
Proceedings of the Estonian Academy of Sciences,
2014, 63, 1, 48–61

doi: 10.3176/proc.2014.1.08
Available online at www.eap.ee/proceedings

Software-based self-test generation for microprocessors with high-level
decision diagrams

Artjom Jasnetski, Raimund Ubar, Anton Tsertov∗, and Marina Brik

Department of Computer Engineering, Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia

Received 3 February 2014, accepted 25 February 2014, available online 14 March 2014

Abstract. This paper presents a novel approach to automated behavioural level test program generation for microprocessors
using the model of high-level decision diagrams (HLDD) for representing instruction sets. The methodology of using HLDDs for
modelling of microprocessors, and a new HLDD-based fault model are developed. The procedures for automated test program
generation are presented using a formal model of HLDDs. The feasibility and efficiency of the new methodology are demonstrated
by carrying out experimental research on test generation for a 8-bit microprocessor. The results are promising, showing the
advantages of the new method and demonstrating better quality of tests compared to previous results.

Key words: microprocessor, software-based self-test, test program generation, high-level decision diagrams.

1. INTRODUCTION

The modern technology advances are imposing new challenges on microprocessor testing. As the transistor
size decreases, the number of transistors per chip and operating frequency are growing. Modern processor
cores are built from billions of transistors and are capable to operate at gigahertz frequencies. Testing of such
complex components has been a challenge for several decades. Sequential automated test pattern generator
(ATPG) is, typically, inefficient in terms of test generation time for processor cores [1,2]. Historically, the
most common way of solving testing problems for VLSI designs is to apply the design for testability (DFT),
for example, the insert scan-chain [3]. However, scan-chains involve changes in the initial circuit design that
affect performance, power consumption, and chip area. Despite that, today DFT techniques like scan-chains
are an inevitable part of a processor testing plan that require an expensive external ATE.

During the last decade, the semiconductor industry was challenged to bring out new testing methods
that can be incorporated in an established microprocessor test flow. Those methods are targeted high quality
product development without excessive overhead in the test budget. Such a test method was first proposed
in 1980 [4], called software-based self-test (SBST).

The main principle of SBST is to execute the test program on an embedded processor for the purpose of
testing the processor itself and the surrounding resources. This approach eliminates the need of expensive
external testing hardware. Hence, the test time is limited with the performance of the processor, as soon as
the tests are executed at functional speed of the microprocessor. The interest for SBST was renewed during
the past decade, because of growing cost of functional testers. The main subject in SBST methodology is a

∗ Corresponding author, anton.tsertov@ttu.ee

A. Jasnetski et al.: Self-test generation for microprocessors 49

test program generation method, which must comply with the high-quality fault coverage standards imposed
by the industry.

In general, the development of the SBST program consists of four steps:
1) creation and optimization of test pattern delivery templates in assembly language,
2) module-level instruction imposed (functional) constraint extraction,
3) test generation process for each module of the processor under test,
4) translation of test patterns to self-test programs.

The last step is basically a process of joining the test pattern with the test pattern delivery template.
Initial focus of the research was on the fault coverage of the tests. The fault coverage of the SBST test is

primarily affected by the test patterns. One of the ways to obtain test patterns is to run ATPG. In [5] it was
shown that the processor can be divided into modules under tests (MUTs) to ease the task of ATPG. The
other way is to use random test patterns for MUTs [6]. Although the gate level fault coverage for MUT is
acceptable in deterministic and random test pattern generation, some of the generated patterns are typically
functionally infeasible when considering the processor as a whole. The latter requires a manual effort to
collect the constraints that guide ATPG at gate level. Obviously, considering todays complexity of the gate
level processor implementation it is not feasible to have manual operations at the gate level.

An automatic constraint extraction, based on the gate level simulation of generated tests to check their
functional feasibility, was proposed in [7]. But the efficiency of the method on the industrial processors was
known to be low. In [8] it is suggested to shift test pattern generation from the gate level to the RT level.
This is achieved by the reuse of the verification test patterns. The drawback of this method is that high fault
coverage for structural faults cannot be guaranteed by verification test patterns.

Considering the drawbacks of the previously mentioned methods we followed the idea to benefit from
the test generation at gate level and to collect functional constraints at RT level description of the processor.
One of the papers [9] shows the possibility to use the bounded model checker (BMC) to map the pre-
generated test patterns into delivery templates program. Regardless of that, it is done at RT level, industrial
processor designs cause time-out problems [10].

Another hybrid SBST method [11] was proposed to utilize the deterministic structural SBST
methodologies (using RT-level test development and gate-level-constrained ATPG test development)
combined with verification based self-test code development and directed random test pattern generator
(RTPG). This method overcomes the drawbacks of [8] and [9].

In addition to hybrid SBST methods [11,12] that work on RT level and gate level, there are methods that
achieve comparable results and improve scalability when generating SBST programs using only RT level
description of the MUTs [10,13].

