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Abstract. This paper is devoted to a Voronovskaya-type theorem for the second derivative of the Bernstein–Chlodovsky poly-
nomials. This type of theorem was considered for the Bernstein–Chlodovsky polynomials by Jerzy Albrycht and Jerzy Radecki in
1960 and by Paul L. Butzer and the author in 2009, in case of the polynomials themselves and their first derivative, respectively.
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1. INTRODUCTION

This paper is concerned with the classical Bernstein–Chlodovsky operators

(Cn f )(x) :=
n

∑
k=0

f
(

bn

n
k
)

pk,n

(
x
bn

)
, (1)

where f is a function defined on [0,∞) and bounded on every finite interval [0,b]⊂ [0,∞) with a certain rate,
with pk,n denoting as usual

pk,n(x) =
(

n
k

)
xk (1− x)n−k , 0≤ x≤ 1, (2)

and (bn)
∞
n=1 being a positive increasing sequence of real numbers with the properties

lim
n→∞

bn = ∞, lim
n→∞

bn

n
= 0. (3)

These polynomials were introduced by Chlodovsky [4] in 1937 in generalization of the Bernstein
polynomials (Bn f )(x), the case bn = 1, n ∈ N0, which approximate the function f on the interval [0,1]
(or, suitably modified on any fixed finite interval [−b,b]).

In fact, if M(b; f ) := sup0≤x≤b | f (x)| , then Chlodovsky (see also Lorentz [5], p. 36) showed that if

lim
n→∞

exp
(
−α

n
bn

)
M(bn; f ) = 0 (4)

for every α > 0, then (Cn f )(x) converges to f (x) at each point of continuity of f .
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As a corollary he states that if a function f belonging to C[0,∞) is of order f (x) = O(expxp) for some
p > 0, and if the sequence {bn} satisfies the condition

bn ≤ n
1

p+1+η ,

where η > 0, no matter how small, then (Cn f )(x) converges to f (x) at each point x ∈ R+.
Albrycht and Radecki [1] proved that under the assumption

lim
n→∞

n
bn

exp
(
−α

n
bn

)
M(bn; f ) = 0 (5)

for every α > 0,

lim
n→∞

n
bn

[(Cn f )(x)− f (x)] =
x
2

f ′′(x) (6)

at each point x≥ 0 for which f ′′(x) exists.
Then Butzer and Karsli [3] established the counterpart of (6) for the first derivative, namely

lim
n→∞

n
bn

[(Cn f )′(x)− f ′(x)] =
f ′′(x)+ x f ′′′(x)

2
(7)

holds at each fixed point x ≥ 0 for which f ′′′(x) exists, provided the growth condition (5) is satisfied for
every α > 0.

The present paper deals with the counterpart of (7) for the second derivative of the Chlodovsky
polynomials. The theorem states that

lim
n→∞

n
bn

[(Cn f )′′(x)− f ′′(x)] =
2 f ′′′(x)+ x f (ıv)(x)

2
(8)

at each fixed point x ≥ 0 for which f (ıv)(x) exists, provided that again the growth condition (5) is satisfied
for every α > 0. This will be Theorem 1 of Section 3. Section 2 includes some preliminaries.

The Bernstein–Chlodovsky polynomials, based on functions defined on [0,∞), which are bounded on
every [0,bn]⊂ [0,∞) with a certain rate, such as (4), (5) or (14), are indeed true polynomials of degree n (in
x/bn), also having support [0,bn], with {bn} satisfying (3).

Thus they are a very natural polynomial process in approximating unbounded functions on the
unbounded infinite interval [0,∞).

2. AUXILIARY RESULTS FOR BERNSTEIN–CHLODOVSKY POLYNOMIALS

In this section we present some results needed to prove our main theorem.

