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Abstract. Localized oscillations in finite mass-spring chains, driven sinusoidally at one end with the other fixed, are studied
numerically. It is assumed that the restoring force of the spring is given by a piecewise linear function of a relative displacement
between neighbouring masses, i.e. a spring constant changes at a threshold of the displacement. Linear damping proportional to
the velocity of the mass is taken into account. The mass at one end is forced to be displaced in the direction of the chains at a
frequency above the cut-off frequency. It is shown that when the amplitude exceeds the threshold, localized oscillations are excited
intermittently at the driving end and propagated down the chain at a constant speed.
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1. INTRODUCTION

It is known that the intrinsic localized modes (ILMs) or the discrete breathers (DBs) are generic in spatially
periodic, discrete, and nonlinear systems (see, for example [1–5]). It is also known that the mobile type
of ILMs can be excited both in a spatially infinite system [6] and a semi-infinite system driven at one end
sinusoidally at a frequency in a linear stopping band above the passing band [7–11]. However, most of the
works are theoretical ones and, to the best our knowledge, only a few works are concerned experimentally
with the ILMs (for example [12–14]). This paper considers motions of finite mass-spring chains driven
sinusoidally at one end with the other fixed, and show existence of the ILMs numerically, aiming at
experimental demonstration of them. Our model assumes that the restoring force of the spring is given
by a piecewise linear function of a relative displacement of neighbouring masses, i.e. the spring constant
changes at a threshold of the displacement.

Such a chain may be compared with the celebrated Fermi–Pasta–Ulam (FPU) chains as a paradigm of the
ILMs where the restoring force is given by a cubic function of displacement called the FPU-β model [15].
Our model has similarity and also dissimilarity with the FPU-β model. The piecewise linear spring behaves
similarly to the cubic spring when the displacement is comparable with the threshold. However, when
the displacement is far beyond the threshold, the piecewise linear spring is linear, not nonlinear, roughly
speaking. On the other hand, the FPU-β chains are infinite without ends and no external excitation is
considered. Thus our model is different from the FPU-β model, nevertheless, it is shown that the ILMs
emerge commonly.
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So far no experiments of the ILMs have ever been done on the FPU-β model. One of the reasons behind
the lack of experiments is speculated to be unavailability of appropriate cubic springs. This prompts us to
consider the piecewise linear spring. In order to find suitable masses and springs to be used, simulations are
done in the first place. The system of finite chains is solved numerically by exciting one end of the chains
sinusoidally with the other fixed. The model includes a small, linear damping proportional to velocity,
which is unavoidable in experiments. It is expected by the results of simulations that the ILMs can be
excited experimentally as well.

2. NUMERICAL ANALYSIS

Chains’ motions are described by the following set of equations for N(≫ 1) masses given by

mẍ j = F(r j)−F(r j−1)+ c(ṙ j − ṙ j−1) , (1)

with boundary conditions

x0(t) = A sinωdt and xN+1(t) = 0, (2)

where x j ( j = 1, · · · ,N) represent positions of the jth mass along the chains from the equilibrium point and
r j = x j+1 − x j; c is a damping coefficient, while A and ωd are a driving amplitude and angular frequency,
respectively. Let the function F(r) be composed of three linear functions with the inclination kL for small
displacement, and kpush and kpull for larger displacement r ≤ rpush and r ≥ rpull, respectively, where rpush(< 0)
and rpull(> 0) give the thresholds on r, where the spring constants change as follows:

F(r) =


kpush r+(kL − kpush) rpush, (r ≤ rpush),

kL r, (rpush ≤ r ≤ rpull),

kpull r+(kL − kpull) rpull, (rpull ≤ r).

(3)

If kpull is equal to kpush, F(r) is antisymmetric with respect to the equilibrium point. For reference, the
FPU-β model takes F(r) in the form of F(r) = kLr+ kCr3, kL and kC being constant. A piecewise linear
function is compared in Fig. 1 with a cubic function for appropriate values for parameters.

Fig. 1. Piecewise linear function (3) by the solid line and the cubic function to the FPU-β model by the broken line, which are
antisymmetric with respect to the equilibrium point.
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For the finite chains of 39 masses except for those at both ends, numerical values of the parameters
are chosen as follows: m = 99.1 × 10−3 kg, c = 2.12 × 10−3 Ns/m, kL = 39.2 N/m, kpush = 118 N/m,
kpull = 99.1 N/m, and rpull = −rpush = 20.0× 10−3 m. The values kL, kpush, kpull, rpull, and rpush are
determined by the measurements of springs to be used in experiments. Because kpull differs a little from
kpush, the spring is not antisymmetric exactly. Details on the springs are not described here.