In this paper, the SBST program generation, using MUTs modelling, is considered at behavioural
level, generally relying on the processor instruction set architecture (ISA). We propose a formal method
to automate the test program generation for microprocessors using high-level decision diagrams (HLDD)
[14,15] as a diagnostic model. The novelties of the approach are: reduced probability of fault masking,
better diagnostic opportunities, and compactness of the whole test thanks to uniform organization of test
routines. Experimental data for the Parwan microprocessor [16,17] show higher fault coverage in com-
parison to the state-of-the-art approaches.

The paper is organized as follows. Section 2 presents the mathematical basis that supports the HLDD
theory. Section 3 is devoted to behavioural modelling of the microprocessors. The test generation details
are outlined in Section 4. Experimental results are presented in the conclusive fifth section.

2. HIGH-LEVEL DECISION DIAGRAM AS A BEHAVIOURAL LEVEL MODEL OF A
MICROPROCESSOR

Consider a digital system S as a network of components (or subsystems), where each component is
represented by a function z = f (z1,z2, . . . ,zn) = f (Z), where Z is the set of variables (Boolean, Boolean
vectors or integers), and V (zk) is the set of possible values for zk ∈ Z, which are finite.

50 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48–61

Definition 1. A decision diagram (DD), which represents a digital function z = F(Z), is a directed acyclic
graph Gz = (M,Γ,Z,F) with a set of nodes M and a mapping Γ from M to M. Γ(m) ⊂ M denotes the
set of all successors of the node m ∈ M, and Γ−1(m) ⊂ M denotes the set of all predecessors of m. M is
partitioned into two subsets of nodes: nonterminal MN and terminal MT nodes. The graph has a root node
m0 with Γ−1(m) = ∅. The nonterminal nodes m ∈ MN are labelled by variables z(m) ∈ Z, and they have
at least two successors, 2≤ |Γ(m)| ≤ |V (z(m))|, where V (z(m)) is the range of values of the node variable
z(m). The terminal nodes mk ∈MT are labelled by sub-functions z(mk) = fk(Zk), fk(Zk) ∈ F, which may be
as well variables zk ∈ Z or constants.

Definition 2. For the assigned value of z(m) = e, e ∈ V (z(m)), we say that the edge from m ∈ M to its
successor me ∈ Γ(m) is activated. Consider situation where to all variables z ∈ Z is assigned a vector Zt

from the domains V (Z). The activated by Zt edges form an activated path l(m0,mk)⊆M from the root node
m0 to one of the terminal nodes mk, labelled by fk(Zk).

Definition 3. We say that a decision diagram Gz represents a function z = F(z1,z2, . . . ,zn) = F(Z), iff for
each value V (Z) = V (z1)×V (z2)× . . .×V (zn), a path in Gz is activated from the root node m0 to a terminal
node mk, labelled by fk, so that z = fk(Zk) is valid.

The traditional BDDs [18] represent a special case of DDs where for all z ∈ Z, V (z) = {0,1} and there
are only two terminal nodes labelled by the Boolean constants 0 and 1. Depending on the class of the
system (or its representation level), we may have various DDs, where nodes have different interpretations
and relationships to the system structure.

In the following we will consider microprocessors (MP) presented on the behaviour level and described
by instruction sets, which usually are described in manuals. Consider, as an example, a hypothetical simple
microprocessor with its instruction set in Table 1 and a general behavioural level structure in Fig. 1.

Denote the instructions of the microprocessor as the values of a complex variable I, represented as
concatenation of 5 instruction sub-variables I = OP.B.A1.A2.A. The variables OP and B denote two
fields of the operation code, A1 and A2 are register addresses, and A is the memory address. Let
V (OP) = V (A1) = V (A2) = 0,1,2,3 and V (B) = 0,1.

Let us divide MP into three parts: control part, data part, and memory. There are two register blocks,
RDATA and RCONT R, in the MP: the register block in the data part consists of 4 general data registers
RDATA = R1,R2,R3,R4 and the control part includes 2 control registers RCONT R = PC,AR where PC is
the program counter, and AR is the address register for addressing the data. ALU is a combinational part
of the MP which covers all data manipulation circuits, decoders, multiplexers, demultiplexers, etc. Control
part includes finite state machine (FSM) with state register and control logic.

Table 1. Instruction set of a hypothetical microprocessor with 10 instructions

OP B Mnemonic Semantic RT level operations

0 0 LDA A1, A READ memory R(A1) = M(A), PC = PC + 2
1 STA A2, A WRITE memory M(A) = R(A2), PC = PC + 2

1 0 MOV A1,A2 Transfer R(A1) = R(A2), PC = PC + 1
1 CMA A1,A2 Complement R(A1) = ¬ R(A2), PC = PC + 1

2 0 ADD A1,A2 Addition R(A1) = R(A1) + R(A2), PC = PC + 1
1 SUB A1,A2 Subtraction R(A1) = R(A1) – R(A2), PC = PC + 1

3 0 JMP A Jump PC = A
1 BRA A Conditional jump IF C=1, THEN PC = A ELSE PC = PC + 2

(Branch instruction)

A. Jasnetski et al.: Self-test generation for microprocessors 51

Fig. 1. Behavioural level structure of the microprocessor.

