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Abstract. This paper addresses the model matching problem (MMP) for nonlinear single-input single-output discrete-time systems.
The approach is based on the infinitesimal system description in terms of the one-forms that is converted into polynomial system
representation by interpreting the polynomial indeterminate as the forward shift operator acting on the one-forms. The polynomial
description is then used to derive the generalized transfer function. The problem statement of the MMP (both for the feedforward
and feedback cases) is given in terms of the generalized transfer function. In general, the feedforward solution exists under
restrictive conditions. Therefore, the subclass of nonlinear control systems is specified for which the solution is guaranteed to
exist. The feedback solution exists always. The additional restrictions are specified for the existence of a proper compensator (in
both cases). The results of the paper are illustrated by numerous examples, and the feedback solution is compared to the earlier
results.
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1. INTRODUCTION

The model matching problem (MMP) is of both theoretical and practical importance since it accommodates
various other problems such as input–output (i/o) linearization, disturbance decoupling, noninteractive
control, model tracking, model reference adaptive control, etc. The main idea may be illustrated on the
basis of linear control systems. More specifically, for a given plant and a model the problem is to find a
compensator such that the transfer functions of the reference model and that of the compensated system
coincide [21].

The MMP has been extensively studied for linear time-invariant systems. A precise formulation and
the first solution in terms of the static state feedback were given in [42], followed by a similar paper [41].
The authors of [39] proposed an approach in which the Markov parameters of the closed-loop system are
equated to those of the model. A dynamical feedback solution for the MMP was presented in [34] relying
on the structural algorithm and in [35] relying on the geometric approach. The case of the combination
of dynamic output feedback with feedforward reference compensation (also referred to as two-degee-of-
freedom dynamic compensation) was studied in [22] and [29]. A more general case of the MMP for linear
time-varying systems was addressed in [31] and time delay systems were considered in [38]. The interested
reader is referred to [30] for a more detailed review on the exact model matching.
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For the nonlinear case the MMP has mainly been studied within the state-space approach, see, for
example, [9,19,24,33]. For the i/o representation of a system the problem has been studied in [13,18,23,25].
One reason to state and solve the MMP for the i/o model is the fact that nonlinear systems are frequently
modelled as i/o difference equations resulting from identification [37]. In addition, i/o equations are not
always realizable in the state-space form [40]. The existing contributions developed for nonlinear state-
space models are valid for initialized systems as in [9] or are stated as a generic problem as in [33]. Those
problems are not equivalent, and it is unclear whether they are good candidates for the equality of transfer
function matrices. That open problem motivates the search for a transparent solution stated in terms of the
recently introduced generalized transfer function formalism [15,18] for the class of nonlinear systems. The
generalized transfer function can be constructed simply from the polynomial system description obtained
from the infinitesimal linearized system.

Note that in [18] the transfer function formalism was applied for solving the MMP of nonlinear
continuous-time systems. Herein, the discrete-time case is considered. Conceptually, the results are
similar to those of [18], the main difference being that the derivative and shift operators define the different
noncommutative polynomial rings with different multiplication tools.

Two types of solutions, feedforward and feedback compensators, are typically looked for within the
MMP. We extend the results presented in our conference paper [5]. First, more detailed proofs are given.
Second, several illustrative real-life examples are added. Finally, a brief comparison with the earlier results
of [25] is given.

The paper is organized as follows. Section 2 recalls the essential notions of the algebraic framework
of differential forms. It is followed by the polynomial formalism which allows us to construct the main
mathematical tools used in the paper. In Sections 3 and 4 the feedforward and feedback compensators are
considered. Corresponding proofs can be found in Appendix. Section 5 provides brief concluding remarks.

2. PRELIMINARIES

Hereinafter, for a time-dependent variable ξ (t), ξ [k] stands for its kth-step forward time shift ξ (t + k)
and ξ [−l] for the lth-step backward time shift ξ (t − l) with k, l being nonnegative integers, implying that
ξ [0] = ξ (t). Consider a nonlinear discrete-time single-input single-output (SISO) system, described by the
difference equation

y[n] = φ

(
y,y[1], . . . ,y[n−1],u,u[1], . . . ,u[s]

)
, (1)

where u = u(t) ∈ U ⊂ R is the input, y = y(t) ∈ Y ⊂ R is the output, and φ is a real analytic function
defined on Y n×U s+1. Moreover, we assume that s≤ n are nonnegative integers.