Lemma 1. For the central moments of order m ∈ N0, for any fixed x ∈ [0,∞),

T ∗n,m(x) :=
n

∑
k=0

(
kbn

n
− x

)m

pk,n

(
x
bn

)
,

one has

T ∗n,0(x) = 1, T ∗n,1(x) = 0, T ∗n,2(x) =
x(bn− x)

n
, T ∗n,3(x) =

x(bn− x)(bn−2x)
n2 ,

T ∗n,4(x) =
x(bn− x) [(bn− x)(bn−2x)+ x(4x−3bn)+3nx(bn− x)]

n3 ,
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and for any fixed x ∈ [0,∞),

∣∣T ∗n,m(x)
∣∣≤ Am(x)

x(bn− x)
bn

(
bn

n

)[(m+1)/2]

(n ∈ N, n > bn, 0≤ x≤ bn), (9)

where Am(x) denotes a polynomial in x, of degree [m/2]−1, with non-negative coefficients independent of
n, and [a] denotes the integral part of a.

For the proof see Butzer and Karsli [3].

The first part of the next lemma is due to Chlodovsky [4].

Lemma 2. For t ∈ [0,1] the inequality

0≤ z≤ 3
2

√
nt(1− t)

implies
∑

|k−nt|≥2z
√

nt(1−t)

pk,n(t)≤ 2exp
(−z2) . (10)

In particular, for 0 < δ ≤ x < bn and sufficiently large n,

∗
∑

1
:= ∑
| kbn

n −x|≥δ

pk,n

(
x
bn

)
≤ 2exp

(
−δ 2

4x
n
bn

)
. (11)

The proof of (11) is given in [1].

According to (1), (2), and (10), there follow by differentiation the two fundamental representations for
(Cn f )′′(x), which are also needed:

(Cn f )′′(x) =
n

∑
k=0

f
(

k
n

bn

)
d2

dx2 pk,n

(
x
bn

)
, (0 < x < bn), (12)

where
d2

dx2 pk,n

(
x
bn

)
=

[(
kbn−nx
x(bn− x)

)2

− n
x(bn− x)

− (bn−2x)(kbn−nx)
x2(bn− x)2

]
pk,n

(
x
bn

)
,

and

(Cn f )′′(x) =
n(n−1)
(bn− x)2

n−2

∑
k=0

[
f
(

k +2
n

bn

)
−2 f

(
k +1

n
bn

)
+ f

(
k
n

bn

)]
pk,n−2

(
x
bn

)
. (13)

3. VORONOVSKAYA-TYPE THEOREM FOR (Cn f )′′(x)

Theorem 1. Let a function f , defined on [0,∞), satisfy the growth condition

lim
n→∞

(
n
bn

)3/2

exp
(
−α

n
bn

)
M(bn; f ) = 0 or M(bn; f ) = o

((
bn

n

)3/2

exp
(

α
n
bn

))
(14)

for every α > 0, {bn} being a positive sequence satisfying (3). Then there holds



12 Proceedings of the Estonian Academy of Sciences, 2012, 61, 1, 9–19

lim
n→∞

n
bn

[(Cn f )′′(x)− f ′′(x)] =
2 f ′′′(x)+ x f (ıv)(x)

2
, (15)

at each point x≥ 0 at which f (ıv)(x) exists.

Proof. Note that (Cn f )′′(0) 6= f ′′(0), all n ∈ N. Firstly, the asymptotic formula (15) is valid for x = 0. Since

(Cn f )′′(0) =
n(n−1)

b2
n

[ f (2bn/n)−2 f (bn/n)+ f (0)]

in view of (13), it suffices to show provided f ′′′(x) and f (ıv)(x) exist that

lim
n→∞

n
bn

{
n(n−1)

b2
n

[ f (2bn/n)−2 f (bn/n)+ f (0)]− f ′′(0)
}

= f ′′′(0). (16)

Indeed, Taylor’s formula (see below) readily yields if f (ıv)(0) exists

f
(

2bn

n

)
= f (0)+

(
2bn

n

)
f ′(0)+

(
2bn

n

)2 f
′′
(0)
2

+
(

2bn

n

)3 f
′′′
(0)
6

+
(

2bn

n

)4

 f

(ıv)
(0)

24
+h

(
2bn

n

)
 ,

and

f
(

bn

n

)
= f (0)+

(
bn

n

)
f ′(0)+

(
bn

n

)2 f
′′
(0)
2

+
(

bn

n

)3 f
′′′
(0)
6

+
(

bn

n

)4

 f

(ıv)
(0)

