
Proceedings of the Estonian Academy of Sciences,
2013, 62, 1, 39–46

doi: 10.3176/proc.2013.1.05
Available online at www.eap.ee/proceedings

An approach to the inference of finite state machines based on a
gravitationally-inspired search algorithm

Margarita Spichakova

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia; margo@cs.ioc.ee

Received 31 August 2011, revised 9 April 2012, accepted 21 September 2012, available online 20 February 2013

Abstract. As the inference of a finite state machine from samples of its behaviour is NP-hard, heuristic search algorithms need to
be applied. In this article we propose a methodology based on applying a new gravitationally-inspired heuristic search algorithm for
the inference of Moore machines. Binary representation of a Moore machine, an evaluation function, and the required parameters
of the algorithm are presented. The experimental results show that this method has a lot of potential.

Key words: finite state machine, gravitational search algorithm, system identification.

1. INTRODUCTION

Identification is an inference process, which deduces
an internal representation of a system (named internal
model) from samples of its functioning (named external
model) [1]. The inference of finite state machines (FSMs)
is widely applied in different fields, such as logical
design, verification, and software systems.

The goal of identification is to find the ‘best’ FSM,
which respects the dynamics of the external model. In
practice, the ‘best’ FSM is the one that best describes the
model behaviour given by input–output sequences. We
are interested in finding a minimum size deterministic
FSM consistent with the set of the given samples. This
is an NP-hard problem [2]. Heuristic algorithms are
an alternative that can reduce the complexity of the
identification methods.

The paper is organized as follows. Section 2
provides an overview of the problem of FSM inference.
Section 3 describes gravitationally-inspired search
algorithms. Section 4 introduces our approach, and
Section 5 shows experimental results of the work.

2. INFERENCE OF FINITE STATE MACHINES

2.1. Problem statement

We give a brief overview of our approach to FSM
identification. There are several types of FSMs, but in

this article we will discuss only one well-known repre-
sentation of them, namely the Moore machines.

A Moore machine is a six-tuple Mo =
〈Q,Σ,∆,δ ,λ ,q0〉, where
• Q is a finite set of states, where q0 denotes the initial

state,
• Σ is the input alphabet,
• ∆ is the output alphabet,
• δ : Q×Σ→ Q is the transition function,
• λ : Q → ∆ is the output function represented by the

output table that shows what character from ∆ will be
printed by each state that is entered [3].

The general structure of our approach to the
inference of FSMs is presented in Fig. 1.

Fig. 1. Problem of system identification.

40 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

The outline of our approach is the following:
1. The system to be inferred is tested and samples of

its functioning are generated. Some of the samples
are chosen as training data and some as testing data.

2. The number of states in the FSM is received as an
input.

3. The search algorithm is applied and a FSM M is
outputted.

4. M is evaluated using the given training data and/or
testing data. If M describes the given input–output
data sufficiently well, it is considered as result.
Otherwise the search process with other parameters
or training data will be repeated.

5. If required, post-processing (e.g., minimization,
reduction of unreachable states) is applied.
It is possible to specify several criteria for the

required result. The first criterion is consistency of the
FSM. Using this criterion, we can define two different
types of solutions: the generalized solution (i.e., the
solution that performs correctly for all positive input–
output sequences) and the consistent solution (i.e., the
solution that performs correctly for the input–output
sequences used in the training set). Another criterion is
the FSM size. We can search for the minimal FSM or a
FSM with k or fewer states.

We formulate our goal as the inference of a
deterministic FSM with k or fewer states, consistent with
input–output sequences at hand.

2.2. Background

Heuristic techniques are widely applied to the inference
of different types of FSMs. The most popular are the
various types of Evolutionary Algorithms. In the early
1960s Fogel et al. [4] introduced Evolutionary Pro-
gramming (EP). The simulated evolution was performed
by modifying a population of FSM. Other authors also
used EP for solving the problem of FSM identification.
Chellapilla and Czarnecki [5] proposed the variation of
EP to solve the problem of modular FSM synthesis.
Benson [6] presented a model comprising an FSM with
embedded genetic programs which co-evolve to perform
the task of Automatic Target Detection.

