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Abstract. This paper addresses the disturbance decoupling problem (DDP) for nonlinear systems, extending the results for
continuous-time systems into the discrete-time case. Sufficient conditions are given for the solvability of the problem. The notion of
the rank of a one-form is used to find the static measurement feedback that solves the DDP whenever possible. Moreover, necessary
and sufficient conditions are given for single-input single-output systems, as well as for multi-input multi-output systems under the
additional assumption.
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1. INTRODUCTION

The disturbance decoupling problem (DDP) for a discrete-time nonlinear control system by state feedback
has been addressed in many papers (see [2,3,7,8,14,16]). Most papers extend the results known for
continuous-time systems into the discrete-time domain (e.g. [6,10,17]), describing the control system by
smooth or analytic difference equations. Few studies address the DDP for discrete-time nonlinear control
systems using output feedback (e.g. [15,18,20], see also [13]), whereas only [18] treats explicitly the case
of static measurement feedback, which is the topic of our paper. However, in [18] necessary and sufficient
conditions are given only for single-input single-output (SISO) systems. Papers [15] and [20] focus on
dynamic measurement feedback. In [20] the controlled output is a vector function of the measured output,
having possibly less components than the measured output itself. Therefore, the above solution may be
considered only as a partial solution. Paper [15] provides a full algorithmic solution for the problem using
dynamic feedback. In both papers the novel algebraic approach, called the algebra of functions (see [22]),
is applied.

Only a few papers address the problem of continuous-time nonlinear control systems ([1,11,19,21]).
Paper [19] studies the problem using static measurement feedback, in [11] the feedback considered is
restricted to pure dynamic measurement feedback, and papers [1,21] focus on dynamic measurement
feedback.

Our goal is to extend the results of [19] for discrete-time nonlinear control systems. Moreover, the results
of [19] were given for multi-input single-output (MISO) systems, whereas the present paper addresses the
multi-input multi-output (MIMO) case. The preliminary results of this paper (for MISO systems only) were
presented at the 18th International Conference on Process Control ([12]).
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2. PRELIMINARIES

Consider a discrete-time nonlinear control system

x(t +1) = f (x(t),u(t),w(t)),
y(t) = h(x(t)), (1)
z(t) = k(x(t)),

where the state x(t) ∈ Rn, the control input u(t) ∈ Rm, the disturbance input w(t) ∈ Rν , the output to be
controlled y(t)∈Rp, and the measured output z(t)∈Rµ . Assume that f , h, and k are meromorphic functions
of their arguments. Throughout the paper we also assume that system (1) is generically submersive, i.e.

rank
∂ f (x(t),u(t),w(t))
∂ (x(t),u(t),w(t))

= n

everywhere except on the set of zero measure.
Under submersivity assumption we can construct the inversive difference field1 of meromorphic

functions in variables x(t), u(t), w(t) and a finite number of their (independent) forward and backward
shifts associated with system (1), which we denote as K ∗. Note that not all the variables are independent
because of the relationships defined by (1) and in the computations the dependent variables have to be
expressed via the independent ones. For example, x(t +1) has to be replaced by f (x(t),u(t),w(t)). See [9]
for the details how to construct K ∗.

Define the vector spaces X = spanK ∗{dx(t)}, Z = spanK ∗{dz(t)}, U = spanK ∗{du(t + k),k ≥ 0},
W = spanK ∗{dw(t + k),k ≥ 0}, and E = X +U +W .

Definition 1. ([4]). The relative degree r of the output y(t) is defined by

r := min{i ∈ N|dy(t + i) /∈X }.
If such an integer does not exist, define r := ∞.

The static measurement feedback of the form u(t) = F(z(t),v(t)) is called regular if F is invertible with
respect to v(t), i.e. if there exists an inverse function α := F−1 such that v(t) = α(z(t),u(t)).

Problem Statement. Given a nonlinear system of the form (1), the goal is to find, if possible, a regular
static measurement feedback of the form

u(t) = F(z(t),v(t)),

such that every controlled output yi(t), i = 1, . . . , p, of the closed-loop system satisfies the following
conditions:
(i) dyi(t + k) ∈ spanK ∗{dx(t),dv(t), . . . ,dv(t + k− ri)},∀k ≥ ri,

(ii) dyi(t + ri) /∈X ,
where ri is the relative degree of yi(t) with respect to u(t). Condition (i) represents the independence of
the output of the closed-loop system from the disturbance, whereas condition (ii) represents the output
controllability of the closed-loop system.