24
+h

(
bn

n

)
 ,

where h(bn/n)→ 0 as n→ ∞. So we have

f
(

2bn

n

)
−2 f

(
bn

n

)
+ f (0) =

(
bn

n

)2

f
′′
(0)+

(
bn

n

)3

f
′′′
(0)+

14
24

(
bn

n

)4

f
(ıv)

(0)+ k
(

bn

n

)
, (17)

where

k
(

bn

n

)
=

(
2bn

n

)4

h
(

2bn

n

)
−2

(
bn

n

)4

h
(

bn

n

)

and k (bn/n)→ 0 as n→ ∞. If we use (17) in (16) for x = 0, then we have

n
bn

[(Cn f )′′(0)− f ′′(0)] =
− f

′′
(0)

bn
+

n−1
n

f
′′′
(0)+

14
24

bn(n−1)
n2 f

(ıv)

(0)+
n2(n−1)

b3
n

k
(

bn

n

)
.

Thus the assertion (15) now follows for x = 0 as n→ ∞.
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So let bn > x > 0. By Taylor’s formula we have

f
(

k
n

bn

)
= f (x)+

(
k
n

bn− x
)

f ′(x)+
(

k
n

bn− x
)2 f

′′
(x)
2

+
(

k
n

bn− x
)3 f

′′′
(x)
6

+
(

k
n

bn− x
)4


 f

(ıv)
(x)

24
+h

(
k
n

bn− x
)

 , (18)

where h(y) converges to zero with y. Substituting (18) into the representation (12), we can write:

(Cn f )′′(x) =
n

∑
k=0

f
(

k
n

bn

)[(
kbn−nx
x(bn− x)

)2

− n
x(bn− x)

− (bn−2x)(kbn−nx)
x2(bn− x)2

]
pk,n

(
x
bn

)

=
n2

x2(bn− x)2

n

∑
k=0

f
(

k
n

bn

)(
k
n

bn− x
)2

pk,n

(
x
bn

)

− (bn−2x)n
x2(bn− x)2

n

∑
k=0

f
(

k
n

bn

)(
k
n

bn− x
)

pk,n

(
x
bn

)

− n
x(bn− x)

n

∑
k=0

f
(

k
n

bn

)
pk,n

(
x
bn

)
. (19)

According to Lemma 1, we have for (19)

(Cn f )′′(x) =− n
x(bn− x)

[
f (x)+

f
′′
(x)
2

T ∗n,2(x)+
f
′′′
(x)
6

T ∗n,3(x)+
f (ıv)(x)

24
T ∗n,4(x)

]
+Rn,3(x)

− (bn−2x)n
x2(bn− x)2

[
f ′(x)T ∗n,2(x)+

f
′′
(x)
2

T ∗n,3(x)+
f
′′′
(x)
6

T ∗n,4(x)+
f (ıv)(x)

24
T ∗n,5(x)

]
+Rn,2(x)

+
n2

x2(bn− x)2

[
f (x)T ∗n,2(x)+ f ′(x)T ∗n,3(x)+

f
′′
(x)
2

T ∗n,4(x)+
f
′′′
(x)
6

T ∗n,5(x)+
f (ıv)(x)

24
T ∗n,6(x)

]

+Rn,1(x), (20)

where

Rn,1(x) :=
n2

x2(bn− x)2

n

∑
k=0

h
(

k
n

bn− x
)(

k
n

bn− x
)6

pk,n

(
x
bn

)
,

Rn,2(x) :=− (bn−2x)n
x2(bn− x)2

n

∑
k=0

h
(

k
n

bn− x
)(

k
n

bn− x
)5

pk,n

(
x
bn

)
,

Rn,3(x) :=− n
x(bn− x)

n

∑
k=0

h
(

k
n

bn− x
)(

k
n

bn− x
)4

pk,n

(
x
bn

)
.