Another approach to solve the problem of FSM
identification is based on the Genetic Algorithm
(GA). This method has been researched by several
authors. Ngom et al. [7] used genetic simulation
for Moore machine identification, Tongchim and
Chongstitvatana [8] investigated parallel implementa-
tion of the GA to solve the problem of FSM synthesis.
Lucas [9] paid more attention to finite state trans-
ducers and he and Reynolds [10] compared this
method to ‘Heuristic State Merging’. Niparnan and
Chongstitvatana [11] improved GA by evolving only
the state transition function. Chongstitvatana and
Aporntewan [12] presented a method of FSM synthesis
from multiple partial input/output sequences. Horihan
and Lu [13] focused on improving the FSM evolution

by using progressive fitness functions. Also Generated
Simulated Annealing was used for the inference of
FSM [14].

We apply a gravitationally-inspired search
algorithm. The next section describes the general ideas
of this new class of algorithms.

3. GRAVITATIONALLY-INSPIRED SEARCH
ALGORITHM

3.1. Gravity as inspiration for heuristic search
algorithms

Four main forces are acting in our universe: gravitational,
electromagnetic, weak nuclear, and strong nuclear.
These forces define the way our universe behaves and
appears. The weakest force is gravitational; it defines
how objects move depending on their mass. In physics
three kinds of masses can be distinguished (active mass
Ma, passive mass Mp, and inertial mass Mi), which have
been shown experimentally to be equivalent (see [15]).

The gravitational force between two objects i and
j is directly proportional to the product of their masses
and inversely proportional to the square distance between
them

Fi j = G
Ma j ·Mpi

R2
i j

. (1)

Knowing the force acting on a body we can compute
acceleration as

ai =
Fi

Mii
. (2)

Our universe is growing, this yields an effect of
decreasing gravity, so the gravitational ‘constant’ can be
described as

G(t) = G(t0) ·
(t0

t

)β
, β < 1. (3)

We can formulate the following basic ideas inspired
by gravity:
• Each object in the universe has mass and position.
• There are some interactions between objects, which can

be described using the law of gravity.
• Bigger objects create larger gravitational fields and

attract smaller ones.
During the last decade some researchers have tried

to adapt the idea of gravity to find out optimal search
algorithms. Such algorithms have some general ideas in
common:
• The system is modelled by objects with mass.
• The position of those objects describes the solution,

and the mass of the objects depends on the objective
function.

• The objects interact with one another using gravita-
tional force.

• The objects with greater mass present the points in the
search space with better solutions.

Using these characteristics, it is possible to define the
family of optimization algorithms based on gravitational

M. Spichakova: An approach to the inference of FSMs based on a GSA 41

force. For example, Central Force Optimization (CFO) is
a deterministic gravity-based search algorithm proposed
and developed by Formato [16]. It simulates the group
of probes that fly into search space and explore it.
Another algorithm, Space Gravitational Optimization
(SGO), was developed by Hsiao et al. [17] in 2005.
It simulates asteroids flying through curved search
space. A gravitationally-inspired variation of local
search, Gravitational Emulation Local Search Algorithm
(GELS), was proposed by Webster and Bernhard [18]
and further elaborated by Webster [19]. The newest one,
Gravitational Search Algorithm (GSA), was described
by Rashedi et al. [20] as a stochastic variation of CFO.

The next subsection will give a more detailed
overview of the GSA, which is used as a basis of our
approach.

3.2. Gravitational search algorithms

The GSA was described by Rashedi et al. [20] as a
stochastic variation of the CFO and used for different
applications. It was successfully applied to optimize
various continuous problems, such as filter model-
ling [21], the set covering problem [22], allocation of
static var compensator [15], and synthesis of thinned
scanned concentric ring array antenna [23].

