying ANOVA one factor analysis (the other factors 
are constant), the significance coefficient of 0.007 was 
found (Table 3). This represents the possibility that the 
H0 hypothesis is true as 0.007%. A similar outcome was 
obtained for the parameter Str – texture aspect ratio (not 
represented in Table 2). The significance factor here is 
p = 0.01.  

Analysing the data for the average surface height 
parameter Sa and surface texture kurtosis Sku, we may 
consider that the significance parameters are p = 0.7 and 
p = 0.167 (not shown in Table 2). As they are greater 
than 0.05, we may assume they are not significant in 
this case. 

The plot of the mean data values (Fig. 6) illustrates 
the effect of the tool movement direction on the surface 
parameter Sz value. The effect of the tool-axis inclination 
angle on the formation of that parameter can be directly 
related with the tool movement direction, considering  
 

 
Table 3. Test of between-subject factors 

 

Source Type III Sum 
of squares 

df Mean 
square 

F Sig. 

Corrected 7.072a 3 2.357 20.201 0.007 
Model      
Intercept 660.829 1 660.829 5663.027 0.000 
DIR 7.072 3 2.357 20.201 0.007 
Error 0.467 4 0.117   
Total 668.368 8    
Corrected 7.539 7    

———————— 
a R Squared = 0.938 (Adjusted R Squared = 0.892), df – degrees 

of freedom, F – ANOVA F value, sig. – significance coefficient, 
DIR – tool direction factor, Intercept – correction factor, 
Corrected – correction with error, Total – total sum of squares 
before the correction factor. 
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Fig. 6. The dependence of the total surface height maximum 
value on the machining or tool movement direction. 

 

 
that the total tool axis inclination is influenced by both 
the machine Z-axis direction that is constant and tool 
deflection that is always opposite to feed direction. The 
highest tool-axis inclination error occurred in the South–
North direction. In Fig. 6 we can see that the difference 
between values in the South–North direction is greater 
than in the East–West direction. If we estimate the 
same analysis for the parameter Sa, we obtain no 
significant differences in the values dependent on the 
tool direction when the movement is located on the 
same axis. However, significant differences were found 
when comparing Sz values in both directions: South–
North and East–West. 

The average value in the South–North direction is 
8.9444 µm, in the East–West direction 9.032 91 µm. 

The graph in Fig. 6 reveals the differences in surface 
parameters obtained in the same cutting conditions. The 
parameter Sz reflects the total tool-axis inclination angle 
φT (Fig. 7). This angle includes various influences related 
to the tool deflection angle φdef and the tool constant 
inclination angle φinc (Eqs (4.1) and (4.2)). Considering 
this, we can calculate the inclination angle component 
in both directions, South–North and East–West: 
 

 ,defincT    (4.1) 
 

 .defincT    (4.2) 
 

The total tool-axis inclination angle (represented in 
Fig. 7) was calculated using Eq. (4.3). To extract the φT 
value from this equation, we used a solution for the 
quadratic polynomial equation in particular form (Eq. 
(4.4)). Equation (4.4) comes from geometrical relations 
shown in Fig. 8. 

 
 

Fig. 7. Tool theoretical axis and the inclination angle φT. 

 
 

 
 

Fig. 8. Geometrical relation of the location of the tool tip-point 
and surface texture parameter Sz. 
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where Sz – total height value of surface texture (µm), 
α – concavity angle (rad) (see Fig. 2), φT – total tool-
axis inclination angle (rad), f – feed per tooth. 

The solution for Eq. (4.4) was obtained by the 
determination of the roots in the generalized form of the 
quadratic polynomial equation:  
 

 ,02  cbxax  (4.5) 
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2

42

a

acbb
x


  (4.6) 

 

where a, b, and c are coefficients according to the 
specified quadratic equation (4.4):  
 

  1, , 1 .
z z
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 
 

 

These coefficients were calculated taking into account 
the geometry of the tool position against the workpiece, 
explained in Fig. 8. 

It is important to remember that tool deflection 
consolidates the inclination on one side of the tool, but 
reduces it on the other side.  