For simplicity we define
Rn(x) := Rn,1(x)+Rn,2(x)+Rn,3(x).
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Again, by Lemma 1, we can rewrite (20) in the form

(Cn f )′′(x) = f (x)
[

n2

x2(bn− x)2 T ∗n,2(x)−
n

x(bn− x)

]

+ f ′(x)
[

n2

x2(bn− x)2 T ∗n,3(x)−
(bn−2x)n
x2(bn− x)2 T ∗n,2(x)

]

+
f
′′
(x)
2

[
n2

x2(bn− x)2 T ∗n,4(x)−
(bn−2x)n
x2(bn− x)2 T ∗n,3(x)−

n
x(bn− x)

T ∗n,2(x)
]

+
f
′′′
(x)
6

[
n2

x2(bn− x)2 T ∗n,5(x)−
(bn−2x)n
x2(bn− x)2 T ∗n,4(x)−

n
x(bn− x)

T ∗n,3(x)
]

+
f (ıv)(x)

24

[
n2

x2(bn− x)2 T ∗n,6(x)−
(bn−2x)n
x2(bn− x)2 T ∗n,5(x)−

n
x(bn− x)

T ∗n,4(x)
]

+Rn(x).

The first two expressions on the right hand side are zero on account of

T ∗n,2(x) =
x(bn− x)

n
,

T ∗n,3(x) =
x(bn− x)(bn−2x)

n2 ,

and hence

n
bn

[
(Cn f )′′(x)− f

′′
(x)

]
=− n

bn

f
′′
(x)
n

+
n
bn

f
′′′
(x)
6

[
6(n−1)(bn−2x)

n2

]

+
n
bn

f (ıv)(x)
24

[
2(n−1)(7b2

n +6bn(n−6)x−6(n−6)x2)
n3

]
+

n
bn

Rn(x).

Now, as n → ∞, the first three terms on the right-hand side tend to zero, to f
′′′
(x) and x f (ıv)(x)/2,

respectively.
In order to complete the proof, we have to prove

lim
n→∞

n
bn

Rn(x) = 0.

For any ε > 0 there exists a δ > 0 such that |h(y)|< ε for |y| ≤ δ , and we choose δ so small that δ ≤ x. So
we split the sum Rn,1(x) into two parts as follows:

Rn,1(x) =
n2

x2(bn− x)2 ∑
| kbn

n −x|<δ

h
(

k
n

bn− x
)(

k
n

bn− x
)6

pk,n

(
x
bn

)

+
n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

h
(

k
n

bn− x
)(

k
n

bn− x
)6

pk,n

(
x
bn

)

=: Rn,1,1(x)+Rn,1,2(x),
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say. According to Lemma 1, once more, one has for Rn,1,1(x) the inequality

Rn,1,1(x) ≤ ε
n2

x2(bn− x)2 T ∗n,6(x)

≤ ε
n2

x2(bn− x)2
x(bn− x)

bn
A6(x)

(
bn

n

)3

= ε
bn

n
bn

x(bn− x)
A6(x),

ε > 0 being arbitrary, which implies that

lim
n→∞

n
bn

Rn,1,1(x) = 0. (21)

In order to estimate the term Rn,1,2(x), we rewrite the representation (18) in the form

(
k
n

bn− x
)4

h
(

k
n

bn− x
)

= f
(

k
n

bn

)
− f (x)−

(
k
n

bn− x
)

f ′(x)−
(

k
n

bn− x
)2 f

′′
(x)
2

−
(

k
n

bn− x
)3 f

′′′
(x)
6

−
(

k
n

bn− x
)4 f (ıv)(x)

24
,

and hence we obtain

|Rn,1,2(x)| =

∣∣∣∣∣∣
n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

h
(

k
n

bn− x
)(

k
n

bn− x
)4 (

k
n

bn− x
)2

pk,n

(
x
bn

)∣∣∣∣∣∣

≤ n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

∣∣∣∣ f
(

k
n

bn

)∣∣∣∣
∣∣∣∣
k
n

bn− x
∣∣∣∣
2

pk,n

(
x
bn

)

+ | f (x)| n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

∣∣∣∣
k
n

bn− x
∣∣∣∣
2

pk,n

(
x
bn

)

+
∣∣ f ′(x)

∣∣ n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

∣∣∣∣
k
n

bn− x
∣∣∣∣
3

pk,n

(
x
bn

)

+
∣∣ f ′′(x)