The algorithm is constructed so that there is a system
of N objects, each of which is described by a real-valued
position vector, and each position vector codes candidate
solution

Xi =
(

x1
i , . . . ,x

d
i , . . . ,x

n
i

)
, d ∈ [1 . . .n], (4)

where xd
i represents the position of the ith object in

dimension d.
Masses of objects are computed based on the quality

measure as follows:

Mai = Mpi = Mii = Mi, i ∈ [1,2, . . .N], (5)

Mi(t) =
mi(t)

∑N
j=1 m j(t)

, mi =
f iti(t)−worst(t)

best(t)−worst(t)
, (6)

where worst(t) and best(t) are defined for maximization
problem as

best(t) = max︸︷︷︸
j∈[1...N]

f it j(t), worst(t) = min︸︷︷︸
j∈[1...N]

f it j(t),

and f iti is the value of the objective function.
In other words, a heavier mass means that the quality

of the object is better and it has greater attraction and
inertia (i.e., moves slowly towards other objects).

At a specific time t we can recompute the force that
is applied to the object i with mass Mi by some object j
with mass M j

Fd
i j (t) = G(t)

Mpi(t) ·Ma j(t)
Ri j + ε

(xd
j − xd

i), (7)

where ε is a free parameter, required to avoid division by
zero, and Ri j is the Euclidean distance between position
vectors:

Ri j =
∥∥Xi(t),X j(t)

∥∥ . (8)

According to Rashedi et al. [15], Ri j gives better
experimental results than R2

i j.
The gravitational constant G (Eq. (3)) is computed

as
G(t) = G(G0, t). (9)

In physics, the general force acting on an object is
computed as a vector sum of all acting forces. In
the GSA, a stochastic characteristic is added to the
algorithm, so the general force is computed as

Fd
i (t) =

N

∑
j=1,i 6= j

rand j ·Fd
i j (t), rand j ∈ [0,1]. (10)

The acceleration of object i can be computed knowing its
inertial mass Mii and force Fd

i (t) as

ad
i (t) =

Fd
i (t)

Mii(t)
. (11)

Knowing current acceleration, we can recompute
velocity and position as follows:

vd
i (t +1) = randivd

i (t)+ad
i (t), randi ∈ [0 . . .1]; (12)

xd
i (t +1) = xd

i (t)+ vd
i (t +1). (13)

The general procedure of the GSA is described
in Algorithm 1. Firstly, the initial set of objects is
generated randomly. Secondly, each object is evaluated.
Based on evaluation results, the required parameters
(G(t), worst(t), best(t)) are updated, and the forces
and accelerations are computed. Thirdly, the agents’
positions are changed according to acting forces and the
updated positions are evaluated. The process continues
until the best solution is found or the number of iterations
is over.

Algorithm 1. General procedure of GSA
Generate initial positions
repeat

Evaluate quality of each object
Update G(t), worst(t), best(t)
Calculate masses and accelerations
Calculate velocities and positions

until meeting ending criterion
Return best solution

In the GSA, the position vector is real-valued. How-
ever, for some applications discrete or binary vectors
are required. A discrete modification of the algorithm
was proposed by Zibanezhad et al. [24] in a context of
Web-Service composition. The binary GSA (BGSA) was
introduced by Rashedi et al. [25] in 2010. In the next
section we will focus on the BGSA.

42 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

3.3. Binary gravitational search algorithm

The key difference between the GSA and the BGSA is
the binary search space, meaning that each dimension
has only two possible values: ‘0’ or ‘1’. The main laws
of the BGSA may be defined as in real-valued case (see
Eqs (7), (11), and (12)). But the positions’ updating law
(see Eq. (13)) must be modified so that each dimension
changes between two values according to the velocity. A
higher velocity gives a greater probability of changing
the value.

To modify Eq. (13), in the BGSA a special prob-
ability function S(vd

i) was introduced, which transfers the
value of vd

i to [0 . . .1]:

S(vd
i) =

∣∣∣tanh(vd
i)

∣∣∣ . (14)

The law for updating the position can be defined as
follows:

xd
i (t +1) =

{
F(xd

i (t)) if rand < S(vd
i (t +1)),

xd
i (t) if rand ≥ S(vd

i (t +1)),
(15)

where F(xd
i (t)) = complement(xd

i (t)). Some other
modifications were made:
• Velocity vd

i is bounded:
∣∣vd

i

∣∣ < vmax.
• Distance R is computed as the Hamming distance.
• Gravitational constant G is considered as a linear

decreasing function

G(t) = G0(1− t/T). (16)

4. GRAVITATIONALLY-INSPIRED SEARCH
ALGORITHM FOR THE INFERENCE OF
FSMs

To apply the BGSA to the inference of FSMs we need
to define an objective function and a process of encoding
FSMs to a binary position vector. Also modifications of
the original BGSA have to be made.

