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Abstract. The dynamic behaviour of the Boussinesq-type equation governing longitudinal wave propagation in cylindrical
biomembranes is analysed by making use of the pseudospectral method. It is shown how the dispersion type has a significant
effect on the solution. The effects of other parameters are also considered.
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1. INTRODUCTION

Although initially derived for water waves, the Boussinesq-type equation appears in a number of problems
where dynamic behaviour of the medium is considered. Examples include waves in rods, in microstructured
materials, in crystals, and in biomembranes [1–6]. The main properties of Boussinesq-type equations are
grasped in the Boussinesq paradigm that was described by Maugin and Christov [7]. These properties are
(i) bi-directionality of waves, (ii) nonlinearity (of any order), and (iii) dispersion (of any order, modelled
by space and time derivatives of the fourth order at least). An excellent overview of the properties of the
Boussinesq equation and its generalization for nonlinear waves was presented by Christov et al. [8]. The
Boussinesq paradigm in the case of nonlinear waves in microstructured materials was studied by Engelbrecht
et al. [2].

Here we generalize these ideas for a living tissue. The cell membranes of almost all living organisms and
viruses are made of a lipid bilayer made of phospholipids that have outward facing hydrophilic heads and
inward facing hydrophobic tails. Although it is only a few nanometres thick, the lipid bilayer is impermeable
for most water soluble molecules, hence making a perfect barrier between the exterior and interior of the
cell. The transport of various molecules that need to enter and exit a cell is realized through specialized ion
channels.

The lipid biomembranes are not only interesting from the physiological point of view but are also
fascinating from the mechanical aspect. Recently much attention has been paid to the biophysical forces
acting on neurons and their possible implication on neural activity [9]. Particular attention has been devoted
to mechanical wave propagation along the nerve fibre [4,5,10,11].

Traditionally the nerve function has only been attributed to the electrical pulse propagation along the
nerve fibre. It is described by the widely accepted Hodgkin–Huxley model [12], which is based on the
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electrical circuit analogy. Simpler models have been derived by Nagumo et al. [13] and Engelbrecht [14].
The former uses only one ionic current instead of three and is now known as the FitzHugh–Nagumo model,
and the latter is an evolution equation (one-wave equation).

There are however phenomena that are not described by the aforementioned models. Most notably it
has been shown in experiments by Iwasa et al. [10] and Tasaki et al. [11,15] that also a mechanical wave is
accompanying the nerve pulse.

Heimburg and Jackson (HJ) [4] proposed a Boussinesq-type equation describing the nonlinear wave
propagation along the cylindrical biomembrane. Their model is based on regular wave equation where
velocity c is determined by c2 = c2

0 + pu+qu2. Here c0 is the velocity of low amplitude sound, p and q are
determined from the experiments, and u = ∆ρA is the density change. Also a fourth-order ad hoc dispersive
term −huxxxx was added to account for the dispersion. Their governing equation then reads

utt =
[(

c2
0 + pu+qu2)ux

]
x −huxxxx. (1)

An analytical solution to Eq. (1) was derived in [16] in a form of a solitary wave solution with a width of
10 cm. A more realistic soliton width of 0.2 cm was derived by Vargas et al. [17] for the locust nerve.

Recently the HJ model was revised by Engelbrecht et al. [5] from the viewpoint of solid mechanics.
Taking inspiration from the well-known rod models, it was shown that the propagation of certain
disturbances at infinite velocities can be avoided if a fourth-order mixed derivative dispersive term is added.
In addition, it is well known that the presence of only fourth-order spatial derivatives can lead to instabilities
(see Maugin [3] for example). The importance of higher-order mixed derivatives has also been demonstrated
in many studies (see [8] and references therein). The improved HJ model then reads [5]

utt =
[(

c2
0 + pu+qu2)ux

]
x −h1uxxxx +h2uxxtt , (2)

where h1 = h and h2 is a new ad hoc dispersion constant.
It was shown in [5] that if the biomembrane is regarded as a microstructured solid, then the parameter

h2 can be related to the microinertia and the parameter h1, which is related to elasticity of the biomembrane,
can be expressed as h1 = c2

1h2, where c2
1 = h1/h2 is a certain bounding velocity for the higher frequencies.

Equations (1) and (2) are of Boussinesq type with unusual terms of nonlinearity. The nonlinearity in
terms of plain u is uncommon in Boussinesq-type equations although mathematically nothing prevents it. It
can be shown that such a nonlinearity can be achieved with Lagrangian formalism by using nonlinear terms
containing u · u2

x and u2 · u2
x with coefficients p and q, respectively, in the expression for potential energy.