Analogously to the continuous-time case (see [19]), define the subspaces Ωi ⊂X for every output yi(t)
(i = 1, . . . , p) by

Ωi := {ω(t) ∈X |∀k ∈ N : ω(t + k)
∈ spanK ∗{dx(t),dyi(t + ri), . . . ,dyi(t + ri + k−1)}}.

1 An inversive difference field is a pair consisting of a field K ∗ and an automorphism σ of K ∗, shortly denoted just by K ∗.
The role of σ is here played by the forward shift operator that takes the variables at the time instant t to the next time instant
t +1.
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The subspaces Ωi will be important in solving the DDP, because the forward shifts of a one-form ω(t) ∈Ωi
do not depend explicitly on inputs u(t) and w(t).

To simplify the presentation of the proof of Lemma 1 below, we omit the index i. That is, instead of yi
and Ωi, i = 1, . . . , p, we just write y and Ω, respectively.

Lemma 1. The subspace Ω may be computed as the limit of the following algorithm:

Ω0 = spanK ∗{dx(t)},
Ωk+1 = {ω(t) ∈Ωk|ω(t +1) ∈Ωk (2)

+spanK ∗{dy(t + r)}}, k ≥ 0.

Proof. We show below that sequence Ωk converges and in the limit we get Ω. Consider a subspace Ωk.
By (2), Ωk+1 ⊂ Ωk or Ωk+1 = Ωk. Since the subspace Ωk is a finite-dimensional vector space, at certain
step k∗+ 1, Ωk∗ = Ωk∗+1. Thus sequence (2) converges and the limit is Ωk∗ . We show now that Ω = Ωk∗ .
Suppose ω(t) ∈Ωk∗ . Then, by (2)

ω(t +1) ∈Ωk∗−1 + spanK ∗{dy(t + r)}

and so ω(t + 1) = ω̃(t)+ ξ dy(t + r) for some ω̃(t) ∈ Ωk∗−1 and function ξ ∈ K ∗. Since ω̃(t) ∈ Ωk∗−1,
by (2)

ω̃(t +1) ∈Ωk∗−2 + spanK ∗{dy(t + r)}
and so the forward shift of ω(t +1) is

ω(t +2) ∈Ωk∗−2 + spanK ∗{dy(t + r),dy(t + r +1)}.

Continuing in the same way, we get

ω(t + k∗) ∈Ω0 + spanK ∗{dy(t + r), . . . ,dy(t + r + k∗−1)},

which means that ω(t) ∈Ω. We showed that if ω(t) ∈Ωk∗ , then ω(t) ∈Ω, i.e. Ωk∗ ⊂Ω.
Now suppose that ω(t) ∈Ω. Then, by definition of Ω,

ω(t + k∗) ∈X + spanK ∗{dy(t + r), . . . ,dy(t + r + k∗−1)}.

As Ω0 = X ,
ω(t + k∗) = ω̃(t)+ξ1dy(t + r)+ . . .+ξk∗dy(t + r + k∗−1),

where ω̃(t) ∈ Ω0 and ξ1, . . . ,ξk∗ ∈ K ∗. The backward shift ω̃(t − 1) ∈ Ω1, because ω̃(t − 1) ∈ Ω0 and
ω̃(t) ∈Ω0 + spanK ∗{dy(t + r)}. Note that dy(t + r−1) ∈Ωk∗ , because dy(t + r) ∈Ωl + spanK ∗{dy(t + r)}
for every l ≥ 0. Thus the backward shift of ω(t + k∗) is

ω(t + k∗−1) ∈Ω1 + spanK ∗{dy(t + r), . . . ,dy(t + k∗−2)}.

Continuing in the same way, we get

ω(t +1) ∈Ωk∗−1 + spanK ∗{dy(t + r)}.