2.1. Algebraic framework

Recall briefly the algebraic formalism from [28] that we use in this paper. Denote by K the
field of meromorphic functions in a finite number of (independent) variables from the set C ={

y, . . . ,y[n−1],u[k],k ≥ 0
}

, and introduce the forward-shift operator σ : K →K . In particular, σ(y[n−1]) :=
φ(·), meaning that y[n] as a dependent variable has to be replaced by φ(·) from (1). For the remaining
elements of C , the forward shift is defined in a standard manner, i.e., σ(y[i]) := y[i+1], i = 0, . . . ,n− 2,
σ(u[ j]) := u[ j+1], j ≥ 0, where y[0] = y and u[0] = u. Moreover, the application of σ to ϕ ∈K is defined by
shifting arguments of the function according to the rules described above, i.e.,

σ

[
ϕ

(
y, . . . ,y[n−1],u, . . . ,u[l]

)]
:= ϕ

(
y[1], . . . ,φ(·),u[1], . . . ,u[l+1]

)
.

The assumption below is a standard assumption made in most papers and is not restrictive as it is the
necessary condition for system accessibility.
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Assumption 1. We assume the system (1) to be submersive, i.e., the map φ satisfies generically the condition

∂φ

∂ (y,u)
6≡ 0. (2)

Under Assumption 1 there exists an inversive difference overfield1 of (K ,σ) such that σ , when
extended to this overfield, becomes an automorphism [2,10]. Therefore, σ has an inverse operator σ−1,
interpreted as a backward-shift operator. For a detailed description of the backward-shift operator σ−1

see [2,6].
Consider the infinite set of differentials dC =

{
dy,dy[1], . . . ,dy[n−1],du[l], l ≥ 0

}
and denote by E the

vector space over the field K spanned by the elements of dC , i.e., E = spanK dC . For F ∈K , define the
operator d : K → E as follows:

dF :=
n−1

∑
i=0

∂F
∂y[i]

dy[i]+
k

∑
j=0

∂F
∂u[ j]

du[ j].

One says that dF is a total differential (or simply the differential) of the function F . Note that any
element in E is a vector of the form ω = ∑i αidζi with dζi ∈ dC and αi ∈ K . Then the operators
σ : K → K and σ−1 : K → K induce, respectively, the operators σ : E → E and σ−1 : E → E by
σ(ω) := ∑i σ(αi)d(σ(ζi)) and σ−1(ω) := ∑i σ−1(αi)d(σ−1(ζi)).

An arbitrary element of E is called a one-form. One says that ω ∈ E is an exact one-form if ω = dζ for
some ζ ∈K . A one-form ω for which dω = 0 is said to be closed. Note that exact one-forms are closed,
whereas closed one-forms are only locally exact.

Lemma 2 [11, Poincaré’s Lemma]. Let ω be a closed one-from in E . Then there exists ϕ ∈K such that
locally ω = dϕ .

A one-form is called integrable if there exists an integrating factor λ ∈K such that λω is an exact
one-form. The integrability of a one-form can be checked by the theorem below, where the symbol dω

denotes the exterior derivative of the one-form ω and ∧ means the exterior or wedge product.

Theorem 3 [11]. Given ω ∈ E there exists a function ζ such that spanK {ω} = spanK {dζ} if and only if
dω ∧ω = 0.

2.2. Polynomial framework

A left polynomial can be uniquely written in the form

a(z) = α0zn +α1zn−1 + · · ·+αn−1z +αn (3)

for αi ∈K , i = 0, . . . ,n, where z is a formal variable (polynomial indeterminate) and a(z) 6= 0 if and only
if at least one of the functions αi, for i = 0, . . . ,n, is nonzero. The highest power n in the polynomial a(z) is
called the degree of the left polynomial a(z), denoted by dega(z), if α0 6≡ 0. In addition, we use convention
deg0 =−∞.

Definition 4. The left skew polynomial ring, induced by (K ,z), is the ring K [z;σ ] of polynomials in the
indeterminate z with usual addition and multiplication satisfying the relation

z ·α = σ(α)z (4)

for any α ∈K .

1 With a slight abuse of notation, for the field extension, we use the same symbol.
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The term skew means that the coefficients of the polynomial do not necessarily commute with the
indeterminate. The skew polynomial ring K [z;σ ] is proved to satisfy the following left Ore condition.

Proposition 5 [12]. For all nonzero a,b∈K [z;σ ] there exist nonzero a1,b1 ∈K [z;σ ] such that a1b= b1a.