Fig. 2. HLDD model of the microprocessor.

Consider MP functionally as a set of the following behavioural level functions:
− Ri = fi(I,S(Ri)) = fi(OP,B,S(Ri)), where Ri ∈ RDATA, i = 0,1,2,3, and S(Ri) = {RDATA,M(A)} is

the set of data arguments for the functions fi (a set of the source registers over all the instructions);
− PC = fPC(I,C,PC) = fi(OP,B,PC), where C is the flag variable serving as the condition for the

branch operation;
− M(A) = fM(I,S(M(A))) = fi(OP,B,S(M(A))), where S(M(A)) = {RDATA,M(A)}.
The functionality of MP can now be represented by a set of behavioural level variables Z = RDATA ∪

RCONT R∪M(A) and by a set of functions F = f0, f1, f2, f3, fPC, fM . The behaviour of MP can be modelled
by the functional basis F and monitored through the variables in Z. For modelling of F we will use the
behavioural level HLDD model.

The HLDD model of the microprocessor, given by the instruction set in Table 1, is depicted in Fig. 2. It
represents the set of 7 functions in F in the form of 7 HLDDs, respectively: GRi , i = 0,1,2,3; GR(A2), GPC,
and GM(A). The 4 graphs GRi are connected and share a similar sub-graph, which represents the logic of
ALU. The graphs GR(A1) and GR(A2) are accessed when modelling the nodes R(A1) and R(A2) in the graph
GRi or GM(A), respectively.

In the following we will call the nodes by the names of node variables or by the expressions in the nodes.
To distinguish the nodes, which are labelled by the same variable in the given HLDD, we will use subscripts
of this node variable. For example, in the graphs GRi , we have three different nodes labelled by the same
variable B, and the subscript of B distinguishes the nodes.

Each instruction in Table 1 can be modelled by corresponding paths in the HLDD model. To simulate
the instruction, its related path in HLDD is to be activated. For example, to simulate the instruction
I = (OP = 2.B = 0.A1 = 3.A2 = 2), the following paths in Fig. 2 have to be activated: GR3 : L(A1 = 3,

52 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48–61

OP,B2,R(A1)+R(A2), GR(A1) : L(A1,R3), GR(A2) : L(A2,R2), GPC : L(OP,PC+1) in the graphs GR2 , GR(A1),
GR(A2), and GPC, respectively. The activated paths are highlighted by bold edges and gray coloured nodes.

On the other hand, each HLDD node can be regarded as a hypothetical structural unit of the micro-
processor, exercised by a corresponding instruction. For example, the terminal nodes, which are labelled by
variables, may represent registers or buses, whereas other terminal nodes, which are labelled by arithmetic
or logic expressions, represent the data manipulation sub-units in ALU. The nonterminal nodes of HLDDs
are representing the units for interpretation of control information (OP, B, C, etc.) which may be decoders,
multiplexers or de-multiplexers. For example, the node A1 = 0 in GR0 represents a de-multiplexer, the node
A2 in GR(A2) represents a multiplexer, the nodes OP and B in the graphs represent decoders.

Because of this one-to-one mapping between the nodes in HLDDs and the corresponding high-level
functional units, we can use the HLDD nodes as a checklist for high-level test planning and organization of
test programs for microprocessors. Since the proposed formalized test program generation is based on the
behavioural model of the microprocessor, the behavioural fault model is required to automate test program
generation and to evaluate the test quality. The challenge is to map the properties of the low-level fault
model onto high-level description of the microprocessor.

3. BEHAVIOURAL LEVEL FAULT MODEL FOR MICROPROCESSORS

In the following we will develop a uniform fault model based on the HLDDs which targets the full functional
testing of each node in the model. Each path in an HLDD describes the behaviour of the system in a specific
mode of operation (working mode). The faults, which may have effect on the behaviour of this working
mode, are associated with nodes along the path. A fault in each node may cause incorrect leaving the path
activated by a test, which would mean a real activation of another path (in a wrong direction) in the HLDD
terminating at a wrong terminal node.

From this point of view, the following abstract fault model for nonterminal nodes m ∈ MN with node
variables z(m) in HLDDs was defined [19].

Definition 4. The HLDD based fault model for microprocessors includes three fault classes:
D1:The output edge of a node m for z(m) = v,v∈V (z(m)) is always activated; notation: z(m)/v; (it is similar

to the logic level stuck-at fault (SAF) z/1 for the line z);
D2: The output edge for z(m) = v is broken; notation: z(m)/∅; (similar to SAF z/0 for the line z);
D3: Instead of the given edge for z(m) = vi, another edge v j or a set of edges Vj ∈ ∅ is activated;

notation: z(m)/(vi →Vj).

The fault model, defined on HLDDs, is related to the nodes m of HLDDs, and is a very general one.
In [19] it was shown that the fault model described in Definition 4 covers all the 14 different functional level
fault classes for microprocessors, introduced in [4].