Thus ω(t) ∈Ωk∗ and we have shown that Ω⊂Ωk∗ . Above we showed that Ωk∗ ⊂Ω, so Ω = Ωk∗ . ¤
Next we will show how Ω changes under the regular static measurement feedback u(t) = F(z(t),v(t)).

Denote by K ∗ the field of meromorphic functions in variables x(t), v(t), w(t) and a finite number
of their independent forward and backward shifts and define the vector spaces X = spanK ∗{dx(t)},
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V = spanK ∗{dv(t + k),k ≥ 0}, W = spanK ∗{dw(t + k),k ≥ 0}, E = X +V +W . Analogously to [21]
we can prove that there exists an isomorphism Φ : E → E such that if Ωcl is the subspace for the closed-loop
system, then Ωcl = Φ(Ω).

Let ω(t) ∈ E . In general, ω(t) is a linear combination over K ∗ of a certain number of standard basis
elements of E . However, it is often possible to find a linearly independent set of exact one-forms with less
elements than those basis elements of E in terms of which ω(t) can be expressed. For example, a one-
form ω(t) = (x2(t)u1(t)+ u2(t))dx1(t)+ x2(t)x1(t)du1(t)+ x1(t)du2(t), as a linear combination of dx1(t),
du1(t), and du2(t), can be expressed as a linear combination of two exact one-forms, d(x1(t)u1(t)) and
d(x1(t)u2(t)).

Definition 2. ([5]). Let γ be the minimal number of linearly independent exact one-forms necessary to
express a one-form ω(t). Then ω(t) is said to be of rank γ .

Note that 1 ≤ γ ≤ n. For example, if the rank γ of a one-form ω(t) is 1, then ω(t) = ξ dα and
thus ω(t) ∧ dω(t) = 0. In the general case, if the rank γ is k, then ω(t) ∧ (dω(t))(k) = 0, where
(dω(t))(k) = dω(t)∧ . . .∧dω(t) is k-fold wedge product.

We prove the following lemma for MIMO systems, providing an alternative formulation of the system
to be disturbance decoupled. It allows us to check whether the system is disturbance decoupled or not. The
lemma will be used later in the proof of the main result of the paper (i.e. Theorem 1).

Lemma 2. Under the assumption that the relative degrees ri of the outputs yi(t) are finite, system (1) is
disturbance decoupled iff

dyi(t + ri) ∈Ωi + spanK ∗{du(t)} (3)

for i = 1, . . . , p.

Proof.
Necessity. Assume that system (1) is disturbance decoupled, i.e.

dyi(t + k) ∈ spanK ∗{dx(t),du(t), . . . ,du(t + k− ri)} (4)

for k ≥ ri and
dyi(t + ri) /∈ spanK ∗{dx(t)}. (5)

In particular, dyi(t + ri) ∈ spanK ∗{dx(t),du(t)}. Rewrite the latter as

dyi(t + ri) ∈X + spanK ∗{du(t)}. (6)

Thus there exists a one-form ω0(t) ∈ X and a function ξ ∈ K ∗ such that dyi(t + ri) = ω0(t) + ξ du(t).
We are going to show that ω0(t) ∈ Ωi. Assume contrarily that ω0(t) /∈ Ωi. The forward shift of
dyi(t + ri) ∈ spanK ∗{dx(t),du(t)} is

dyi(t + ri +1) ∈ spanK ∗{dx(t),dw(t),du(t),du(t +1)},

which yields a contradiction with (4). Thus, ω0 ∈ Ωi and we can rewrite (6) as dyi(t + ri) ∈ Ωi +
spanK ∗{du(t)}.

Sufficiency. Assume that condition (3) is fulfilled for system (1). We must show that system (1) satisfies
conditions (4) and (5). Because ri is the relative degree of yi(t), (5) is satisfied. Because of (3),

dyi(t + ri) = ω0(t)+ξ du(t),

where ω0(t) ∈Ωi and ξ ∈K ∗. Since ω0(t) ∈Ωi,

ω0(t + l) ∈ spanK ∗{dx(t),dyi(t + ri), . . . ,dyi(t + ri + l−1)}
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for all l ≥ 0. Thus

dyi(t + ri + l) ∈ spanK ∗{dx(t),dyi(t + ri), . . . ,dyi(t + ri + l−1),du(t + l)}
for all l ≥ 0. Hence