4.1. Representation of an FSM

We discuss only Moore machines with exactly n
states. Consider a target machine Mo with n states,

input alphabet Σ = {i0, . . . , il−1}, output alphabet ∆ =
{o0, . . . ,om−1}, and set of states Q = {q0, . . . ,qn−1 }.

To store the information about state q j, we need to
store the output value o j of the state and corresponding
transitions from the given state q j to get some target
state qik , which are activated by reading symbol ik.
Each section represents one state (Fig. 2), where the
first part is an output value of the state and the other
part stores the corresponding transitions from that state.
Initially, information is presented in a decimal way
(decimal representation). To get binary representation
we transform each integer number to the corresponding
binary number.

The number of bits required for storing the whole
binary position vector can be computed as follows:

Length = n · (dlog2 me+ ldlog2 ne). (17)

Each Mo has a unique binary representation, but not each
binary string has a corresponding Mo.

Let us take a look at a Moore machine with the
transition diagram presented in Fig. 3.

We have four states Q = {0,1,2,3}, the input
alphabet contains two symbols Σ = {a,b}, and the output
alphabet two symbols ∆ = {0,1}.

Thus we need 20 bits to store this FSM (Eq. (17)):
4 · (dlog2 2e+ dlog2 4e ·2) = 20 bits. The general
structure of the position vector required to encode this
FSM is presented in Fig. 4.

State q j
o j qi0 q... qik−1

Fig. 2. A section of the binary position vector for storing the
Moore machine with a fixed number of states.

Fig. 3. A Moore machine represented as a transition diagram.

a b a b a b a b
1 1 0 1 1 2 0 3 3 1 1 0 Dec. representation
1 01 00 1 01 10 0 11 11 1 01 00 Bin. representation

Fig. 4. Example. Binary position vector for storing the Moore machine.

M. Spichakova: An approach to the inference of FSMs based on a GSA 43

4.2. An objective function

We propose an objective function defined on all input–
output sequences (pairs {input, output}). The idea is
to estimate the proximity between the current and the
desired FSMs by finding the distance between strings.

4.2.1. Distance between strings

Consider a function ∆(a,b), where a,b are symbols in
some alphabet, and define

∆(a,b) =
{

0 : a = b,
1 : a 6= b. (18)

That is, if character a is not equal to character b, the
function ∆(a,b) will return 1, otherwise the function will
return 0.

We propose two distance functions between strings x
and y. The first function is the Hamming distance dHam.
To compute it, we need to count the number of different
bits in the same positions

dHam(x,y) = Σmin(|x|,|y|)
i=1 ∆(xi,yi). (19)

The second function evaluates the length of maximal
equal prefix dLP (i.e., the computation will be stopped
at the first difference between strings)

dLP(x,y) = Σx=y
i=1 ∆(xi,yi). (20)

4.2.2. Evaluation of the objective function

We specify several objective functions for evaluating
FSMs based on dHam and dLP. Assume we have our
training data represented as a collection of input–output
sequences (the size of the collection is n). We also have
output strings produced by an FSM (see Table 1).

Our task is to measure how ‘far’ the strings generated
by the FSM are from the expected strings. The objective
function based on the Hamming distance (dHam) defines
the objective function as follows:

OF = Σn
i=1

(
li−dHam

(
Outexpected

i ,Outproduced
i

))
,

(21)
where n is the number of the given data and li is the

length of Outexpected
i .