Let us extend now the fault model, described in Definition 4, by taking into account the following
implementation related assumptions introduced in [4] that consider the technology depending details.

Definition 5. If no register is accessed by the fault z(m)/∅ (D2) then whenever a register R j is to be
retrieved, a ONE or ZERO (depending on the technology), are in fact retrieved. ONE denotes a binary
vector (111), similarly ZERO stands for (000).

Definition 6. If a set R of wrong registers are accessed because of the fault z(m)/(vi → Vj) (D3) then
whenever the contents of a register set R is to be retrieved, the contents formed by the bit-wise OR or AND
(depending on the technology) over the registers of the set R will be retrieved. Denote these results as OR(R)
or AND(R), respectively.

Definition 7. Introduce a dummy vector Ω ∈ {ONE,ZERO} for general denoting the faulty retrieve
specified by Definition 5, depending on the technology. Similarly, introduce a dummy operation Ψ(R) ∈
{OR(R),AND(R)} for a general denoting of the fault specified by Definition 6, depending on the technology.

A. Jasnetski et al.: Self-test generation for microprocessors 53

Let us generalize now the fault model, introduced in Definition 4, by developing a new uniform HLDD
based fault class which takes into account the dependence on the technology as well.

Definition 8. Introduce a general fault model D(m) for the nodes m of HLDD Gz = (M,Γ,Z,F), as the set
of the following constraints.
(1) Activation constraint. For all values v ∈ V (z(m)), non-overlapping paths must be activated through m,

which terminate at non-coinciding terminal nodes mv∈MT .
(2) Propagation constraint. The following has to be satisfied by test data:

∀v ∈V (z(m))[z(mv) 6= Ω], (1)

∀i, j ∈V (z(m))[z(mi) 6= z(m j)], (2)

∀i, j ∈V (z(m))[z(mv) 6⊂ z(m j)]. (3)

The requirement (1) results from Definition 5, and the requirement (2) results from Definition 6. The
cases when the introduced requirements cannot be satisfied are classified as redundancies which need no
test. Let us call the solution of the constraints in Definition 8 as a test set T (z(m)).

Lemma 1. The test set T (z(m)) for a node m in a HLDD Gz = (M,Γ,Z,F), which satisfies the activation
constraints in Definition 8, has the following properties.
(1) Each test t ∈ T (z(m)) activates a path through the node m.
(2) For each value of v ∈V (z(m)), there is a test tv ∈ T (z(m)) with assignment z(m) = v.
(3) All tv ∈ T (z(m)) activate paths which terminate at different terminal nodes mv ∈MT .

Proof. The listed properties result directly from the activation constraints of Definition 8 and can be easily
proved by contradiction.

Lemma 2. The propagation requirement of Definition 8 is sufficient for testing the fault class D3, described
in Definition 4.

Proof. Let us have a test set T (z(m)) which has the properties of Lemma 1. Consider a HLDD GR in Fig. 3
with the root node m0, the node m under test, and a subset of terminal nodes MT (m) = m1,mv∗ ,mk,mn,⊆MT ,
reached from m by the paths activated with T (z(m)). The paths are shown by dotted edges, which means that
they may pass through other nodes not shown in the picture. Assume that there is a fault z(m)/(v∗→ V ∗)
of class D3, where v∗ ∈V (z(m)) and V ∗ ⊆V (z(m)). It means that when activating the output edge v∗ of the
node m, then another set of edges V ∗ will be activated because of the fault. Both cases, according to D3, are

Fig. 3. Illustration of the conditions for testing the node m in the HLDD model GR.

54 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48–61

allowed: v∗ ∈ V ∗, or v∗ 6∈ V ∗. According to Lemma 1, when applying the test tv∗ ∈ T (z(m)) we expect the
result R = z(mv∗) in the fault free case.

(1) Let us have the faulty case where v∗ 6∈V ∗ and V ∗ =∅. In this case, no source register will be retrieved,
and according to Definitions 5 and 7, we will get R = Ω. But, according to (1) in Definition 8, z(mv∗) 6= Ω,
which means that the test tv∗ ∈ T (z(m)) detects the fault.

(2) Consider the faulty case when v∗ 6∈ V ∗ and V ∗ = ∅. Denote by MT ∗ ⊆ MT (m) the subset of terminal
nodes which will be reached when assigning the values v∈V ∗ to z(m). According to Definitions 6 and 7,
the result of the test because of the fault will be Ψ(z(m)|m ∈MT ∗).
From (2) and (3) in Definition 8, the following relationships follow, respectively,

∀v ∈V ∗[z(mv) 6= z(mv∗)], (4)

∀v ∈V ∗[z(mv) 6⊂ z(mv∗)]. (5)

On the other hand, based on (4) and (5), it can be easily shown that

Ψ(z(m)|m ∈MT ∗) 6= z(mv∗). (6)

From (6) it follows that the test tv∗ ∈ T (z(m)) detects the fault.
(3) Consider now the case when v∗ ∈V ∗. There are two possibilities. First, the faults are coupled so that for

at least two values v1,v2 ∈ V ∗, we may get the similar result: z(mv1) = z(mv2). On the other hand,
according to the condition (2), all the results of the tests in T (z(m)) must be different. Hence, from two
similar results we can conclude that we have detected a fault.