Having obtained the mathematical relation between 
the tool-axis total inclination angle and surface texture 
parameter Sz (Eq. (4.3)), we can calculate exact tool-axis 
inclination angle values. Regression analysis showed the 
theoretical correlation function between the measured 
surface texture parameter Sz and total tool inclination 
angle φT (Fig. 9). The vertical axis represents the 
calculated tool-axis inclination angle, while the horizontal 
axis represents the measured surface texture parameter 
Sz. This regression represents the Sz value at a specific 
total tool-axis inclination value. 

With this manner, Eq. (4.7) can be used to calculate 
the parameter Sz, by taking the total measured tool-
axis inclination angle and tool concavity angle into 
account:  
 

 .0425.0)(0058.0 T  zS   (4.7) 

 

 

 
 

Fig. 9. Theoretical influence of the parameter Sz on the value 
of the tool inclination angle φT. 

5.  CONCLUSIONS 
 
From the analysis of the technological parameters and 
tool movement direction performed in this study we can 
draw the following conclusions. 

ANOVA analysis indicates the significance of the 
tool-axis inclination hypothesis. As such we reject the 
H0 hypothesis and accept the H1 hypothesis that the tool 
movement direction has a significant influence on the 
surface maximum height parameter Sz. Therefore, this 
inclination represents/collects the machine alignment errors 
and their influence on the surface texture parameters.  
Of course, the parameters that are most influenced are 
those directly related to the tool’s geometrical properties 
(e.g. tool’s concavity angle). 

The calculations made showed high tool inclination 
values in both directions. The highest tool-axis inclination 
was observed in the South and East directions. Logically, 
with high inclination values in an opposite direction, the 
marks should disappear from the front cutting edge of 
the tool movement in the North and West directions. 
But, while this inclination angle is smaller than the 
tool’s bottom cutting edge relief angle, the marks can 
still be observed. The surface height has been decreased, 
accordingly. It is significant that in the orientation with 
a low inclination influence, the marks appear on the re-
machined surface from the back edge. 

None of the processed samples revealed marks left 
from the back or non-working cutting edge. This confirms 
the statement of an additional effect working in the 
cutting process. This effect could be tool deflection caused 
by the increased forces of high speed machining. This 
tool deflection either minimizes or increases the tool 
inclination effect. 

The next step of this research is to analyse and identify 
the relationship between tool deflection (caused by forces 
working against the tool cutting edge) and surface 
topography. Afterwards, the entire geometrical simulation 
will be based on the model developed and its results. 
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Eksperimentaalne  analüüs  otsfreesi  kaldenurga  hälbe  osas  ja  selle  mõju   
3D  pinna  tekstuuri  parameetritele 

 
Andris Logins, Pedro Rosado Castellano, Toms Torims, Santiago C. Gutiérrez  

ja Fjodor Sergejev 

 
Otsfreesi kaldenurga hälbe mõju on analüüsitud eesmärgiga lisada antud parameeter töödeldud pinna kolme-
mõõtmelise tekstuuri moodustamise matemaatilisse mudelisse. Pakutud töödeldud pinna tekstuuri matemaatiline 
mudel sobib otsfreesimise teel saadud pinna Sz ehk pinna maksimaalse kõrguse parameetri suuruse määratlemiseks 
või ennustamiseks. 

Uuringu käigus tehtud ANOVA ja graafilise analüüsi tulemusena on tõestatud, et otsfreesi liikumissuunal ning 
kaldenurgal on töödeldud pinna pinnakareduse parameetrite formeerimisele oluline mõju. Freesi liikumist on vaa-
deldud põhja, ida, lõuna ja lääne suunas. Kõige suurem freesi kaldenurk on lõuna ja ida suunas freesimisel. Sellega 
seonduvalt on töödeldud pinna maksimaalse kõrguse parameetri Sz suurus ka suurem antud suundades freesides. 
Samas on maksimaalse kõrguse parameeter Sz väiksema suurusega siis, kui otsfreesi kaldenurga suurus on väiksem 
kui tööriista lõikeserva abitaganurk. 

Järgmistes uuringutes tuleb analüüsida otsfreesi läbipainde suurust, tingituna vertikaalsest jõu komponendist, ja 
selle mõju töödeldud pinna tekstuuri parameetritele. 

 
 

 