In the second case we use dLP for measuring the
distance. Thus, the objective function can be defined as
the sum of the lengths of all sequences

OF = Σn
i=1

(
dLP

(
Outexpected

i ,Outproduced
i

))
. (22)

4.3. Algorithm description

In this section we will focus on the properties of our
algorithm. Search space is described by a set of binary
position vectors, where each position vector corresponds
to an FSM as described in Section 4.1.

First, we set
• the free parameter ε ,
• the maximal speed vmax,
• the number of iterations,
• the number of objects,
• the number of states n in the FSM,
• the initial value of gravitational constant G0,
• the mass value minimum Mmin
according to the problem under consideration.

The initial positions are generated randomly from
the feasible region, so that each position corresponds to
an FSM. To do so, the FSM is generated in decimal form,
a number of symbols in input and output alphabet are
restored from the input data. After generating the FSM
in decimal form it is encoded into binary representation
(see Section 4.1).

The objective function of a candidate solution is
computed as described in Subsection 4.2.2. Despite the
fact that in physics the active, passive, and inertial masses
are considered to be equivalent (see 3.1), we modified
mass computation laws to improve the search algorithm.
The active Ma, passive Mp, and inertial Mi masses are
computed as follows

Mp = Mi =
OF

OFmax
, (23)

Ma =

{
Mi if Ma > Mmin,

0 if Ma ≤Mmin.
(24)

If Ma is smaller than the minimum value Mmin of the
defined mass, then Ma = 0 (i.e., an object with a smaller
mass does not create a gravitational field).

Forces acting on the object are computed via Eq. (7).
The distance in one dimension can be computed as
follows:

(xd
j − xd

i) =

{
1 if xd

j 6= xd
i ,

−1 if xd
j = xd

i .
(25)

The acceleration vector is computed via Eq. (11).
The velocity vector is computed by Eq. (12). If the
velocity is higher than vmax, then its value will be set to
vmax.

44 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

The new position is computed using the old position
and the velocity vector (see Eq. (15)). The probability
function (i.e., the threshold function) S(vd

i) is taken as

S(vd
i) =

∣∣∣sin(vd
i)

∣∣∣ , (26)

in this case vmax = π/2.

5. IMPLEMENTATION AND EXPERIMENTS

Our approach was implemented in Java (JDK 1.5) and
tested on random machines and some ‘toy’ examples.
Results are compared to the canonical Genetic Algorithm
(more details about GA can be found in [10,26]).

5.1. Experiments I

Experiments were constructed so that general param-
eters, such as the number of iterations and the number
of objects, the encoding of the Moore machine, and its
initialization algorithm are the same (see Subsection 4.1).
Evaluation of the machine is described in Subsection 4.2;
the objective function is constructed on the Hamming
similarity. The specific parameters of the algorithm are
described for a concrete experiment in the corresponding
table.

During the experiments, each algorithm was run 20
times with a different initial set of objects. Results are
presented in Table 2 and Table 3, where the row ‘Init. %’
shows the mass value of the best solution at the initial

step (randomly generated), the row ‘Sol. %’ shows the
object value of the best found solution, and the row ‘Iter.’
shows how many iterations were required to find this
solution (‘–’ means that the best possible solution was
not found).

5.1.1. Pattern recognizer

The goal of this experiment was to reconstruct a pattern
‘aab’ recognizer (see Table 2) from the given input–
output pairs. As input data we use six pairs with each
input string having a length of 12. The number of states
n is four. The number of iterations is taken 100, and the
number of objects equals 200.

This experiment showed that the BGSA was more
frequently able to find 100% solutions than the GA
(10/20 compared to 7/20 for GA) and fewer iterations
were required to find them.

5.1.2. Parity checker

The goal of this experiment was to reconstruct a parity
checker (see Table 3) from the given input–output pairs.
As input data we use seven pairs with length 8 of each
input string. The number of states n equals two. The
number of iterations is taken 20, and the number of
objects equals five.

This experiment showed that the BGSA was more
frequently able to find 100% solutions than the GA
(14/20 compared to 10/20 for GA) and fewer iterations
were required to find them. In three out of twenty cases
the GA was not able to improve the maximal solution
that was randomly generated in the initial population; for
the GSA this happened only in one case out of twenty.