If the left condition holds, the skew polynomial ring is called the left Ore ring. Thus, the ring K [z;σ ]
can be embedded into the field of left fractions, denoted as K (z;σ), see [36]. In K (z;σ) one can define
the sum of two quotients as

b−1
1 a1 +b−1

2 a2 = (β2b1)
−1(β2a1 +β1a2),

where β2b1 = β1b2 satisfy the left Ore condition and the product as

b−1
1 a1b−1

2 a2 = (β2b1)
−1

α1a2, (5)

where β2a1 = α1b2 again satisfy the left Ore condition.
A ring is called an integral domain if it does not contain any zero divisors. This means that for any two

elements a and b of the ring, ab = 0 implies either a = 0 or b = 0 or both.

Proposition 6 [32].
1. The ring K [z;σ ] is an integral domain.
2. If a(z) and b(z) are non-zero polynomials, then deg(a(z)b(z)) = dega(z)+degb(z).

Define
z idy := dy[i], z jdu := du[ j] (6)

for i, j ≥ 0 to represent the globally linearized system in terms of two polynomials. Differentiate (1) to
obtain the infinitesimal system description

dy[n]−
n−1

∑
i=0

∂φ

∂y[i]
dy[i]−

s

∑
j=0

∂φ

∂u[ j]
du[ j] = 0 (7)

and use the relations (6) to rewrite (7) as

p(z)dy+q(z)du = 0 (8)

with p(z) = zn−∑
n−1
i=0 piz i, q(z) =−∑

s
j=0 q jz j and pi = ∂φ/∂y[i] ∈K , q j = ∂φ/∂u[ j] ∈K . Equation (8)

describes the globally linearized system, corresponding to Eq. (1).

Example 1. Consider the discrete-time model of the controlled van der Pol oscillator, derived in [1]

y[2] = θ1y[1]−θ2y+θ3y2y[1]+θ4y3 +θ5u, (9)

where θi ∈ R for i = 1, . . . ,5. In (9), n = 2 and s = 0. Applying operator d to (9) and using relations (6)
yields the polynomial system description (8) with

p0 = θ2−3θ4y2−2θ3yy[1],

p1 =−(θ1 +θ3y2),

q0 = θ5.

(10)

Next, we recall several definitions from [15], see also [14].

Definition 7. An element of the form F(z) := p−1(z)q(z) ∈K (z;δ ), such that dy = F(z)du, is said to be a
generalized transfer function2 of the nonlinear system (1).

2 Note that there exists an algorithm which allows us to obtain the transfer function from nonlinear state equations, see [14].
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Note that in the linear case each proper rational function may be interpreted as a transfer function
corresponding to some i/o equation of a control system. However, things are different in the nonlinear case.
Though every system can be described by the rational function called the generalized transfer function of
the nonlinear system, the converse is not always true. It means that not every quotient of skew polynomials
necessarily represents a control system, since the corresponding one-form may be non-integrable, see [15]
for details. Further in this paper we omit the word generalized, referring to the ‘generalized transfer function’
just as the ‘transfer function’ of the nonlinear system.

It follows from (8) that the transfer function of (1) can be represented as

F(z) = (zn + · · ·+ p1z + p0)
−1 (qszs + · · ·+q1z +q0) . (11)

Definition 8. The transfer function F(z) is said to be proper if s = degq(z)≤ n = deg p(z).

Definition 9. For a proper transfer function, the difference n− s, denoted as reldegF(z), is called the
relative degree of the system (1).

Example 2 (continuation of Example 1). By (10) and (11), compute the transfer function of (9)

F(z) =
(

z2− (θ1 +θ3y2)z +θ2−3θ4y2−2θ3yy[1]
)−1

θ5,

which is strictly proper, and the relative degree of the system equals 2.

3. FEEDFORWARD COMPENSATOR

Consider a nonlinear system F and a model G described by their transfer functions

F(z) = p−1
F (z)qF(z) (12)

and
G(z) = p−1

G (z)qG(z), (13)

respectively. The goal is to find a (proper) feedforward compensator R described by its transfer function

R(z) = p−1
R (z)qR(z)

such that the transfer function of the compensated system coincides with that of the model G, i.e.,

G(z) = F(z)R(z),

or equivalently
R(z) = F−1(z)G(z), (14)

as depicted in Fig. 1.

Proposition 10. Given F(z) 6= 0 and G(z), the feedforward model matching problem is solvable if the
one-form pR(z)du−qR(z)dv is integrable.

