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Nonlinear evaluation of the kinematics of directional field waves
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Abstract. A nonlinear calculation procedure for obtaining the wave kinematics from elevation measurements from field data is
outlined in detail. A horizontal current is accounted for. The numerical calculations from the field data are compared to the
kinematics of random waves obtained in laboratory measurements.
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1. INTRODUCTION

The mathematical analysis and wave kinematics calculations presented in this paper are motivated by a
set of ocean wave measurements where the elevation was obtained and there was a need to calculate the
kinematics that was not measured. A particular motivation for obtaining the kinematics was to interpret the
wave breaking, which was measured as part of the field measurement. The Gulf of Tehuantepec experiment
(GOTEX) obtained, by airborne lidar measurements, the wave elevation over swaths 5 km long and 200 m
wide. The resolution was 5 m in each direction (see [6]). The waves were driven by a strong offshore
wind. The elevation, η , was obtained over horizontal regions as a function of the coordinate in the two
horizontal directions. The waves co-propagated with a strong horizontal current. A sample of the elevation
measurement is shown in Fig. 1a. The kinematics of the wave elevation sample is evaluated here. The
gradient of the sea, ∇η , illustrates the level of the nonlinearity (Fig. 2). It is seen that the local elevation
gradient is down to −0.32 at x1 = 4730 m. In [4] two different swaths of the directional field waves from
GOTEX were analysed. The computations were compared to unidirectional irregular laboratory waves
obtained in conditions with no wind, examining the breaking threshold in the laboratory conditions.

The main point has been to calculate the fluid velocity from a set of elevation measurements. In the
present paper we outline the details of the mathematical derivation for obtaining the wave kinematics from
elevation measurements. We obtain the kinematics of several local wave events in one of the swaths from
GOTEX. The calculated kinematics is compared to irregular wave events obtained in laboratory. Similarities
are pointed out.

2. CALCULATIONS BASED ON INTEGRAL EQUATIONS

The purpose of the mathematical–numerical method is to evaluate the wave-induced kinematics from data
sets of elevation measurements obtained in the field. The time-derivative of the surface elevation obtained in
space is required. The effect of a horizontal current is accounted for in the analysis. Horizontal coordinates
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Fig. 1. (a) Elevation in a sample of directional field waves from the GOTEX experiment [6] and (b) calculated velocities u1 of this
sample.

Fig. 2. Plot of sign(ηx1)|∇η | of the elevation in Fig. 1a along x2 = 120 m.

x = (x1,x2) are introduced with the x1-direction along the main wave direction and x2 laterally. The vertical
coordinate is denoted by y. The fluid velocity v′ is assumed to be composed by the wave-induced velocity,
obtained by ∇ϕ , where ϕ is a velocity potential, plus a horizontal current U = (U1,U2). This means that

v′ = ∇ϕ +U = (u1 +U1,u2 +U2,ϕy) = (u′1,u
′
2,ϕy), (1)

where u′1 = u1 +U1 and u′2 = u2 +U2.
The kinematic boundary condition at the position of the wave surface y = η reads

∂ϕ
∂y

=
∂η
∂ t

+(U+∇ϕ) ·∇η , (2)

where t denotes time. Alternatively, this condition may be formulated in terms of the normal velocity of the
wave surface, ∂ϕ/∂n, by

∂ϕ
∂n

(1+ |∇η |2)1/2 =
∂ϕ
∂y

−∇ϕ ·∇η =
∂η
∂ t

+U ·∇η =
∂ζ
∂ t

, (3)

where the latter defines ζt = ηt +U ·∇η , and where n denotes the upward normal along the surface.
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Let Φ(x, t) = ϕ(x,y = η(x, t), t) denote the velocity potential evaluated at the wave surface. The
horizontal velocity at the surface is obtained by ∇Hϕ |y=η , where ∇H denotes horizontal gradient. Using
that

∇HΦ(x) = ∇Hϕ(x,y = η(x)) = (∇Hϕ)|y=η +
∂ϕ
∂y

∇Hη ,

we obtain (u1,u2) = ∇HΦ− (∂ϕ/∂y)∇Hη , where

∂ϕ
∂y

= ζt +∇HΦ ·∇Hη − ∂ϕ
∂y

|∇Hη |2,

giving

(u1,u2) = ∇HΦ− ηt +(U+∇HΦ) ·∇Hη
1+ |∇Hη |2

∇Hη , (4)

which obtains (u1,u2), accounting for a horizontal current U.
Let the water depth be infinite. The potential Φ along the surface is obtained from the Laplacian velocity

potential ϕ . The latter is obtained using Green’s theorem to ϕ and a Green function where the latter is the
three-dimensional source function given by 1/r; r is the difference between the evaluation point (x,y) and
the source point (x′,y′), i.e. r = |(x′,y′)− (x,y)|. With the field point on the wave surface, we obtain