∣∣ n2

2x2(bn− x)2 ∑
| kbn

n −x|≥δ

(
k
n

bn− x
)4

pk,n

(
x
bn

)

+
∣∣∣ f

′′′
(x)

∣∣∣ n2

6x2(bn− x)2 ∑
| kbn

n −x|≥δ

∣∣∣∣
k
n

bn− x
∣∣∣∣
5

pk,n

(
x
bn

)

+
∣∣∣ f (ıv)(x)

∣∣∣ n2

24x2(bn− x)2 ∑
| kbn

n −x|≥δ

∣∣∣∣
k
n

bn− x
∣∣∣∣
6

pk,n

(
x
bn

)

=:
∗

∑
1
(n)+

∗
∑

2
(n)+

∗
∑

3
(n)+

∗
∑

4
(n)+

∗
∑

5
(n)+

∗
∑

6
(n),

say.
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In view of the Cauchy–Schwarz inequality,

∗
∑

1
(n) :=

n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

{∣∣∣∣ f
(

kbn

n

)∣∣∣∣

√
pk,n

(
x
bn

)∣∣∣∣
kbn

n
− x

∣∣∣∣
2
√

pk,n

(
x
bn

)}

≤ n2

x2(bn− x)2



 ∑
| kbn

n −x|≥δ

∣∣∣∣ f
(

kbn

n

)∣∣∣∣
2

pk,n

(
x
bn

)



1/2 

 ∑
| kbn

n −x|≥δ

∣∣∣∣
kbn

n
− x

∣∣∣∣
4

pk,n

(
x
bn

)



1/2

=:
n2

x2(bn− x)2

(
∗

∑
1,1

)(
∗

∑
1,2

)
,

say. Since
√

sup
0≤x≤a

| f (x)|2 = M(a; f ),

∗
∑

1,1
(n) ≤ M(bn; f )



 ∑
| kbn

n −x|≥δ

pk,n

(
x
bn

)



1/2

≤
√

2M(bn; f )exp
(
−δ 2

8x
n
bn

)
.

As to the second product term, noting Lemma 2 and inequality (9) (with m = 6), we have

∗
∑

1,2
(n) ≤





1
δ 2 ∑
| kbn

n −x|≥δ

∣∣∣∣
kbn

n
− x

∣∣∣∣
6

pk,n

(
x
bn

)



1/2

≤
{

1
δ 2 T ∗n,6(x)

}1/2

≤ 1
δ

√
A6(x)

√
x(bn− x)

bn

(
bn

n

)3/2

.

Thus, altogether we have

lim
n→∞

n
bn

∗
∑

1
(n)≤ lim

n→∞

(
n

x(bn− x)

)3/2 √
2A6(x)

δ
M(bn; f )exp

(
−δ 2

8x
n
bn

)
= 0.

So it remains to show that

lim
n→∞

n
bn

∗
∑

i
(n) = 0 (22)

is valid for i = 2,3,4,5,6.
Now we consider the second term, i.e.,

∗
∑

2
(n) := | f (x)| n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

{√
pk,n

(
x
bn

)∣∣∣∣
kbn

n
− x

∣∣∣∣
2
√

pk,n

(
x
bn

)}

≤ | f (x)| n2

x2(bn− x)2



 ∑
| kbn

n −x|≥δ

pk,n

(
x
bn

)



1/2 

 ∑
| kbn

n −x|≥δ

∣∣∣∣
kbn

n
− x

∣∣∣∣
4

pk,n

(
x
bn

)



1/2

=: | f (x)| n2

x2(bn− x)2

(
∗

∑
2,1

)(
∗

∑
2,2

)
.
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From (11) one has
∗

∑
2,1

(n)≤
√

2exp
(
−δ 2

8x
n
bn

)
.