Proof. The proof is a direct consequence from (14) yielding

R(z) = q−1
F (z)pF(z)p−1

G (z)qG(z). (15)

Alternatively, R(z) is described by the relationship

pR(z)du = qR(z)dv, (16)

where pR(z) and qR(z) are defined by Ore condition (5), applied to (15). Thus, the i/o equation of the
compensator R can be obtained if the one-form (16) is integrable.
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G(z)

F(z)R(z)
dv du dy

Fig. 1. Compensated system.

Usually, one is interested in finding a solution in a class of proper compensators. Therefore, to guarantee
the existence of the solution, one has to introduce the restriction on the relative degree of the model G.

Proposition 11. The transfer function of compensator (14) is proper (causal) if and only if

reldegG(z)≥ reldegF(z). (17)

Proof. See Appendix.

Example 3. Consider the system
y[2] = y+uu[1]

and compute its transfer function

F(z) =
(

z2−1
)−1
(

uz +u[1]
)
,

which is strictly proper. Suppose that the reference model is

G(z) = z−2,

satisfying the condition (17). By (14) and (5), we can find the transfer function of the compensator

R(z) =
(

uz +u[1]
)−1 (

z2−1
)

z−2 =
(

u[2]z3 +u[3]z2
)−1 (

z2−1
)
, (18)

where the Ore condition β (z)
(

z2−1
)
= α(z)z2 is satisfied for α(z) = z2− 1 and β (z) = z2. Note that

R(z) results in the integrable one-form, yielding the compensator given by the equation

u[2]u[3] = v[2]− v. (19)

Moreover, this compensator has a classical state-space realization of the form

u = η1,

η
[1]
1 = η2 +

v
η1

,

η
[1]
2 =

η3

v+η1η2
,

η
[1]
3 =−v

(
η2 +

v
η1

)
.

(20)

The algorithm for constructing (20) from (18) or (19) can be found in [16,17] or [8,27], respectively.
However, one may easily check that (20) yields (18) by direct computations. This can be done by shifting
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the first equation in (20) three times, eliminating the variable η , and calculating a transfer function for the
obtained i/o equation.

Example 4 (continuation of Example 2). Recall that the transfer function of system (9) is

F(z) =
(

z2− (θ1 +θ3y2)z +θ2−3θ4y2−2θ3yy[1]
)−1

θ5.

Suppose that the reference model is
G(z) = z−2.

By (14) and (5) one can find

R(z) =
(
θ5z2)−1

(
z2− (θ1 +θ3(y[2])2)z +θ2−3θ4(y[2])−2θ3y[2]y[3]

)
. (21)

The transfer function R(z) results in the one-form

θ5du[3] = dv[2]−
(

θ1 +θ3(y[2])2
)

dv[1]+
(

θ2−3θ4(y[2])−2θ3y[2]y[3]
)

dv,

which, according to Lemma 2 and Theorem 3, is not integrable. The latter means that R(z) in (21) does not
correspond to any compensator R.

Thus, unlike the linear time-invariant case, a class of nonlinear systems for which the solution in terms
of a feedforward compensator exists is, due to the integrability condition, quite restricted. Propositions 10
and 11 give weak results, because they do not define the class of nonlinear systems for which the feedforward
compensator exists. In Proposition 12 below we specify one such subclass.

Proposition 12. The one-form pR(z)du− qR(z)dv is integrable if the system F and the model G are given
by

y[nF ] = f1

(
y,y[1], . . . ,y[nF−1]

)
+ f2

(
u,u[1], . . . ,u[sF ]

)
(22)

and
y[nG] = g1

(
y,y[1], . . . ,y[nG−1]

)
+g2

(
u,u[1], . . . ,u[sG]

)
, (23)

respectively, such that
pF(z) = γF(z)ρ(z),
pG(z) = γG(z)ρ(z),

(24)

where γF(z) and γG(z) are polynomials with real coefficients, and ρ(z) = ∑
m
i=0 ρizm−i with ρi ∈K .

Proof. See Appendix.

Observe that in Proposition 12 we require polynomials pF(z), pG(z) to be in the form (24), but do
not impose additional restrictions on polynomials qF(z),qG(z). This is due to the specific structure of
the feedforward controller that, according to (14), can be represented as R(z) = q−1

F (z)pF(z)p−1
G (z)qG(z).

Observe that condition (24) makes it possible to get rid of the variable y and/or its successive shifts in the
final expression. Hence, the remaining polynomials α(z),β (z) with real coefficients, defined by the left Ore
condition, do not influence the integrability of the one-form β (z)qF(z)du−α(z)qG(z)dv, since qF(z) and
qG(z) are obtained directly by differentiating (22) and (23). More technical details can be found in the proof
of the proposition. The next example illustrates why under the conditions of Proposition 12 the solution
always exists.