A similar equation can also be derived for the strain waves in elastic rods using the so-called nine-points
Murnaghan model as a starting point [18]. It should be emphasized that the unusual nonlinear terms in
Eq. (1) were introduced on the basis of experimental results by Heimburg and Jackson [4]. Finally we note
that the amplitude-dependent nonlinearities are also encountered in the case of evolution equations like the
Gardner equation [19], but these cannot be directly compared to Boussinesq-type equations like Eq. (2).

2. MATHEMATICAL MODEL AND DISPERSION

The dimensionless form of Eq. (2) is

UT T = (1+PU +QU2)UXX +(P+2QU)U2
X −H1UXXXX +H2UXXT T , (3)

where X = x/l, T = c0t/l, U = u/ρ0, P = pρ0/c2
0, Q = qρ2

0/c2
0, H1 = h1/(c2

0l2), and H2 = h2/l2. Here l is
a certain length and ρ0 is the lateral equilibrium density.

Making use of the idea that h1 = c2
1h2 [5], we can rewrite the equation as

UT T = (1+PU +QU2)UXX +(P+2QU)U2
X +H2(UT T − γ2UXX)XX (4)
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Fig. 1. Dispersion curves for Eq. (5) in case γ = 0.9 (left figure) and γ = 1.1 (right figure). H2 = 1 (dashed), H2 = 0.4 (dotted line),
and H2 = 0.15 (solid line) in both figures.

with the following dispersion relation

Ω = K
√

1+ γ2H2K2/
√

1+H2K2, (5)

where γ = c1/c0 is the dimensionless bounding velocity and Ω and K are dimensionless frequency and wave
number, respectively.

Rewriting the governing equation as in the case of Eq. (4) gives more explicit explanation for the
dispersive terms. The parameter γ defines the velocity difference between the low and high frequency
harmonics. Also, in case γ < 0 we have normal dispersion and in case γ > 0 anomalous dispersion. The
parameter H2 is related to the velocity change gradient; the higher the value of H2, the more rapid is the
transition from the low frequency velocity to the bounding velocity. Since the parameter H2 is related to the
microinertia of the lipid bilayer structure, the slope of the dispersion curve is related to that effect (see Fig. 1
for details). We also note that in [4] the dispersion is chosen to be anomalous.

3. NUMERICAL SCHEME AND INITIAL CONDITIONS

Equation (4) is solved by using the Discrete Fourier Transform (DFT) based pseudospectral method (PSM).
To that end the governing equation needs to be in a specific form with only time derivatives in the right-hand
side and only spatial derivatives in the left-hand side of the equation. This is not the case with Eq. (4) where
a mixed partial derivative is present. For circumventing that, a new variable is introduced and the variable
U and its spatial derivatives can be expressed in terms of the variable Φ as

Φ =U −H2UXX , U = F−1
[

F(Φ)

1+H2k2

]
,

∂ mU
∂Xm = F−1

[
(ik)mF(Φ)

1+H2k2

]
. (6)

In (6) F−1 denotes inverse Fourier transform and F is the Fourier transform. Equation (4) is now rewritten
in terms of the variable Φ as

ΦT T = (1+PU +QU2)UXX +(P+2QU)(UX)
2 − γ2H2UXXXX . (7)

Equation (7) can be easily solved by making use of the PSM after reducing it to a system of two first-order
differential equations (see [20] for details).

A bell-shaped pulse U(X ,0) = A0 · sech2 (B0 ·X) is used as an initial condition. Initial velocity of the
pulse is taken to be zero; in that case the pulse splits into two bell-shaped pulses with half of the initial
amplitude and propagating in opposite directions. Further on we take B0 = 1/512 (the width parameter of
the sech2-type initial pulse), A0 = 2 (the amplitude of the initial pulse), and the spatial length is 128π . The
number of grid points in space is n = 212. The governing equations are solved and results presented in the
dimensionless form. Periodical boundary conditions are used.
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4. NUMERICAL RESULTS

Equation (4) is of Boussinesq type and therefore a certain behaviour such as the emergence of solitary trains
is expected. The parameters in Eq. (4) can roughly be divided into two groups: the dispersive parameters (γ
and H2) and the nonlinear parameters (P and Q). Both effects are equally important in the analysis of the
dynamic behaviour of Boussinesq-type equations, and complete understanding of these effects is desirable.
It must emphasized that although the nonlinear parameters in [4] are determined from experiments, here we
use another set of parameters in order to study the behaviour of Eq. (4). Such a choice provides an important
insight into the dynamics of the governing equation and the meaning of the parameters. It is especially true
for the dispersive parameters as these are not determined from experiments like the nonlinear parameters.
Here we present only a certain basic analysis of the complex behaviour of solutions of Eq. (4). In all figures
the waves propagate from left to right.