Second, assume, that the condition (6) is not fulfilled, and the fault is not detected by the test
tv∗ ∈ T (z(m)) because of fault masking. However, such a fault can be still detected when we include into
T (z(m)) an addittional test t ′v∗ by repeating tv∗ , but using different data, so that z(mv∗)′ 6= z(mv∗) would be
satisfied. It is easy to show that Ψ{z(m)′} 6= Ψ{z(m)}, which means that the fault will be detected by the
added new test.

Theorem 1. The test set T (z(m)), generated for a node m in a HLDD Gz = (M,Γ,Z,F) according to the
fault model D(m), covers all the fault classes D1, D2, and D3, described in Definition 4.

Proof. The case D1: Let us prove by contradiction. Assume, there is a fault z(m)/v ∈ D1 in Gz, which
is not detected by T (z(m)). According to Lemma 1, T (z(m)) always includes two tests tv, tv∗ ∈ T (z(m))
with two assignments z(m) = v and z(m) = v∗, respectively, where v∗ 6= v. Hence, the activation constraint
of Definition 8 is satisfied. On the other hand, according to Lemma 1, the tests tv, tv∗ ∈ T (z(m)) activate
two non-overlapping paths reaching different terminals mv,mv∗ ∈ MT , where z(mv) ∈ z(mv∗). Hence, the
propagation requirement of Definition 8 is satisfied as well. From that it results that the initial assumption –
that the fault z(m)/v ∈ D1 is not detected by T (z(m)) – must be false, and therefore the fault model D(m)
covers the fault class D1.

The case D2: For the fault class D2, the proof is similar to the case of D1.
The case D3: The proof results from Lemma 2.

Corollary 1. From above it follows that the test generation for a node m in HLDD consists of the following
three steps: (1) activating a path from the root node m0 to the node m under test, (2) activating the non-
overlapping paths from m for all v ∈ V (z(m)) to the non-coinciding terminal nodes mv ∈ MT , and (3)
generating the data operands to solve the constraints (1)–(3) in Definition 8.

Corollary 2. The test set T (z(m)), generated for a node m in a HLDD Gz = (M,Γ,Z,F) according to
Definition 8, tests the node exhaustively, and the lower bound of the test length is |V (z(m))|.
Proof. The exhaustiveness of the test set T (z(m)) for testing the node m results from Lemma 1. From
Property 2 in Lemma 1, also the lower bound |V (z(m))| for the length of the test set T (z(m)) results.

A. Jasnetski et al.: Self-test generation for microprocessors 55

The lower bound will be exceeded if several reiterations of some tests t ∈ T (z(m)) with different data is
needed to satisfy step by step the propagation requirements of Definition 8. This situation was discussed in
the proof of Lemma 2.

Corollary 3. When generating tests for the terminal nodes mv ∈MT of an HLDD, the step 2 of the procedure
highlighted in Corollary 1 will collapse. Only activating a single path from the root node to the node
mv ∈MT is needed.

The test, generated for a terminal node mv ∈MT , should be executed |V (z(mv))| times for all the values
of V (z(mv)). The tests for terminal nodes mv are tests for sub-functions z(mv) = fv(Zv), which represent the
data path of the system, and therefore, because of exploding size of the test set, cannot be tested exhaustively.
Here, the hierarchical approach would be a better option, where the operands for testing the functions of
terminal nodes are generated at lower hierarchical (e.g. gate) level. The number of test vectors generated at
the lower level will determine the range of values V (z(mv)) for terminal nodes, which will be used for test
program synthesis at the higher behavioural level.

Corollary 4. The test set T (z(m)) covers all the 14 fault classes introduced for microprocessors in [4]. The
proof results from Theorem 1 and from the analysis carried out in [19] where it was shown that all the 14
fault classes introduced in [4] are covered by the fault classes D1, D2, D3.

4. BEHAVIOURAL LEVEL TEST GENERATION FOR MICROPROCESSORS

The test program generation for a microprocessor using the HLDD model will proceed at two levels: system
level, and module level. Each HLDD presents a module, whereas the whole set of HLDDs presents the
system. So far we discussed the main principles of module level testing from a general point of view. At
the module level, the targets of test generation are the nodes of HLDDs whereas at the system level the
targets are the HLDDs themselves. At the system level, the problem of mapping of the HLDD tests on the
system level will be solved; in other words, the test stimuli for the modules will be made controllable and
the results of tests will be made observable. In this paper, the detailed discussion about how this mapping
can be formalized is omitted.

Definition 9. Let us call the test for a nonterminal node as conformity test for the microprocessor which
has the goal to test the control part. The conformity test will be generated according to the procedure
summarized in Corollary 1. On the other hand, let us call the test for a terminal node as scanning test for
the microprocessor, which has the goal to test the data path. The scanning test will be generated according
to the procedure summarized in Corollary 3.