Example 5. Consider the system F

y[2] =−
(
y[1]
)2

2
− y[1]− y2

2
− y+u[1]u (25)
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and the model G

y[2] =−
(
y[1]
)2

2
+ v. (26)

Observe that (25) and (26) are in the forms (22) and (23), respectively, required by Proposition 12. Apply
the operator d to (25) and (26) to obtain the one-forms (7). Then, using the relations (6) for i, j = 1,2, one
can represent the form (7) for the system F and the model G in terms of two skew polynomials as in (8)

pF(z) = z2 +
(

y[1]+1
)

z + y, qF(z) = uz +u[1],

pG(z) = z2 + y[1]z, qG(z) = 1.

Using (14), the transfer function of the compensator can be described as

R(z) = q−1
F (z)pF(z)p−1

G (z)qG(z) =
(

uz +u[1]
)−1(

z2 +
(

y[1]+1
)

z + y
)(

z2 + y[1]z
)−1

. (27)

Observe that polynomials pF(z), pG(z) can be represented in the form (24) as pF(z) = (z + 1)(z + y) and
pG(z) = z(z + y), where ρ(z) = z + y. Therefore, the expression (27) can be simplified by cancelling ρ(z)
as

R(z) =
(

uz +u[1]
)−1

(z +1)z−1.

Next, using (5), the description of the compensator in terms of the one-forms can be alternatively presented
as

β (z)
(

uz +u[1]
)

du = α(z)dv,

where α(z),β (z) are defined by the left Ore condition β (z)(z +1) = α(z)z, which is trivially satisfied for
α(z) = z +1 and β (z) = z. Thus, the relation in terms of the one-form, describing the compensator R(z),
can be represented as

u[1]du[2]+u[2]du[1] = dv[1]+dv. (28)

One may easily observe that α(z),β (z) are polynomials with real coefficients. In general, it may not be
the case and α(z),β (z) may have coefficients from K , in particular, they may depend on variable y and
its successive shifts. Then, the integrability would be questionable. See, for instance, Example 4 in which
despite the fact that the system and model are in the forms (22), (23), respectively, condition (24) is not
satisfied as variable y remains in the expressions of γF(z),γG(z) and causes non-integrability of the one-
form corresponding to the compensator. Integrating the one-form (28) yields

u[1]u[2]+ v[1]+ v = 0.

4. FEEDBACK COMPENSATOR

Consider a nonlinear system F and a model G described by their transfer functions (12) and (13),
respectively. Find a (proper) feedback compensator R

du = Rv(z)dv+Ry(z)dy, (29)

described by the transfer functions from dv to du and dy to du, i.e., by

Rv(z) = p−1
R (z)qRv(z), (30)

Ry(z) = p−1
R (z)qRy(z), (31)
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respectively, such that the transfer function of the compensated system coincides with that of the model G:

G(z) = (1−F(z)Ry(z))−1F(z)Rv(z) (32)

as depicted in Fig. 2.

Assumption 13. deg pG(z)≥ deg pF(z).

Theorem 14. Given F(z) 6= 0 and G(z) satisfying Assumption 13, the model matching problem by
feedback (29) is always solvable.

Proof. See Appendix.

Assumption in the proof of Theorem 14 is clearly necessary to get a reasonable solution by the
left Euclidean division algorithm of pG(z) and pF(z). However, this assumption is not restrictive, since
instead of model (13) with deg pG(z) < deg pF(z) one can always, without loss of generality, use the
transfer function G′(z) =

[
zk pG(z)

]−1 zkqG(z) being transfer equivalent to G(z), such that deg
(

zk pG(z)
)
≥

deg pF(z). Roughly speaking, modulo transfer equivalence there always exists a feedback compensator
which solves the model matching problem for given F(z) and G(z).

If one is looking for a solution within a class of proper compensators, the situation is similar to that of
the case of a feedforward solution.

Proposition 15. R(z) is proper (causal) if and only if

reldegG(z)≥ reldegF(z). (33)

Proof. See Appendix.

Example 6. Consider the model of neutron kinetics [3], described via the state equations as

x[1]1 = x2 +b1ux1,

x[1]2 = a2x1 +(b2 +a1b1)ux1,

y = x1,

where x1 denotes the population of neutrons, x2 denotes the average population of precursor groups, u is the
reactivity, and a1,a2,b1,b2 ∈R. Using the approach proposed in [14], one can compute the transfer function
as

F(z) =
(

z2−b1u[1]z−a2− (a1b1 +b2)u
)−1(

b1y[1]z +(a1b1 +b2)y
)
.