2πϕ(x,y) =
∫

F+Sc

(∂ϕ ′

∂n′
1
r
−ϕ ′ ∂

∂n′
1
r

)
dS′, (5)

where F denotes the wave surface and Sc a control surface such that F and Sc enclose the fluid volume in
consideration. The normal vector n is pointing out of the fluid, a prime denotes integration variable, and
ϕ ′ = ϕ(x′,y′), etc. It is assumed that there is no fluid motion at the control surface, thus the only contribution
to the integral on the right-hand side of (5) is from the wave surface F .

Following [1] (section 6), [3] (section 6), and [2], the Green function is obtained by

1
r
=

1
R

(
1+

(y′− y)2

R2

)−1/2
=

1
R
− 1

2
(y′− y)2

R3 +
[1

r
− 1

R
+

1
2
(y′− y)2

R3

]
, (6)

where R = |R| and R = x′− x denotes horizontal distance. In (6), for y′ = η ′ and y = η , (η ′−η)2/R2 →
(∂η/∂R)2 for R → 0 and (η ′−η)2/R2 → 0 for R → ∞. In the present application the local wave slope is
up to about 0.3, and (∂η/∂R)2 up to about 0.1. The leading contribution from the square brackets on the
right-hand side of (6) is O((∂η/∂R)4/R).

The contribution from the dipole in (5) becomes

∂
∂n′

1
r
=−

(
1+

(η ′−η)2

R2

)−3/2
∇′ ·

(
(η ′−η)∇′ 1

R

)√
1+ |∇′η ′|2. (7)

The integral equation (5) becomes

2πΦ =
∫

x′

[( 1
R
− 1

2
(η ′−η)2

R3

)∂ζ ′

∂ t
+Φ′

(
1+

(η ′−η)2

R2

)−3/2
∇′ ·

(
(η ′−η)∇′ 1

R

)]
dx′ , (8)

where integration is over the horizontal plane, and where (3), (6), and (7) and dS′ =
√

1+ |∇′η ′|2dx′ have
been used. In the first inner parentheses on the right-hand side of (8) terms of the fifth order in the wave
slope are left out.
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The leading contribution to the integral equation becomes

2πΦ =
∫

x′

1
R

∂ζ ′

∂ t
dx′. (9)

This obtains the potential as an integral over the wave surface, of the time derivative of the wave elevation.
We now use the transform

1
R
= F−1

(2π
k

e−ik·x′
)
, (10)

where F denotes Fourier transform, F−1 inverse Fourier transform, k = (k1,k2) horizontal wavenumber
in spectral space, and k = |k|. Replacing in (9) 1/R by its inverse Fourier transform and interchanging the
order of integration, we obtain∫

x′

1
R

∂ζ ′

∂ t
dx′ = F−1

(2π
k

∫
x′

∂ζ ′

∂ t
e−ik·x′dx′

)
= 2πF−1(F (ζt)/k). (11)

Obtaining the Fourier transform of (9) gives

F (Φ) = F (ζt)/k. (12)

The quadratic contribution to the right-hand side of (8) reads

−
∫

x′
(η ′−η)∇′

( 1
R

)
·∇′Φ′dx′, (13)

where Gauss’s theorem over the horizontal plane is used, assuming no contributions from a far field line
integral, and (1+(η ′−η)2/R2)−3/2 has been put to unity. Inserting ∇′(1/R) = F−1(2π(−ik/k)e−ik·x′)
and interchanging the order of integration, (13) becomes

2πF−1
( ik

k
·
∫

x′
η ′∇′Φ′e−ik·x′dx′

)
+2πηF−1

((ik) · (−ik)
k

∫
x′

Φ′e−ik·x′dx′
)

= 2πF−1
( ik

k
·F (η∇Φ)

)
+2πηF−1[kF (Φ)]. (14)

In the cubic contribution on the right-hand side of (8) we insert 1/R3 = ∇′2(1/R) = 2πF−1(−ke−ik·x′),
giving

−π
∫

x′
F−1(−ke−ik·x′)(η2 −2ηη ′+η

′2)ζ ′
t dx′

= πη2F−1(kF (ζt))−2πηF−1(kF (ηζt))+πF−1(kF (η2ζt)). (15)