4.1. Generation of conformity tests

To generate a conformity test for the control function, represented as a nonterminal node m in the HLDD
model, means to test the variable z(m) exhaustively for all the values in V (z(m)). For that, we have to
activate and exercise all the proper working modes, launched at least once by each value of z(m). Before
testing of each working mode, the needed state of the system should be initialized, so that every possible
faulty change of z(m) should produce a faulty next state, which would be different compared to the expected
next state for the given working mode.

Algorithm 1. Conformity test generation for the control part (test for a nonterminal node m).
1. Generation of control data for the test. Activate a path from the root node m0 to the node m under test,

and for each value v ∈ V (z(m)), a path from the node m to a terminal node mv ∈ MT . The values v
assigned to z(m) will be cyclically varied during the test execution.

2. Generation of register data for the test. Find the proper initial states of MP for testing the node m. The
initial states are determined by a set of contents of the register set, involved in testing of m. These contents

56 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48–61

are generated by satisfying the constraints (1)–(3). Denote the set of initial states needed for testing m as
R(m) = (R(m,1), R(m,2), R(m, p)) where R(m, i) are different initial states. In the best case the
constraints (1)–(3) can be satisfied by a single initial state R(m,1). In general case the test set for the
node m should be repeated for all the p≥ 1 initial states in R(m).

From Algorithm 1 the following test execution program results.
Test program for the nonterminal node m in HLDD Gz:

FOR all v ∈V (z(m))
FOR t = 1,2,..., p
Initialize the data registers R(m) with
contents R(m,t)

Execute the working mode under test
READ the value of z.

END FOR
END FOR

Example 1. Consider the process of conformity test program generation according to Algorithm 1 for
testing the node OP in HLDD GR3 in Fig. 2. The goal of this test program is to test the functional behaviour
of the control logic in decoding the field OP of the instruction code I.

For generating the control data for the test, we have to choose first the HLDD from 4 possibilities
GRi , i = 0,1,2,3. Let us choose the option GR3 , which means that the test result will be sent into the register
R3. Now we have to activate first the path from the root node A1 = 3 to the node OP (shown by bold edges
in GR3). The path will be activated by assigning the value 3 to the variable A1.

Second, we activate the paths from the node OP for all values 0,1,2,3, to terminal nodes. The path for
OP = 2 through the node B2 (by assigning B = 0) to the terminal node R(A1)+ R(A2) is shown in bold.
Since the value of B is fixed to 0, the paths from OP to other terminal nodes M(A) and R(A2), for values
OP = 0 and OP = 1, respectively, are as well determined. As the result, we have generated the control data
for the test in a form of instruction code I = (OP =VAR.B = 0.A1 = 3.A2 = 2). The value “VAR” means “the
value under variation”, i.e. the instruction I will be cyclically executed for all the values VAR = 0,1,2,3.

For generating the register data we have to solve the constraints (1)–(3) in Definition 8 for the functions
of selected terminal nodes. For example, to satisfy the constraint (2), we have to solve the following
inequality:

M(A) 6= R2 6= (R2+R3) 6= R3. (7)

Assume, all the registers have 4-bit length. Then, a possible solution for satisfying the constraints (1)–
(3) is: M(A) = 0110, R2 = 0101, R3 = 0011 whereas R2 + R3 = 1000. Let us store the test data in the
memory at the following addresses: M(0) = 0110, M(1) = 0101, and M(2) = 0011. For the results we
reserve the addresses starting from 10.

The test generation process has resulted now in the following test program (sequence of instructions) for
testing the node OP in HLDD GR3 in Fig. 2.
FOR VAR=0,1,2,3
(1) LDA 2, 1 (Initialize R2 = M(1))
(2) LDA 3, 2 (Initialize R3 = M(2))
(3) Execute: I = VAR.0.3.2 (Testing of

instructions: LDA, MOV, ADD, JMP)
(4) STA 3, 10+VAR (Write the content of R3

into M(10+VAR))
END FOR

A. Jasnetski et al.: Self-test generation for microprocessors 57

4.2. Generation of scanning tests

The scanning test program is synthesized hierarchically. The test program itself is generated at the high-
level directly from the HLDD model, whereas the data for the test program is generated by a traditional
gate-level ATPG using the low-level descriptions of the date path.

Algorithm 2. Scanning test generation for the data path (test for a terminal node m).
1. High-level test generation. Activate a path from the root node m0 to the terminal node m.
2. Low-level test generation. Find the proper sets of data R(m) = (R(m,1), R(m,2), . . .R(m, p)) for testing

the functional expression z(m) of the node m. Here, R(m) is the set of registers (arguments) involved in
z(m), and p is the number of test vectors generated at low level.

From Algorithm 2 the following test execution program results:
Test program for the terminal node m in HLDD Gz

FOR t = 1,2,...,p
Initialize the data registers R(m) with

R(m, t)
Execute the working mode under test
READ the value of z.

END FOR

Example 2. Consider the process of scanning test program generation according to Algorithm 2 for testing
the node R(A1) + R(A2) in HLDD GR3 in Fig. 2. The goal of this test program is to test the functional
behaviour of the adder in ALU of the microprocessor.