Suppose that the reference model is
G(z) = z−2.

G(z)

F(z)R(z)
dv du dy

Fig. 2. Compensated system.
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One can check that the feedforward solution does not exist. However, the problem is solvable via a feedback
compensator. Indeed,

pF(z) = z2−b1u[1]z−a2− (a1b1 +b2)u, pG(z) = z2,

qF(z) = b1y[1]z +(a1b1 +b2)y, qG(z) = 1.

The compensator R(z) is determined by the polynomials

qRv(z) = 1,

qRy(z) =−b1u[1]z−a2− (a1b1 +b2)u,

pR(z) = b1y[1]z +(a1b1 +b2)y.

Thus, the one-form, corresponding to the compensator R, is

b1y[1]du[1]+(a1b1 +b2)ydu = dv−b1u[1]dy[1]− (a2 +(a1b1 +b2)u)dy. (34)

Integrating (34) yields

u[1] =
v−a2y− (a1b1 +b2)uy

b1y[1]
.

Example 7. Recall that the feedforward solution did not exist in Example 4, where the transfer function was

F(z) =
(

z2− (θ1 +θ3y2)z +θ2−3θ4y2−2θ3yy[1]
)−1

θ5.

Suppose that the reference model is
G(z) = z−2

and calculate

pF(z) = z2−
(
θ1 +θ3y2)z +θ2−3θ4y2−2θ3yy[1], pG(z) = z2,

qF(z) = θ5, qG(z) = 1.

Using the left Euclidean division algorithm, we get γ(z) = 1 and qRy(z) = −
(
θ1 +θ3y2

)
z +θ2− 3θ4y2−

2θ3yy[1] such that pG(z) = γ(z)pF(z)− qRy(z). Then, the integrable one-form, corresponding to the
compensator R, is

θ5du = dv−
(
θ1 +θ3y2)dy[1]+

(
θ2−3θ4y2−2θ3yy[1]

)
dy,

yielding

u =
1
θ5

(
v− (θ1 +θ3y2)y[1]+θ2y−θ4y3

)
.

Example 8. Consider the model of a grain drying process by a column-type grain dryer [26]

y[3] = 1.6332y[2]−0.4567y[1]−0.1751y−0.0081u[2]y[2]−0.0045u[1]y[1]−0.0073uy,

where y is the temperature in the uppermost layer of the dryer and u is the productivity of the grain exhaust
mechanism. Compute the transfer function as

F(z) =
(

z3 +
(
−1.6332+0.0081u[2]

)
z2 +

(
0.4567+0.0045u[1]

)
z +0.0073u+0.1751

)−1

×
(
−0.0081y[2]z2−0.0045y[1]z−0.0073y

)
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and suppose that the reference model is
G(z) = z−3.

In the same manner as in the previous example, we can find the compensator described by the following
equation:

u[2] =−v+0.1751y+0.0073uy+0.4567y[1]+0.0045u[1]y[1]−1.6332y[2]

0.0081y[2]
.

Next, we provide a brief comparison of the feedback solution with the results from [25]. Compared to
our case, the paper [25] addresses only the case of a proper feedback compensator. Moreover, the solution
(for the multi-input multi-output, MIMO, case) is based on the application of the implicit function theorem,
and therefore, is constructive only up to the application of this theorem. However, this is not a problem in
the SISO case. Next, we consider a simple example to compare both approaches.

Example 9. Consider the system and the model from Example 3. Following the proof of Theorem 14, we
can find γ(z) = 1, qRy(z) =−1, qRv(z) = qG(z) = 1, pR(z) = γ(z)qF(z) = uz +u[1], and(

uz +u[1]
)

du = dv−dy,

yielding the equation of the compensator
uu[1] = v− y. (35)

Finally, note that the compensator has the following state-space realization:

u = η ,

η
[1] =

v− y
η

.

Now, we illustrate how to use the approach from [25]. Note that the reference model is described by the
equation y[2] = v that corresponds to the transfer function G(z) = 1/z2. Therefore, equating the right-hand
sides of the system and that of the model yields v = y+uu[1], i.e., (35), which is exactly the same obtained
above based on the transfer function approach.