dyi(t + ri + l−1) ∈ spanK ∗{dx(t),dyi(t + ri), . . . ,dyi(t + ri + l−2),du(t + l−1)}
and

dyi(t + ri + l) ∈ spanK ∗{dx(t),dyi(t + ri), . . . ,dyi(t + ri + l−2),du(t + l−1),du(t + l)}.
Continuing in the same way, we get

dyi(t + ri + l) ∈ spanK ∗{dx(t),du(t), . . . ,du(t + l)}.
Replacing l by l = k− ri, we get (4) and thus sufficiency is fulfilled. ¤

We are going to use the subspaces Ωi (i = 1, . . . , p) and the concept of the rank of a one-form to give a
sufficient condition for the DDP.

3. MAIN RESULTS

The following theorem gives sufficient conditions for solvability of the DDP by static measurement feed-
back.

Theorem 1. The DDP for system (1) is solvable by static measurement feedback if for i = 1, . . . , p:
(i) dyi(t + ri) ∈Ωi +Z +U ,

(ii) there exists a one-form ω(t) ∈Z +U such that dyi(t + ri)−ω(t) ∈Ωi and rank ω(t) = γ ≤ m,
(iii) for any basis {dα1(z(t),u(t)), . . . ,dαγ(z(t),u(t))} of ω(t),

rankK ∗
[∂α(z(t),u(t))

∂u(t)

]
= γ, (7)

where α := [α1, . . . ,αγ ]T .

Proof. Assume that condition (i) is fulfilled. Under condition (ii) there exists a one-form ω(t) such that
dyi(t + ri)−ω(t) ∈Ωi, where

ω(t) = β1dα1(z(t),u(t))+ . . .+βγdαγ(z(t),u(t)).

When condition (iii) is satisfied, then γ one-forms dα j(z(t),u(t)), j = 1, . . . ,γ , are independent with respect
to the variable u(t). Define for j = 1, . . . ,γ

v j(t) = α j(z(t),u(t)). (8)

If γ < m, by renumbering the inputs u(t), if necessary, complete (8) with

v j(t) = u j(t), j = γ +1, . . . ,m (9)

to get an invertible map. Define a static measurement feedback u(t) = α−1(z(t),v(t)) as the solution of (8)
and (9). Note that this yields

dyi(t + ri) ∈Ωi⊕ spanK ∗{dv(t)}
and thus by Lemma 2, system (1) is disturbance decoupled. ¤
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Remark. We point to the fact that condition (ii) is not a direct extension of the respective condition in the
single-output case. Even if we can find individual one-forms ωi(t) such that dyi(t + ri)−ωi(t) ∈ Ωi, for
all i = 1, . . . , p, this does not necessarily mean that we can find a single one-form ω(t) as given in (ii) of
Theorem 1.

In case of SISO systems when m = 1, (7) and (ii) of Theorem 1 yield

rankK ∗
[∂α(z(t),u(t))

∂u(t)

]
= γ = 1.

Thus, condition (iii) of Theorem 1 is satisfied if and only if γ = 1. For SISO systems we can conclude from
Theorem 1 a necessary and sufficient condition.

Corollary 1. For SISO nonlinear control systems the DDP is solvable by regular static measurement
feedback iff
(i) dy(t + r) ∈Ω+Z +U ,

(ii) there exists a one-form ω(t) ∈Z +U such that dy(t + r)−ω(t) ∈Ω and rank ω(t) = 1.

Proof.
Necessity. Assume that system (1) is decoupled by the regular static measurement feedback

u(t) = α−1(z(t),v(t)), v(t) = α(z(t),u(t)). (10)

Then by Lemma 2
dy(t + r) ∈Ω+ spanK ∗{dv(t)}. (11)

Combining (11) with (10) implies condition (i). Since ω(t) = ξ d(α(z(t),u(t))), ω(t)∧dω(t) = 0 and rank
ω(t) = 1. Thus condition (ii) is also fulfilled.

Sufficiency. Assume that (i) holds. Then

dy(t + r) ∈Ω⊕ spanK ∗{dz(t),du(t)}.