As is well known, there are N eigenfrequencies ωn (n = 1, · · · ,N) in the linearized system given by

ωn = 2

√
kL

m
sin

nπ
2(N +1)

, (4)

and they lie below the limit value ω∞ = 2
√

kL/m [15]. For the present chains, the cut-off angular frequency
is calculated to be ω39 = 39.8 rad/s. The driving angular frequency ωd is taken to be slightly higher than the
cut-off one, ωd = 41.5 rad/s.

Letting one end at x0 be driven from a quiescent state sinusoidally at a frequency above the cut-off one,
we solve Eq (1) with the boundary conditions (2) by the Runge–Kutta method. It is found numerically that
while the driving amplitude is below the threshold, the oscillations are evanescent and confined near the
end (Fig. 2). Small ripples are seen because the impulse at t = 0 excites various frequency modes. As the
driving amplitude is increased beyond the threshold, the localized oscillations are excited intermittently at
the driving end and propagated down the system at a constant speed (Fig. 3).

Fig. 2. Spatial and temporal profile of the positions of the masses from the quiescent state for the small driving amplitude
A = 7.00×10−3 m below the threshold. Excitations are confined near the driver end due to the evanescent oscillations.

Fig. 3. Spatial and temporal profile of the positions of the masses from the quiescent state for the larger driving amplitude
A = 15.0×10−3 m beyond the threshold. The ILMs are excited intermittently at the driving end and propagated down the system.
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Fig. 4. Temporal profile of the relative displacement r0 (= x1−A sinωdt). When the amplitude exceeds the threshold, the localized
oscillations are excited by the driving amplitude A = 15.0×10−3 m.

Fig. 5. Frequency spectrum |x̄20| of the oscillations of the 20th mass in Fig. 3. The oscillations are seen to consist of the nonlinear
modes of localized oscillations and linear modes initially excited at driven end.

Figure 4 shows the temporal profile of r0 for the displacement of spring adjacent to the driver at the
driving amplitude A = 15.0×10−3 m. The localized oscillations are excited when |r0| exceeds the threshold
A = 20.0 × 10−3 m in Fig. 4. When the localized oscillations hit the other end, they are reflected and
propagated back in the system, subject to nonlinear interactions between them, and with the driving end.
The FFTs show that the highest peak of the oscillations is located in the linear stopping band (Fig. 5). In
these respects, the oscillations may be regarded as the moving ILMs.

However, as the driving amplitude exceeds far beyond the threshold, the ILMs do not tend to be formed
but to be evanescent. This is because the chains behave linearly so that the cut-off frequency is shifted to
2
√

kpush (pull)/m, beyond which the evanescent mode revives.

3. CONCLUSIONS AND REMARKS

Excitation and propagation of the moving ILMs have been shown numerically in the finite mass-spring
chains with the piecewise linear springs driven sinusoidally at one end with the other fixed. It has been
revealed that the ILMs are generated when the relative displacement of the mass next to the driving end
exceeds the threshold one at which the spring constant changes. The relation between the driving amplitude
and frequency to excite ILMs is similar to the one for the ILMs in the case of the FPU-β model unless the
amplitude is too large. The present results are used to implement the experiments of the ILMs, and results
of the experiments will be published in a forthcoming paper.
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Mass-vedru tüüpi lõpliku ahela loomulike võnkemoodide sinusoidaalne ergastamine

Yosuke Watanabe, Takunobu Nishida ja Nobumasa Sugimoto

On uuritud numbriliselt mass-vedru tüüpi lõpliku ahela lokaalseid võnkumisi. Ahela üks ots on fikseeritud ja
teises mõjub sinusoidaalne jõud. Vedrus mõjuva jõu ja naabermasside relatiivse siirde vahelist mittelineaar-
set seost aproksimeeritakse tükati lineaarse funktsiooniga. Arvesse on võetud lineaarset sumbuvust, mis on
proportsionaalne massi kiirusega. Ahela vabas otsas olevat massi liigutatakse ahelasihiliselt sinusoidaalse
jõuga, mille sagedus on piirsagedusest kõrgem. On näidatud, et kui amplituud ületab teatava läve, siis
lokaalsed võnkumised ergastuvad alates vabast otsast (kus mõjub perioodiline jõud) ja et ergastus liigub
mööda ahelat jääva kiirusega.