5. CONCLUSIONS

The paper addresses the model matching problem for nonlinear SISO discrete-time systems. The recently
developed formalism based on the generalization of the notion of a transfer function to the case of nonlinear
systems is applied. Both feedforward and feedback solutions are studied. In the case of a feedforward
compensator, the solvability of the problem depends critically on the integrability of a certain one-form
exactly like in the continuous-time case [18]. Since, in general, the problem is not solvable, we single out
a subclass of discrete-time nonlinear systems for which it is always possible to construct a feedforward
compensator. In contrast to the feedforward solution, it is shown that the feedback solution always exists. In
the majority of cases one is interested in finding proper compensators. Therefore, additional restrictions are
specified, depending on the degrees of the polynomials corresponding to the system and model under which
the proper solution exists.

One possible direction for the future extension of this work is to solve the MMP for MIMO systems. Like
in the linear time-varying case [31], the procedure to derive the structure at the infinity of a transfer matrix
has to be introduced. For that purpose one may use the special form of the matrix with rational elements,
called the Jacobson–Teichmüller3 form. This is a three-step procedure. First, one has to transform a matrix
into the form with elements from the skew polynomial ring. Then, using the basic algorithm from [10], one

3 Note that in the linear control theory this form is known as the Smith–McMillan form, see [20].
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can transform a matrix into the Jacobson form (being the special case of the Jacobson–Teichmüller form).
A software implementation is discussed in [4]. On the one hand, the matrix in the Jacobson form becomes
very complex even for simple low-order systems and computations become tedious as it was shown in [4]
and [7]. On the other hand, this approach mimics the linear case, and therefore, provides a formalism
intuitively understandable by many engineers. The last step requires the transformation of the Jacobson
form into the Jacobson–Teichmüller form. It should be mentioned that it is still unclear how to perform this
step. To conclude, it requires further study which approach to use in the MIMO case – whether [14] or [25].

ACKNOWLEDGEMENTS
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APPENDIX

PROOF OF PROPOSITION 11

Proof. Necessity: Assume that there exists a proper transfer function R(z) of the compensator R that solves
the MMP. By Definition 8, this means that

deg pR(z)≥ degqR(z). (36)

Next, using the relation

G(z) = p−1
G (z)qG(z) = p−1

F (z)qF(z)p−1
R (z)qR(z) = F(z)R(z)

and condition (2) of Proposition 6, we get

degqG(z) = degqF(z)+degqR(z),
deg pG(z) = deg pF(z)+deg pR(z).

(37)

Substituting (37) into (36), we obtain

deg pG(z)−deg pF(z)≥ degqG(z)−degqF(z)

or
deg pG(z)−degqG(z)≥ deg pF(z)−degqF(z).

Finally, according to Definition 9,

reldegG(z) = deg pG(z)−degqG(z),
reldegF(z) = deg pF(z)−degqF(z)

that yields (17).

Sufficiency: Assume that (17) holds. Since all the previous steps can be done in the reverse order, we get
that the transfer function R(z) is proper.
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PROOF OF PROPOSITION 12

Proof. By differentiating Eqs (22), (23) and using relations (6) together with zkdv = dv[k], we get (12),
where

pF(z) = znF −
nF−1

∑
i=0

pF
i z i, pF

i =
∂ f1

∂y[i]
,

qF(z) =
sF

∑
j=0

qF
j z j, qF

j =
∂ f2

∂u[ j]

and (13), where

pG(z) = znG−
nG−1

∑
i=0

pG
i z i, pG

i =
∂g1

∂y[i]
,

qG(z) =
sG

∑
j=0

qG
j z j, qG

j =
∂g2

∂v[ j]
,

respectively. Note that now in (16), pR(z) = β (z)qF(z) and qR(z) = α(z)qG(z), where α(z), β (z) are
polynomials defined by the left Ore condition as β (z)pF(z) = α(z)pG(z). According to condition (24), the
previous equality can be rewritten as β (z)γF(z)ρ(z) = α(z)γG(z)ρ(z) or β (z)γF(z) = α(z)γG(z), where
γF(z),γG(z) can be represented as γ(z) = ∑

τ
i=0 γizτ−i, γi ∈ R. So, it follows that α(z) and β (z) are also

polynomials with real coefficients.
Next, the relationship (16) can be rewritten as

β (z)qF(z)du = α(z)qG(z)dv. (38)

Note that the coefficients of the polynomials qF(z) and qG(z) do not depend on y, proving the exactness of
the one-form (38).

PROOF OF THEOREM 14

Proof. By (32),
G(z) = (1−F(z)Ry(z))−1F(z)Rv(z).

Next, using (12), (30), and (31), G(z) may be rewritten in the form

G(z) =
(
1− p−1

F (z)qF(z)p−1
R (z)qRy(z)

)−1 (
p−1

F (z)qF(z)p−1
R (z)qRv(z)

)
.

