
Proceedings of the Estonian Academy of Sciences,  
2013, 62, 1, 1–2 

doi: 10.3176/proc.2013.1.01 
Available online at www.eap.ee/proceedings 

 
 
 
 
 
 
 
 

Preface 
 

The series of symposia under the title “Programming 
Languages and Software Tools (SPLST)” started in 
Szeged, Hungary, in 1989. It was originally intended to 
provide an opportunity to computer scientists from 
Hungary, Finland, and Estonia to meet regularly and 
introduce their current work to each other. Informally 
the conferences were even called Finno-Ugric symposia 
on languages and tools and it was hoped that these 
events might help the computer scientists from two 
Eastern European countries to get integrated via Finland 
with the more developed Europe. Now, when the three 
states have joined the EU and the words “Finno-Ugric” 
have been removed from the title, we are looking at an 
all-European series of conferences organized biannually 
in these countries. Another tradition of these symposia 
is that the majority of participants are young scientists 
or PhD students who enjoy the opportunity to meet their 
colleagues of the same age, discuss scientific problems, 
listen to invited talks of experienced researchers, and 
receive rather detailed reviews as feedback to their 
submitted papers. 

The topics of SPLST have reflected actual trends in 
the research on software development and undergone 
several changes during its history. When it started, 
computing was still mainly an academic activity and 
software construction was based mostly on compiling 
techniques. Shortly after that software development 
transformed into an industrial activity that brought to 
the forefront software production lines, modelling of the 
software process, software architecture, software reuse, 
testing, and so on. Another revolution in computing was 
induced by spreading of the internet and World Wide 
Web that for IT systems opened opportunities like never 
before, but also raised new problems like cyber crime 
and the need to deal with security aspects in computer 
systems. New cooperative and distance development 
methods appeared and have evolved up to nowadays 
cloud computing facilities. Complexity and worldwide 
linkage has highlighted terms like trustworthy software 
systems, safety, quality of service (performance, reli-

ability, availability), security, and privacy. Software 
development now includes directions like aspects, agile 
techniques, and model-driven software engineering. 
This forms a new context for traditional topics of 
SPLST: programming languages, tools, and environ-
ments. 

This special issue of the Proceedings of the Estonian 
Academy of Sciences contains seven papers that were 
first presented at the 12th symposium in the series, held 
in Tallinn on 5–7 October 2011. Those seven papers 
were selected by the Program Committee from all 
papers given at the conference to be invited for sub-
mission to this issue and were subsequently subjected to 
the standard refereeing process of the journal. 

A traditional SPLST topic – techniques and tools for 
software engineering – is represented here by the article 
“DPF Workbench: a multi-level language workbench 
for MDE”, written by Yngve Lamo and his co-authors. 
The paper provides a fully diagrammatic specification 
language to develop domain-specific metamodels and 
their transformations facilitating generation of software 
from these models. This approach contributes to modern 
model-driven engineering paradigm as well as visual 
specification languages that allows domain experts to 
develop graphical models via drawing schemes at 
different levels of abstraction. The tool supports 
automatic validation of these specifications and con-
formance between modelling levels. 

Software architecture matters are touched upon in 
several papers. Most directly these questions are treated 
in the paper “Interleaving human and search-based 
software architecture design” by Sriharsha Vathsavayi 
et al. Fragments of the structure of the system under 
development are evolved automatically rather than 
designed by means of a classical method. Techniques of 
genetic algorithms used here are inspired by the process 
of evolution in the nature. 

Another architecture-oriented paper “Implementing 
artificial intelligence: a generic approach with software 
support” by Teemu J. Heinimäki and Juha-Matti Vanha-



Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 1–2  
 

2 

tupa describes an approach for rapid scripting and 
testing software agents. The authors believe that the 
method allows implementation of components of 
Artificial Intelligence systems. They demonstrate the 
approach by scripting characters that comprise a virtual 
world in computer games. 

The paper on architecture above uses a method  
that mimicks biological evolution. A similar heuristic 
approach is used in the paper by Maragarita Spichakova 
“An approach to the inference of finite state machines 
based on a gravitationally-inspired search algorithm” for 
generation of Moore machines, a version of final state 
machines with output. In this case the inference 
algorithm she uses is inspired by Newton’s gravitational 
law. 

New architectures of computers and distributed 
systems encourage people to reformulate or reinterpret 
well-known concepts and knowledge. Antti Valmari 
asks in his paper: “Does the Shannon bound really apply 
to all data structures?” Roughly speaking, this bound 
determines a minimum amount of memory needed to 
store a given information. Originally this theorem was 
given for the memory consisting of a single series of 
bits. The author shows that it is problematic to apply 
such an information-theoretic bound to a memory with 
complex structures. By the way, this article created long 
and eager discussions between the author and reviewers 

that resulted in a number of revisions of the paper and, I 
believe, improved it as well as brought satisfaction and 
fun to the parties of the debate. 

Modern software processes still require much basic 
research on verification and modelling methods. Model 
checking is a most popular approach for generating 
safety-critical software. The paper “Bounded saturation-
based CTL model checking” by András Vörös et al. 
combines different model checking techniques to obtain 
a new quality in safety. The paper by Gabriella Tóth and 
co-authors “Adjusting effort estimation using micro-
productivity profiles” concentrates on software pro-
cesses from another viewpoint, namely how to organize 
a software project and how to measure or estimate the 
productivity of the team. The formalism used and the 
experiments commit the intuitive expectation that a 
series of changes require usually more resources than 
implementing the same changes in a single step. 

The organizers of the symposium and the guest 
editor of this issue thank all reviewers and the Program 
Committee for thorough evaluation of the papers. I 
would also like to thank the Estonian Centre of 
Excellence in Computer Science, funded mainly by the 
European Regional Development Fund, for sponsoring 
SPLST’11 and all people from the host organization, 
Institute of Cybernetics, who assisted in preparation of 
this symposium. 

 
Jaan Penjam 
Guest editor 