For generating the control data for test, we activate first the path from the root node A1 = 3 to the terminal
node R(A1)+R(A2) (shown by bold edges in GR3) in a similar way as we did in Example 1. As the result, we
have generated the control data for the test in a form of instruction code I = (OP = 2.B = 0.A1 = 3.A2 = 2).

The data for the set of registers R = R2,R3 (operands for the addition operation) will be generated at the
lower level to achieve the needed (100%) fault coverage. These data (operands) will be cyclically loaded
into the registers R2 and R3, before the next execution of the addition operation. Assume that the number
of operand pairs generated is 10. Let us store the contents of R2 starting from the memory address A = 0,
the contents of R3 starting from A = 10, and the results starting from A = 20. Then the high-level generated
test program for testing the node R(A1)+R(A2) in GR3 will be as follows:
FOR t =0,1,2,...,9
(1) LDA 2, A(0+t) (Initialize R2 = R2(t))
(2) LDA 3, A(10+t) (Initialize R3 = R3(t))
(3) ADD 3, 2 (Execute the instruction

I = 2.0.3.2)
(4) STA A(20+t),2 (Write the content of

R3 into M(20+ t))
END FOR

5. CASE STUDY AND EXPERIMENTAL DATA

As a case study we have chosen the 8-bit microprocessor Parwan [16,17]. It has instruction format
(OP.I.P.A), where OP is 3-bit opcode. If OP = 7, then 1-bit I and 4-bit P are used as extensions for
opcode, otherwise, I defines addressing mode and P is used for page addressing. A is the 8-bit memory
address (offset). The Parwan instruction set (the operation codes OP with extensions I and P) is explained
in Table 2, and the HLDD model synthesized from the Parwan instruction set is presented in Fig. 4.

58 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48–61

Fig. 4. HLDD model for microprocessor Parwan.

Based on the HLDD model we have created in a formal way the test program shown in Fig. 5. The
test in Fig. 5 is based on three embedded cycles for joint testing of ALU and Flag instructions for all data
operands. A test for single byte ALU instructions can be organized in a similar way; however, using only
two cycles because of no need for testing second time the Flag logic. Using this type of joint test makes
it easier to generate data. Generic operands can be generated on the low level with gate-level ATPG for
the full combinational logic used for all instructions. Then, in the test execution phase the full test can be
carried out cyclically over all generic operands. To use the test cycle like in Fig. 5 is a trade-off problem.
Another option would be to flatten these embedded cycles and remove the not-needed repetitions.

A. Jasnetski et al.: Self-test generation for microprocessors 59

Fig. 5. Test program for Parwan.

Fig. 6. Set-up of experiments.

We carried out the experiments with Parwan microprocessor using test program in Fig. 5. The set-up for
experiments is presented in Fig. 6 and the results are summarized in Table 3. In Fig. 6 it is shown that test
patterns are automatically generated for MUTs at gate level. These test patterns are used as arguments in the
test program that is generated from behavioural description (HLDD) of the processor. Then the test program
with test patterns is supplied as memory file to ModelSim and simulated to obtain the data sequence for each
MUT input signal. Then the test data for MUT inputs is simulated with Turbo Tester simulator at gate level
to get the stuck-at fault coverage.

The comparison of the obtained fault coverage with the state-of-the-art method [20] is outlined in the
leftmost two columns of Table 3. To sum up, for 6 out of 7 modules the proposed method shows advantage
over the previously best published results for that processor. The test overhead data is presented in Table 4.
The proposed approach needs 75% less test data than in ATIG [20], but the generated program consist of
76% more instructions. However, the latter comparison is not completely fair, since there are single byte
and double byte long instructions and such statistics is missing in [20].

60 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48–61

The fault coverage presented in Table 3 is calculated considering only testable faults. Same arithmetics
is used in paper [20] that we use to evaluate the results. In Table 3 in the forth column is presented the
number of faults that are proven to be untestable. According to the achieved fault coverage there are still
few potentially testable faults that remained untested. At this moment authors consider testing of these faults
as future work. The next step in proving the feasibility of the proposed approach is to apply the HLDD-based
SBST solution in more complex microprocessors.

6. CONCLUSION

A formal test program generation method based on using high-level decision diagrams is proposed for
microprocessors. The HLDD model is created from the instruction set, and it represents the high-level
structure of the microprocessor. To take into account the low-level implementation details, the data operands
to be used in the test program can be generated by gate-level ATPG. The novelty of the approach is cyclical
organization of the test, which directly results from the model structure. The embedded test cycles are
directed to exercising of high-level structural components with all instructions and over all data operands
generated at the low (gate) level. Because of the cyclical organization, the test is very compact and uniform.

The advantage of such a test is the reduced probability of fault masking due to repeated use of the same
initialization before each test step. Improved diagnostic resolution is another advantage of the test program,
which directly results from the test structure and from the exact focus of each test step.