Since by (ii) the rank of the one-form ω(t) is 1, define ω(t) := λdv(t) and so

dy(t + r) ∈Ω⊕ spanK ∗{dv(t)},

meaning that the system is decoupled. ¤

In general there is no necessary and sufficient condition for MIMO systems, but under additional
assumptions Ωi∩Z = Ø and dyi(t + ri) ∈Ωi⊕Z +U we can find a necessary and sufficient condition for
MISO systems.

Theorem 2. Assume that Ωi∩Z = Ø and dyi(t + ri) ∈Ωi⊕Z +U . The DDP is solvable by regular static
measurement feedback iff for i = 1, . . . , p
(i) there exists a one-form ω(t) ∈Z +U such that dyi(t + ri)−ω(t) ∈Ωi and γ := rank ω(t)≤ m,

(ii) for any basis {dα1(z(t),u(t)), . . . ,dαγ(z(t),u(t))} of ω(t),

rankK ∗
[∂α(z(t),u(t))

∂u(t)

]
= γ.

Proof.
Necessity. Assume that system (1) is disturbance decoupled by the regular static measurement feedback

v(t) = α(z(t),u(t)). By Lemma 2, dycl
i (t + ri) ∈Ωcl

i +V , where V = spanK ∗{dv1(t), . . . ,dvm(t)} and ycl
i (t)
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is the output of the closed-loop system. Because of the isomorphism Φ : E → E described above and
feedback α(z(t),u(t)), we can write

dyi(t + ri) ∈Ωi + spanK ∗{dα(z(t),u(t))}.

Thus, there exist a one-form ω̃(t) ∈Ωi and ξ ∈K ∗ such that

dyi(t + ri) = ω̃(t)+ξ dα(z(t),u(t)).

The assumption dyi(t + ri) ∈ Ωi⊕Z +U implies that ω̃(t) ∈ Ωi +Z . Rewrite ω̃(t) = ω̃0(t)+ ω̃z(t) for
some ω̃0(t) ∈ Ωi and ω̃z(t) ∈ Z . As in the proof of Lemma 2, we can show that ω̃z(t) ∈ Ωi. Due to
the assumption Ωi ∩Z = 0, we have ω̃z(t) = 0. Then define ω(t) = ξ dα(z(t),u(t)) and the necessity of
condition (i) is fulfilled.

As the rank of a one-form ω(t) is γ ,

ω(t) = β1dα1(z(t),u(t))+ . . .+βγdαγ(z(t),u(t)),

where βi ∈K ∗, i = 1, . . . ,γ . Suppose, contrarily to the claim of Theorem 2, that (ii) is not fulfilled. Then
there exists a one-form

ξ1dα1(z(t),u(t))+ . . .+ξγdαγ(z(t),u(t)) ∈Z .

Assume without loss of generality that ξ1 6= 0. Then ω(t) can be decomposed into

ω(t) = ω̃z(t)+η2dα2(z(t),u(t))+ . . .+ηγdαγ(z(t),u(t)),

in which

ω̃z(t) =
β1

ξ1
(ξ1dα1(z(t),u(t))+ . . .+ξγdαγ(z(t),u(t))) ∈Z

and

ηi = βi− β1

ξ1
ξi,

for i = 2, . . . ,γ . As shown before, if ω̃z(t) ∈ Z , then necessarily ω̃z(t) ∈ Ωi and since Ωi ∩Z = 0, this
yields a contradiction. Thus condition (ii) has to be fulfilled.

Sufficiency. As all conditions of Theorem 1 are satisfied, the sufficiency is fulfilled. ¤

4. EXAMPLES

In this section we give some examples to illustrate the theory.

Example 1. In the first example we consider the SISO system

x1(t +1) = x1(t)x2(t),

x2(t +1) =
x4(t)
u(t)

+ x3,

x3(t +1) =
u(t)
x4(t)

, (12)

x4(t +1) = w(t)+ x4(t),

y(t) = x1(t),

z(t) = x4(t).
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Note that the relative degree of the output y(t) is 2, because

dy(t +1) = x1(t)dx2(t)+ x2(t)dx1(t) ∈X ,

dy(t +2) =
(

x4(t)
u(t)

+ x3(t)
)

d(x1(t)x2(t))+ x1(t)x2(t)dx3(t)+ x1(t)x2(t)d
(

x4(t)
u(t)

)
/∈X .