Together, the contributions from (12), (14), and (15) provide the cubic approximation of the fully nonlinear
integral equation (5), obtaining ∇Φ from F−1[ikF (Φ)], where

kF (Φ) = F (ζt)+ kF
(

ηF−1[kF (Φ)]
)
+ ik ·F (η∇Φ)

+
k
2
F{η2F−1[kF (ζt)]}− kF{ηF−1[kF (ζtη)]}+ 1

2
k2F (ζtη2)+h.n.t., (16)

whereby (4) is evaluated. In (16) h.n.t. means quartic and higher order nonlinear terms. The contributions
from a current in (16) appear in the linear and cubic terms through ζt = ηt +U ·∇Hη .
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3. RESULTS

In the GOTEX experiment, wave elevation was obtained by a combined measurement in the front and aft of
the recording airplane. This enables evaluation of the time derivative of the surface elevation, i.e., ∂η/∂ t as
a function of the horizontal coordinates (x1,x2) of the swaths. The functions are used as input to Eq. (16).
The fluid velocity is then evaluated using Eq. (4). The calculated velocity u1 from the elevation measurement
in Fig. 1a is shown in Fig. 1b. The range of u1 is between −2.5 m/s and 4 m/s.

A characteristic wavenumber is evaluated in order to establish a velocity scale. The rms-value of the
elevation and elevation gradient shown in Fig. 1a are obtained by (η2)1/2 = 0.89 m and (|∇η |2)1/2 = 0.080,
respectively, where the bar denotes average over all elevation points. An average wavenumber of the sea may

be estimated by kav =
(
|∇η |2

)1/2
/
(

η2
)1/2

= 0.089 m−1. A reference wave phase speed may be obtained
by

cav =
√

g/kav +U1,

where the effect of a current is accounted for. This is measured in the field measurement, along the x1-
direction of the swath [6]. Figure 3 plots the horizontal fluid velocity normalized by cav =

√
g/kav +U1 =

11.5 m/s, where a measured current of U1 = 1 m/s is included. The nondimensional velocity is up to 0.44
for x1 = 4730 m, which is a very strong nondimensional horizontal fluid velocity. Linear and nonlinear
calculations show noticeable differences in the local wave phase and at the large events.

We also define a local wave celerity of a local wave event of the wave field by

clocal =
√

(g/klocal)(1+ ε2
local)+U1.

In this expression the local wave slope, εlocal, is taken as the local maximum of |∇η |. As an example, in
one of the events that are analysed, |∇η |max is 0.32 for the local wave. A local wavenumber of the event is
calculated using

klocalηmax = εlocal +
1
2

ε2
local +

1
2

ε3
local, (17)

where ηmax is the maximum local elevation, see [5]. In the field-waves (Fig. 1a), the large event at
x1 = 4730 m and x2 = 120 m has a maximum elevation of ηmax = 4.7 m. For this event we obtain klocal =
0.081 m−1 and clocal = 12.6 m/s (with U1 = 1 m/s), which is 10% higher than the linear estimate based
on the global wavenumber of the wave series. The calculation gives (u1,u2) = (4.02,0) m/s at maximum
(at x1 = 4730 m and x2 = 120 m). In nondimensional terms we obtain |(u1 +U1,u2)|max/clocal = 0.40,
which is 10% lower than the estimate based on cav. See also the hodograph plot in Fig. 4. Note, while

Fig. 3. Plot of (u1 +U1)/cav calculated from the elevation in Fig. 1a along x2 = 120 m.
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klocal = 0.081 m−1 for this local wave event is rather close to the global average of kav = 0.089 m−1, there
is generally a large difference between the local wavenumbers klocal of the different wave events, with
0.67 < klocal/kav < 2.1, for the field waves shown in Fig. 5.

The local nondimensional maximum fluid velocity in 10 crest positions of the wave field shows that
u′max/clocal (with u′ = |(u1 +U1,u2)|) is a nonlinear function of the local slope εlocal. The function exceeds
the local wave slope by 30–40% when it is in the range εlocal ∼ 0.26− 0.31. Figure 5 plots the values of
u′max/clocal obtained in the directional sea together with longcrested irregular wave measurements in the
laboratory. The functional relationship between u′max/clocal and the local wave slope ε is the same in the
two different wave fields. The data points fit well with the scaling resulting from the analysis in [5] giving
umax/c = f (ε) = ε exp(kηmax)/

√
1+ ε2 = ε + ε2 + 1

2 ε3 + . . . .