As to the second product term, noting Lemma 1 (with m = 6), we have

∗
∑

2,2
(n) ≤





1
δ 2 ∑
| kbn

n −x|≥δ

∣∣∣∣
kbn

n
− x

∣∣∣∣
6

pk,n

(
x
bn

)



1/2

≤
{

1
δ 2 T ∗n,6(x)

}1/2

≤ 1
δ

√
A6(x)

√
x(bn− x)

bn

(
bn

n

)3/2

for all n ∈ N. So from (9) we obtain

lim
n→∞

n
bn

∗
∑

2
(n)≤ lim

n→∞
| f (x)|

(
n

x(bn− x)

)3/2 √
2A6(x)

δ
exp

(
−δ 2

8x
n
bn

)
= 0

establishing (22) for i = 2.
Since the case for i = 3,4,5 and 6 is similar, this finally establishes

lim
n→∞

n
bn

Rn,1(x) = 0.

By using the similar method, we have
lim
n→∞

n
bn

Rn,2(x) = 0

and
lim
n→∞

n
bn

Rn,3(x) = 0.

Thus the proof is complete. ¤
Observe that if f was bounded on the whole [0,∞), then |h(y)| ≤M for all y, so that

Rn,1,2(x)≤M
n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

∣∣∣∣
k
n

bn− x
∣∣∣∣
6

pk,n

(
x
bn

)
→ 0 (n→ ∞);

Rn,1,2(x) ≤ M
n2

x2(bn− x)2 ∑
| kbn

n −x|≥δ

{√
pk,n

(
x
bn

)∣∣∣∣
kbn

n
− x

∣∣∣∣
6
√

pk,n

(
x
bn

)}

≤ M
n2

x2(bn− x)2



 ∑
| kbn

n −x|≥δ

pk,n

(
x
bn

)



1/2 

 ∑
| kbn

n −x|≥δ

∣∣∣∣
kbn

n
− x

∣∣∣∣
12

pk,n

(
x
bn

)



1/2

.

Again from Lemma 1 (with m = 12), we have


 ∑
| kbn

n −x|≥δ

∣∣∣∣
kbn

n
− x

∣∣∣∣
12

pk,n

(
x
bn

)



1/2

≤ {
T ∗n,12(x)

}1/2 ≤
√

A12(x)

√
x(bn− x)

bn

(
bn

n

)3
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for all n ∈ N. Hence, considering inequality (9),

lim
n→∞

n
bn

Rn,1,2(x)≤ lim
n→∞

M
(

bn

x(bn− x)

)3/2 √
2A12(x)exp

(
−δ 2

8x
n
bn

)
= 0.

Then the proof would already be complete shortly after relation (21). This beginning part had as its model
the proof of Theorem 3.5 [2].

Corollary 1. Let f belong to C[0,∞) and let it be of order f (x) = O(exp(xp)) on R+ with some constant
p > 0. If bn = o(n) satisfies the condition

bn = n1/(p+1+r)

for any r > 0, no matter how small, then the asymptotic formula (15) holds at each point x ∈ R+ at which
f (ıv)(x) exists.

In particular, the assertion holds for bn = n1/(p+2).

4. CONCLUSION

In the classical book of Lorentz [5] there is a theorem on the variation detracting (or diminishing) property
for the Bernstein operator. As far as we know, this is the first study on this topic. However, the importance
of the variation detracting property appears after the paper by Bardaro et al. [2]. They point out that in order
to obtain a convergence result in the variation seminorm, it is necessary and important to state the variation
detracting property. After this fundamental study the convergence in variation seminorm becomes a new
field in the theory of approximation. In addition, it is well known that the variation detracting property is
related to the Voronovskaya-type theorems for the derivatives of the operators. The theorem presented in
this work is the counterpart of the very recent result due to Butzer and Karsli [3], established for the first
derivative of the same operators. In conclusion, the results presented in this work can be used to obtain such
kind of convergence results for other approximation operators in variation seminorm.
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Voronovskaja tüüpi teoreem Bernšteini-Chlodovsky polünoomide teise tuletise kohta

Harun Karsli

On tõestatud Voronovskaja tüüpi koonduvusteoreem Bernšteini-Chlodovsky polünoomide teise tuletise ja
funktsiooni teise tuletise vahest. Varem on sellised teoreemid tõestatud esimese tuletise ja funktsiooni enda
kohta. On näidatud, et esimese tuletise juhuga võrreldes peab teise tuletise juhul Bernšteini-Chlodovsky
polünoome defineeriv jada koonduma kiiremini.