Next we find the vector space Ω, using the algorithm defined by (2). First,

Ω0 = spanK ∗{dx1(t),dx2(t),dx3(t),dx4(t)}.

From

dx1(t +1) = x1(t)dx2(t)+ x2(t)dx1(t),

dx2(t +1) = d
(

x4(t)
u(t)

)
+dx3(t),

dx3(t +1) = d
(

u(t)
x4(t)

)
,

dx4(t +1) = dw(t)+dx4(t),

we can conclude that Ω1 = spanK ∗{dx1(t),dx2(t),dx3(t)}. In the next step we get Ω1 = Ω2 = Ω. Since
dz(t) = dx4(t), condition (i) of Corollary 1 is satisfied, i.e. dy(t + 2) ∈ Ω + Z + U . Our next step is
to choose ω(t) such that ω(t) ∈Z +U and dy(t + 2)−ω(t) ∈ Ω. We can take ω(t) := x1(t)x2(t)d( z(t)

u(t)).
Thus the rank of ω(t) is 1 and condition (ii) of Corollary 1 is satisfied. The disturbance decoupling feedback
may be found as the solution of the equation v(t) = z(t)

u(t) with respect to u(t).

Example 2. Consider the MISO system

x1(t +1) = x2(t)+ x3(t)+ x5(t),

x2(t +1) = ln(u1(t)x4(t)),

x3(t +1) = u2(t)x4(t)x5(t),

x4(t +1) = w(t)+ x3(t), (13)

x5(t +1) = x5(t),

y(t) = x1(t),

z(t) = x4(t).

The relative degree of output y(t) is 2 and

dy(t +2) = (1+u2(t)x4(t))dx5(t)+d(ln(u1(t)x4(t)))

+x5(t)d(u2(t)x4(t)).

We can compute, using Lemma 1, that Ω = Ω2 = spanK ∗{dx5(t)}. As z(t) = x4(t), condition (i) of
Theorem 1 is satisfied. Since now we can choose ω(t) as ω(t) = d(ln(u1(t)z(t)))+ x5(t)d(u2(t)z(t)), γ :=
rank ω(t) = 2 and condition (ii) of Theorem 1 is fulfilled. Condition (7) takes the form

rank
( 1

u1(t)
0

0 z(t)

)
= 2
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and thus condition (iii) of Theorem 1 is satisfied. The regular static measurement feedback can be found by
solving equations v1(t) = ln((t)u1(t)z(t)) and v2(t) = u2(t)z(t) with respect to u1(t) and u2(t).

The following example shows that conditions of Theorem 1 are not necessary.

Example 3. Consider the system

x1(t +1) = u1(t)sinx4(t)+ x2(t),
x2(t +1) = u2(t)cosx4(t)+ x3(t),
x3(t +1) = x1(t), (14)
x4(t +1) = w(t)+ x4(t),

y(t) = x1(t),
z(t) = x4(t).

Computing subspace Ω, we get Ω = spanK ∗{dx1(t),dx3(t)}. It follows that the first condition of Theorem 1
is not satisfied:

dy(t +1) = dx2(t)+d(u1(t)sinx4(t)) /∈Ω+Z +U .

Still, the following feedback solves the DDP:

u1(t) =
v1(t)

sinz(t)
,

u2(t) =
v2(t)

cosz(t)
.

Example 4. Consider the MIMO system

x1(t +1) = x2(t)+ x3(t)u1(t)x4(t)+u2(t)x4(t),

x2(t +1) = x2(t)+ x3(t)u1(t)x4(t)+u2(t)x4(t)+ x3(t),

x3(t +1) = x1(t),

x4(t +1) = w(t)+ x1(t), (15)

y1(t) = x1(t),

y2(t) = x2(t),

y3(t) = x2(t)− x1(t),

z(t) = x4(t).