By multiplying the numerator and denominator of G(z) by the expression pR(z)q−1
F (z)pF(z) from the left

one gets
G(z) =

(
pR(z)q−1

F (z)pF(z)−qRy(z)
)−1

qRv(z).

Matching the latter to (13) results in

qG(z) = qRv(z), pG(z) = pR(z)q−1
F (z)pF(z)−qRy(z).

One may choose pR(z) to be γ(z)qF(z), yielding

pG(z) = γ(z)pF(z)−qRy(z).
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Under Assumption 13, γ(z) and −qRy(z) may be interpreted as the right quotient and remainder of skew
polynomials pG(z) and pF(z), respectively. Thus, from given pG(z) and pF(z) one can, by the left
Euclidean division algorithm, determine the infinitesimal description of the compensator

du = Rv(z)dv+Ry(z)dy,

written alternatively as
pR(z)du = qRv(z)dv+qRy(z)dy (39)

with pG(z) = γ(z)pF(z)−qRy(z), pR(z) = γ(z)qF(z), qRv(z) = qG(z).
Unlike the case of feedforward solution, now the one-form (39) is always integrable. Indeed, the

relation (39) can be rewritten as

γ(z)qF(z)du = qG(z)dv+(γ(z)pF(z)− pG(z))dy

or as
γ(z)(qF(z)du− pF(z)dy) = qG(z)dv− pG(z)dy.

Observe that both one-forms qF(z)du− pF(z)dy and qG(z)dv− pG(z)dy are exact, since they correspond
to the system F and model G, described by (12) and (13), respectively. Finally, applying γ(z) to an exact
one-form results again in an exact one-form.

PROOF OF PROPOSITION 15

Proof. Necessity: Assume that the transfer function R(z) of the feedback compensator is proper, which by
Definition 8 means

deg pR(z)≥ degqRv(z).

Next, taking into account that pR(z) = γ(z)qF(z), qG(z) = qRv(z) (see the proof of Proposition 11), and
using the condition (2) of Proposition 6, the previous inequality can be rewritten as

degγ(z)+degqF(z)≥ degqG(z).

Add deg pF(z) to both sides and regroup the terms to obtain

degγ(z)+deg pF(z)−degqG(z)≥ deg pF(z)−degqF(z). (40)

Since pG(z) = γ(z)pF(z)−qRy(z) and degqRy(z) = 0, from (40) we get

deg pG(z)−degqG(z)≥ deg pF(z)−degqF(z).

Finally, according to Definition 9,

reldegG(z) = deg pG(z)−degqG(z),
reldegF(z) = deg pF(z)−degqF(z)

that yields (33).

Sufficiency: The fact that all the steps in the necessity part of the proof can be done in the reverse order
proves the sufficiency.
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4. Belikov, J., Kotta, Ü., and Leibak, A. Transformation of the transfer matrix of the nonlinear system into the Jacobson form. In
The International Congress on Computer Applications and Computational Science, Singapore. 2010, 495–498.
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Diskreetsete mittelineaarsete juhtimissüsteemide mudeliga sobitamise ülesanne

Juri Belikov, Miroslav Halás, Ülle Kotta ja Claude H. Moog

On uuritud mudeliga sobitamise ülesannet mittelineaarsete diskreetsete ühe sisendi ja ühe väljundiga
juhtimissüsteemide jaoks. Meetod põhineb süsteemi nn globaalsel lineariseerimisel, kus süsteemile seatakse
vastavusse diferentsiaalne 1-vorm, mis seejärel esitatakse kahe polünoomi abil. Viimane on võimalik, kui
polünoomi muutujat interpreteerida edasinihkeoperaatorina 1-vormide vektorruumis. Seejärel leitakse vii-
masest esitusest süsteemi üldistatud ülekandefunktsioon. Uuritava probleemi püstitus ja lahendus on antud
üldistatud ülekandefunktsiooni abil. Lahendit otsitakse kahel kujul: otsesidena ja tagasisidena. Lahend
otseside kujul eksisteerib rangetel tingimustel. Seetõttu on artiklis leitud süsteemide alamklass, mille korral
lahend eksisteerib garanteeritult. On tõestatud, et lahend tagasiside kujul eksisteerib alati. Mõlema juhu
jaoks on leitud lisatingimused, mille täidetuse korral leitud kompensaator on kausaalne. Artikli tulemusi
on illustreeritud arvukate näidetega ja tagasiside kujul leitud lahendit on võrreldud varem teisel meetodil
saaduga.