Table 2. Experiment I.1 ‘Pattern recognizer’

Table 3. Experiment I.2 ‘Parity checker’

M. Spichakova: An approach to the inference of FSMs based on a GSA 45

5.2. Experiments II

The goal of those experiments was to compare the BGSA
and GA for the same random initial set of objects. Tasks
were taken as in the previous experiments (i.e., ‘pattern
recognizer’ and ‘parity checker’). Those experiments
were constructed in such a way that the initial population
was taken the same for both algorithms, the parameters
such as the number of iterations and the number of
objects were also equal for both algorithms, and are
described in Subsection 5.1. Each algorithm (BGSA and
GA) was executed 10 times with the same initial set of
objects as in Experiments I (5.1). The average best-so-far
solutions are presented in Fig. 5. According to the results
of this experiment, in the case of ‘pattern recognizer’ the
BGSA solves the task better than the GA (Fig. 5a). For
the second task, ‘parity checker’ (Fig. 5b), the BGSA
behaves almost like the GA.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for the inference
of Moore machines based on a gravitationally-inspired
search algorithm. Binary representation of FSMs and
different types of objective functions were intro-
duced. Parameters and variations of the proposed
algorithm were discussed. The proposed approach was
implemented and successfully tested using random data
and different examples. During the first experiments, our
approach gave promising results.

Fig. 5. Comparison between the BGSA and GA: (a) pattern
recognizer, (b) parity checker.

To improve the quality of the proposed approach,
parameters of the algorithm and their effect on the
presented methods will be explored. The effect of
using different aspects of laws will be investigated.
During further developments the proposed method will
be adjusted to take into account other types of FSM, for
example the Mealy machines.

ACKNOWLEDGEMENTS

This research was supported by the Estonian Ministry of
Education and Research target-financed research theme
No. 0140007s12.

REFERENCES

1. Angluin, D. and Smith, C. H. Inductive inference: theory
and methods. ACM Comput. Surv., 1983, 15, 237–
269.

2. Gold, E. M. Complexity of automaton identification from
given data. Inform. Control, 1978, 37(3), 302–320.

3. Hopcroft, J. E., Motwani, R., and Ullman, J. D. Intro-
duction to Automata Theory, Languages, and Com-
putation. International Edition (2nd edn). Addison-
Wesley, 2003.

4. Fogel, L. J., Owens, A. J., and Walsh, M. J. Artificial
Intelligence Through Simulated Evolution. Wiley,
Chichester, UK, 1966.

5. Chellapilla, K. and Czarnecki, D. A preliminary investiga-
tion into evolving modular finite state machines. In
Proceedings of the 1999 Congress on Evolutionary
Computation. Vol. 2. IEEE Press, 1999, 1349–1356.

6. Benson, K. A. Evolving finite state machines with
embedded genetic programming for automatic target
detection within SAR imagery. In Proceedings of the
2000 Congress on Evolutionary Computation CEC00.
IEEE Press, 2000, 1543–1549.

7. Ngom, L., Baron, C., and Geffroy, J. Genetic simulation
for finite state machine identification. In SS ’99:
Proceedings of the Thirty-Second Annual Simulation
Symposium. IEEE Computer Society, Washington,
DC, USA, 1999, 118.

8. Tongchim, S. and Chongstitvatana, P. Parallel genetic
algorithm for finite state machine synthesis from
input/output sequences. In Evolutionary Computation
and Parallel Processing (Cantu-Paz, E. and Punch, B.,
eds). Las Vegas, Nevada, USA, 2000, 20–25.

9. Lucas, S. M. Evolving finite state transducers: some initial
explorations. In EuroGP. 2003, 130–141.

10. Lucas, S. M. and Reynolds, T. J. Learning finite state
transducers: evolution versus heuristic state merging.
IEEE T. Evolut. Comput., 2007, 7, 308–325.

11. Niparnan, N. and Chongstitvatana, P. An improved
genetic algorithm for the inference of finite state
machine. In GECCO ’02: Proceedings of the Genetic
and Evolutionary Computation Conference. Morgan
Kaufmann Publishers, San Francisco, CA, USA,
2002, 189.