Fig. 4. Hodograph plot with |(u1 +U1,u2)|sign(u1 +U1)/clocal vs ϕy/clocal. Calculations with field recording at the aft (line with
open circles) and forward (line with dots) positions of the recording plane, for the large event at x1 = 4730 m, x2 = 120 m. Wave
propagation from left to right.

Fig. 5. Maximum horizontal particle velocity scaled by local wave celerity u′max/clocal with u′ = |(u1 +U1,u2)|, clocal =√
g/klocal

√
1+ ε2 +U1,U1 current speed vs local wave slope ε(= εlocal). Laboratory waves (no current): irregular events (dots);

directional GOTEX field waves (filled ∇); f (ε)(−).
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Regarding wave breaking, we note that, in the laboratory waves, half of the waves with a wave slope
of ε ≃ 0.3 exhibit breaking. The maximum nondimensional horizontal velocity (umax/c) has a value that
somewhat exceeds 0.4 in the breaking events. This value corresponds relatively well to a threshold that can
be obtained theoretically–numerically in two-dimensional simulations of perturbed Stokes waves, where ε
is up to 0.32 and umax/c up to 0.45, in a recurrent wave scenario.

Finally, we note that the GOTEX waves with the strongest kinematics have a local wave gradient of 0.32
and a nondimensional fluid velocity of 0.40, corresponding to the breaking level observed in the laboratory.

4. CONCLUSIONS

In this paper we have
• presented the steps of a nonlinear mathematical procedure for obtaining, from elevation measurements in

the field (and in the laboratory), the nonlinear orbital velocity in directional seas, including the effect of a
current;

• used as velocity references, either cav =
√

g/kav +U1, where kav denotes the average wavenumber of the
sea, estimated from rms-values of the elevation gradient and the elevation, or clocal =√
(g/klocal)(1+ ε2

local)+U1, where klocal is obtained from Eq. (17) above and εlocal denotes the maximum
of the local elevation gradient, in both cases U1 denotes the local current;

• numerically evaluated the orbital velocity, particularly its horizontal components, including the effect of
nonlinearity and current;

• particularly evaluated |(u1 +U1,u2)|sign(u1 +U1)/clocal vs ϕy/clocal;
• plotted the maximum of (u1 +U1)/clocal in several wave events in the field, including the effect of a

current, versus the local nonlinearity ε = εlocal, comparing to the maximum of u1/clocal in the laboratory,
without current and wind effects, finding about the same functional relationship;

• finally, not discussed if the effect of the current enhances or does not enhance the nonlinearity in the field
waves.

ACKNOWLEDGEMENTS

We acknowledge with gratitude Professor W. K. Melville of Scripps Institution of Oceanography, University
of California, San Diego, USA, for making available the GOTEX elevation data in the swath RF05153804
used in the analysis presented here. This research was funded by the Research Council of Norway through
NFR191204/V30 “Wave-current-body interaction”.

REFERENCES

1. Clamond, D. and Grue, J. A fast method for fully nonlinear water wave computations. J. Fluid Mech., 2001, 447, 337–355.
2. Fructus, D., Clamond, D., Grue, J., and Kristiansen, Ø. An efficient model for three-dimensional surface wave simulations.

Part I. Free space problems. J. Comput. Phys., 2005, 205, 665–685.
3. Grue, J. On four highly nonlinear phenomena in wave theory and marine hydrodynamics. Appl. Ocean Res., 2002, 24, 261–274.
4. Grue, J. and Jensen, A. Orbital velocity and breaking in steep random gravity waves. J. Geophys. Res., 2012, 117, C07013.
5. Grue, J., Clamond, D., Huseby, M., and Jensen, A. Kinematics of extreme waves in deep water. Appl. Ocean Res. 2003, 25,

355–366.
6. Romero, L. and Melville, W. K. Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr.,

2010, 40, 441–645.



J. Grue: Nonlinear evaluation of the kinematics of directional field waves 277

Realistliku lainevälja üksiklainete kinemaatiliste parameetrite
arvutamine veepinna salvestustest

John Grue

On esitatud mittelineaarne arvutusmeetod, mis võimaldab pinnalainete kinemaatilised parameetrid leida
veepinna asendi muutumise salvestustest. Probleem on lahendatud realistlike laineväljade ja olukorra jaoks,
mil laineväljaga kaasneb hoovus. Metoodika on verifitseeritud laboritingimustes genereeritud laineväljade
jaoks ja rakendatud Tehuantepeci lahes 2004. aasta eksperimendi GOTEX raames salvestatud veepinna
asendi andmestike analüüsiks.