Note that the relative degree of the outputs y1(t) and y2(t) is 1 and the relative degree of y3(t) is 3. As

dy1(t +1) = dy3(t +3) = dx2(t)+u1(t)x4(t)dx3(t)

+x3(t)d(u1(t)x4(t))+d(u2(t)x4(t)),

dy2(t +1) = dx2(t)+(1+u1(t)x4(t))dx3(t)

+x3(t)d(u1(t)x4(t))+d(u2(t)x4(t)),

subspaces Ωi are
Ω1 = Ω2 = Ω3 = spanK ∗{dx1(t),dx2(t),dx3(t)}.

Thus the first condition of Theorem 1 is satisfied. Now, we must choose ω(t) such that

dyi(t + ri)−ω(t) ∈Ωi
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for every output yi(t). If we choose ω(t) to be

ω(t) = x3(t)d(u1(t)z(t))+d(u2(t)z(t)),

the previous conditions are satisfied and the rank of ω(t) is 2. Thus the second condition is also satisfied.
Finally, the third condition of Theorem 1 is satisfied because

rank
(

z(t) 0
0 z(t)

)
= 2.

The feedback that solves the DDP is

u1(t) =
v1(t)
z(t)

,

u2(t) =
v2(t)
z(t)

.

Recall that all results of this paper hold under submersivity assumption. The following example
demonstrates that wrong conclusions can be reached if the system is not submersive, but nevertheless
Theorem 1 is blindly used to check the solvability of the DDP by regular static measurement feedback.

Example 5. Consider the system

x1(t +1) = x2(t),

x2(t +1) = x3(t)+ x4(t)u1(t)u2(t)− x1(t)x5(t),

x3(t +1) = x2(t)x4(t),

x4(t +1) = w(t), (16)

x5(t +1) = x4(t),

y(t) = x1(t),

z(t) = x4(t).

System (16) is not submersive. If we forget about this fact and check the conditions of Theorem 1, we will
get that the DDP is not solvable for system (16) by static measurement feedback.

Really, the relative degree of output y(t) is 2 and the subspace Ω = spanK ∗{dx1(t),dx2(t)}. Since

dy(t +2) = dx3(t)−d(x1(t)x5(t))+d(z(t)u1(t)u2(t)),

condition (i) of Theorem 1 is not satisfied. However, since the system is not submersive, the forward shift
of x3(t)− x1(t)x5(t) is 0 and because of that, the following static measurement feedback solves the DDP:

u1(t) =
v1(t)

z(t)v2(t)
,

u2(t) = v2(t).

5. CONCLUSION

In this paper the notion of the rank of a one-form and the subspace Ω of differential one-forms was used
to solve the DDP for nonlinear discrete-time control systems by static measurement feedback. Sufficient
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conditions for solvability of the DDP were found for MIMO systems. Necessary and sufficient conditions
were derived from the above conditions for SISO systems and for MIMO systems under the additional
assumption. These sufficient conditions also provided a procedure to find the static measurement feedback
to solve the DDP. As these conditions are very restrictive, further research is necessary. The next step is
to extend the results of [21] by addressing dynamic measurement feedback in the framework of differential
forms for discrete-time systems. The results can then be compared with those by [15], which were obtained
using the tools of the algebra of functions. In addition to the above theoretical problems, the functions in the
Mathematica program have been developed for solving the DDP and integrated into the symbolic software
package NLControl, developed in the Institute of Cybernetics at Tallinn University of Technology.
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Häiringu kompenseerimine mittelineaarsetest diskreetsetest mitme sisendi ja mitme
väljundiga juhtimissüsteemidest staatilise tagasisidega

Arvo Kaldmäe ja Ülle Kotta

On käsitletud mittelineaarsetest juhtimissüsteemidest häiringu kompenseerimist. Tulemused on saadud,
üldistades pideva ajaga süsteemide kohta teadaolevad tulemused diskreetsetele süsteemidele. Töös on
esitatud piisavad tingimused probleemi lahenemiseks. Kasutades üksvormi astaku definitsiooni, on leitud
otsitav staatiline tagasiside, kui see leidub. Lisaks on esitatud tarvilikud ja piisavad tingimused ühe
sisendi ning ühe väljundiga süsteemide jaoks ja lisatingimusi rahuldavatele mitme sisendi ning väljundiga
süsteemidele.