46 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

12. Chongstitvatana, P. and Aporntewan, C. Improv-
ing correctness of finite-state machine synthesis from
multiple partial input/output sequences. In Proceed-
ings of the 1st NASA/DoD Workshop on Evolvable
Hardware. 1999, 262–266.

13. Horihan, J. W. and Lu, Y.-H. Improving fsm evolution
with progressive fitness functions. In GLSVLSI ’04:
Proceedings of the 14th ACM Great Lakes Symposium
on VLSI. ACM Press, New York, NY, USA, 2004,
123–126.

14. Cerruti, U., Giacobini, M., and Liardet, P. Prediction of
binary sequences by evolving finite state machines.
In Selected Papers from the 5th European Conference
on Artificial Evolution. Springer-Verlag, London, UK,
2002, 42–53.

15. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., and
Farsangi, M. M. Allocation of static var compensator
using gravitational search algorithm. In First Joint
Congress on Fuzzy and Intelligent Systems, Ferdowsi
University of Mashhad, Iran, 29–31 August, 2007,
29–31.

16. Formato, R. A. Central force optimization: a new
metaheuristic with applications in applied electro-
magnetics. PIER, 2007, 77, 425–491.

17. Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., and Chien, C.-C.
A novel optimization algorithm: space gravitational
optimization. In IEEE International Conference on
Systems, Man and Cybernetics, 2005, Vol. 3. 2005,
2323–2328.

18. Webster, B. and Bernhard, P. J. A local search optimization
algorithm based on natural principles of gravitation.
Technical Report CS-2003-10, Florida Institute of
Technology, 2003.

19. Webster, B. Solving Combinatorial Optimization Problems

Using a New Algorithm Based on Gravita-
tional Attraction. PhD thesis, Florida Institute of
Technology, Melbourne, FL, USA, 2004.

20. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. GSA:
a gravitational search algorithm. Inform. Sciences,
2009, 179(13), 2232–2248.

21. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. Filter
modeling using gravitational search algorithm. Eng.
Appl. Artif. Intell., 2011, 24, 117–122.

22. Balachandar, S. R. and Kannan, K. A meta-heuristic
algorithm for set covering problem based on
gravity. International Journal of Computational and
Mathematical Sciences, 2010, 4(5), 223–228.

23. Chatterjee, A., Mahanti, G. K., and Pathak, N.
Comparative performance of gravitational search
algorithm and modified particle swarm optimization
algorithm for synthesis of thinned scanned concentric
ring array antenna. PIER B, 2010, 25, 331–348.

24. Zibanezhad, B., Zamanifar, K., Nematbakhsh, N.,
and Mardukhi, F. An approach for web services
composition based on QoS and gravitational search
algorithm. In Proceedings of the 6th International
Conference on Innovations in Information Technol-
ogy, IIT’09. IEEE Press, Piscataway, NJ, USA, 2009,
121–125.

25. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S.
BGSA: binary gravitational search algorithm. Nat.
Comp., 2010, 9, 727–745.

26. Fabera, V., Janes, V., and Janesova, M. Automata construct
with genetic algorithm. In DSD ’06: Proceedings of
the 9th EUROMICRO Conference on Digital System
Design. IEEE Computer Society, Washington, DC,
USA, 2006, 460–463.

Meetod lõplike automaatide genereerimiseks gravitatsiooniseadusest inspireeritud
otsimisalgoritmi abil

Margarita Spichakova

Kuna lõplike automaatide genereerimine sisend-väljundpaaride näidiste alusel on NP-keerukas ülesanne, tuleb selle
lahendi leidmiseks kasutada heuristilisi algoritme. Artiklis on pakutud metoodika Moore’i masinate genereerimiseks,
kasutades uut, gravitatsiooniseadusest inspireeritud otsimisalgoritmi. On esitatud algoritmi rakendamiseks vajalik
Moore’i masina binaaresitus, sihifunktsioon ja algoritmi juhtimiseks kasutatavad parameetrid. Eksperimendid
näitavad, et lähenemisel on arvestatav potentsiaal.