4.1. Influence of the dispersive parameters

In order to study the influence of the dispersive parameters the nonlinear parameters are fixed at P = 0.05
and Q = 0.075; the dispersive parameters γ and H2 are different in Fig. 2 and in Fig. 3. The corresponding
dispersion curves can be seen in Fig. 1.

It can be seen in Fig. 2 that under the used parameter combination a train of solitary waves emerges. The
dispersive parameter H2 clearly has an effect on the amplitude of the leading solitary wave and its velocity.
A lower value of H2 is also related to the larger number of emerging solitary waves. In case of anomalous
dispersion (Fig. 3) an Airy-like pulse can emerge and the dispersive parameter H2 is directly related to the
frequency and the velocity of the front of the pulse.
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Fig. 2. Wave profiles at T = 3682, γ = 0.9, P = 0.05, and Q = 0.075.
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Fig. 3. Wave profiles at T = 1069, γ = 1.1, P = 0.05, and Q = 0.075.
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4.2. Influence of the nonlinear parameters

The influence of the nonlinear parameter P is studied in case of the normal (γ = 0.9) and anomalous (γ = 1.1)
dispersion, which can be seen in Figs 4 and 5, respectively. In both figures this nonlinear parameter is chosen
P =−0.15 in the left figure and P = 0,0.15 in the right figure.

It is clear that the sign and value of the nonlinear parameter P has a significant effect on the solution. The
negative value of the parameter P creates a reversed Airy-like pulse (oscillatory tail in front of the pulse) in
case of normal dispersion. In case of the positive value of P a soliton train emerges and the velocity and the
amplitude of the leading soliton and the number of solitons are directly related to the value of the nonlinear
parameter P.

In case of the anomalous dispersion (Fig. 5) the effect of the sign of the parameter P is reversed: the Airy-
like pulse emerges when P ≥ 0 and a soliton train appears when P < 0. There is one significant difference:
in case of anomalous dispersion and negative values of P smaller amplitude solitons travel faster. This
is a relatively uncommon phenomenon although it exists in the case of some KdV like equations and the
classical Boussinesq equation under some parameter combinations [21,22]. The velocity of the front of the
emerged Airy-like pulse increases with the nonlinear parameter P.

The effect of the nonlinear parameter Q is seen in Fig. 6 in the case of normal dispersion (γ = 0.9). With
negative values of Q an Airy-like pulse emerges, and when Q ≥ 0 a soliton train can be seen. The number of
solitons and the velocity and the amplitude of the leading soliton increase with the nonlinear parameter Q.
The examples of the anomalous dispersion case are omitted as the differences are minor.
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Fig. 4. Wave profiles at T = 1694, γ = 0.9, H2 = 0.25, and Q = 0.075.
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Fig. 5. Wave profiles at T = 1069, γ = 1.1, H2 = 0.25, and Q = 0.075.
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Fig. 6. Wave profiles at T = 1119, γ = 0.9, H2 = 0.25, and P = 0.05.

5. CONCLUSIONS

The numerical analysis of Eq. (2) shows that either trains of solitary waves or dispersive Airy-type solutions
can exist. Moreover, it has been shown that the behaviour of the solution is strongly influenced by the
sign of the nonlinear parameters P and Q and by the dispersion type, which depends on the dispersive
parameter γ . The effect of the dispersive parameter H2 is more subtle as it only changes the velocity of
individual harmonics but not the solution type. The exact physical meaning of these parameters in the
context of mechanical waves in biomembranes is an open question.
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Närviimpulsi leviku mehaanilised aspektid ja Boussinesqi paradigma
Tanel Peets ja Kert Tamm

On uuritud solitonide formeerumist täiendatud Heimburgi-Jacksoni (HJ) mudeli korral, mis kirjeldab
mehaanilise laine levikut silindrilistes biomembraanides. Lahendid on leitud numbriliselt, kasutades
Fourier’ teisendusel baseeruvat pseudospektraalmeetodit. On näidatud, et dispersiooniliigil (normaalne või
anomaalne) on lahendi käitumisele oluline mõju.