The disadvantage of the proposed approach is the test length overhead due to redundant repetition.
On the other hand, the embedded test cycles can be easily unrolled, and the flattened test program can be
optimized by removing the unnecessary repetitions.

ACKNOWLEDGEMENTS

The work has been supported in part by the EU FP7 STREP project BASTION, Estonian ICT project
FUSETEST, by EU through the European Structural and Regional Development Funds, and by Estonian SF
grants 8478 and 9429.

REFERENCES

1. Niermann, T. M. and Patel, J. H. HITEC: A test generation package for sequential circuits. In Proc. European Confer. Design
Automation, 1991, 214–218.

2. Bencivenga, R., Chakraborty, T. J., and Davidson, S. The architecture of the gentest sequential test generator. In Proc. Custom
Integrated Circuits Conference, 1991, 17.1.1–17.1.4.

3. Eichelberger, E. B. and Williams, T. W. A logic design structure for LSI testability. In Proc. Design Automation Conference.
New Orleans, 1977, 462–468.

4. Thatte, S. M. and Abraham, J. A. Test Generation for Microprocessors. IEEE T. Comput., 1980, C-29, 429–441.
5. Tupuri, R. S. and Abraham, J. A. A novel functional test generation method for processors using commercial ATPG. In Proc.

Internat. Test Confer., 1997, 743–752.
6. Chen, L. and Dey, S. Software-based self-testing methodology for processor cores. IEEE T. Comput. Aid. D., 2001, 20, 369–

380.

A. Jasnetski et al.: Self-test generation for microprocessors 61

7. Chen, L., Ravit, S., Raghunathant, A., and Dey, S. A scalable software-based self-test methodology for programmable
processors. In Proc. Design Automation Conference. Anaheim, Ca, 2003, 548–553.

8. Kranitis, N., Paschalis, A., Gizopoulos, D., and Xenoulis, G. Software-based self-testing of embedded processors. IEEE T.
Comput., 2005, 54, 461–475.

9. Gurumurthy, R. S., Vasudevan, S., and Abraham, J. A. Automated mapping of pre-computed module-level test sequences to
processor instructions. In Proc. Internat. Test Confer., 2005, 303–313.

10. Zhang, Y., Li, H., and Li, X. Automatic test program generation using executing-trace-based constraint extraction for embedded
processors. IEEE T. VLSI Syst., 2013, 21, 1220–1233.

11. Kranitis, N., Merentitis, A., Theodorous, G., and Paschalis, A. Hybrid-SBST methodology for efficient testing of processor
cores. IEEE Des. Test Comput., 2008, 25, 64–75.

12. Lu, T.-H., Chen, C.-H., and Lee, K.-J. Effective hybrid test program development for software-based self-testing of pipeline
processor cores. IEEE T. VLSI Syst., 2011, 19, 516–520.

13. Wen, C. H.-P., Wang, Li-C., and Cheng, K.-T. Simulation-based functional test generation for embedded processors. IEEE T.
Comput., 2006, 55, 1335–1343.

14. Ubar, R. Test synthesis with alternative graphs. IEEE Des. Test Comput., 1996, 48–59.
15. Karputkin, A., Ubar, R., Raik, J., and Tombak, M. Canonical representations of high level decision diagrams. Estonian J. Eng.,

2010, 16, 39–55.
16. Navabi, Z. Analysis and Modeling of Digital Systems. McGraw-Hill, 1993.
17. Testing the Parwan processor. http://mesdat.ucsd.edu/ lichen/260c/parwan/ (accessed 6.03.2014).
18. Lee, C. Y. Representation of switching circuits by binary decision programs. AT&T Tech. J., 1959, 985–999.
19. Ubar, R., Raik, J., Jutman, A., Instenberg, M., and Wuttke, H.-D. Modeling microprocessor faults on high-level decision

diagrams. In Internat. Confer. Dependable Systems and Networks. Anchorage, USA, 2008, c17–c22.
20. Zhang, Z., Li, H., and Li, X. Software-based self-testing of processors using expanded instructions. In Proc. 19th IEEE Asian

Test Symposium, 2010, 415–420.

Kõrgtasemega otsustusdiagrammidel põhinev testprogrammide süntees
mikroprotsessoritele

Artjom Jasnetski, Raimund Ubar, Anton Tsertov ja Marina Brik

On esitatud uudne lähenemisviis mikroprotsessorite testprogrammide formaalsele sünteesile, kasutades
kõrgtaseme otsustusdiagrammide matemaatilist aparaati. On välja töötatud metodoloogia mikroprotses-
sorite diagnostiliseks modelleerimiseks käsusüsteemidega defineeritud käitumuslikul tasandil. On esita-
tud vastavad otsustusdiagrammidel põhinevad testide genereerimise algoritmid ja protseduurid. Uue meto-
doloogia rakendatavust ja efektiivsust on demonstreeritud eksperimentaaluuringutega konkreetse mikro-
protsessori näitel. Saadud tulemused näitavad uue lähenemisviisi suuremat efektiivsust analoogsete ekspe-
rimentidega võrreldes.

