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Abstract. In mesoscopic continuum physics it is common to introduce a mesoscopic distribution function. Often also an evolution
equation is derived for this distribution function. The mesoscopic balance equations for mass and the evolution equation for the
distribution function, however, are not independent. We discuss different usage cases of mesoscopic balances in connection with
the evolution equation. Furthermore, the problem of virtual boundaries is discovered, referring to cases where the domain in the
mesoscopic description becomes non-contiguous despite the macroscopic domain being contiguous.
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1. INTRODUCTION

The goal of this short note is to describe the usage
scenarios for the evolution equation contra balance
equations and draw attention to a potentially serious
gap in the theory of mesoscopic continuum physics.
In particular, it is possible to create configurations in
which the high-dimensional mesoscopic domain is non-
contiguous (non-connected), whereas the 3-dimensional
domain is connected. This leads to “virtual boundaries”,
for which additional boundary conditions need to be
formulated. The treatment of these conditions is an
unanswered question.

2. MESOSCOPIC CONTINUUM PHYSICS

Mesoscopic continuum physics enlarges the space by use
of independent degrees of freedom of the material under
consideration. The space x generalizes to x → (x,n) =
x̃, where n is, e.g., the orientation (angles) of particles,
the velocity is given by v → (v,u) = (ṽx, ṽn) = ṽ,
and the mass density is generalized to ρ(x)→ ρ̃(x̃) (see,
e.g., [1–3]).

Balance equations for the mesoscopic quantities
are motivated analogously to the macroscopic case.
Constitutive functions must be introduced into the
mesoscopic balances, like in the macroscopic theory.
Here the choice is only indirectly restricted by the
Second Law of thermodynamics, which is not directly
applicable to the mesoscopic description, but of course is
valid for the averaged macroscopic quantities, because
the macroscopic quantities are constructed from the
mesoscopic ones by averaging [4,5]:

ρ(x, t) =
∮

S2
ρ̃(x̃, t)d2n. (1)

3. MESOSCOPIC BALANCES

The general procedure for obtaining local balances on
the mesoscopic space follows the same principles as in
the macroscopic theory. First global balance equations
are motivated, then, using an extended version of the
Reynolds transport theorem, the local balance equations
are derived from the global ones.

Here one has to note that the balance of mesoscopic
velocity has five independent component equations.
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Three of them refer to the linear momentum and the
others to the spin (internal angular momentum) [3].

As an example the mesoscopic balance of mass and
for comparison also the macroscopic balance of mass are
presented.

Mesoscopic mass:

∂
∂ t

ρ̃(x̃, t)+∇x̃ · (ṽ(x̃, t)ρ̃(x̃, t)) = 0. (2)

Macroscopic mass:

∂
∂ t

ρ(x, t)+∇x · (v(x, t)ρ(x, t)) = 0. (3)

Although similar at first glance, Eq. (2) and Eq. (3)
differ by the domain on which the quantities are defined.
The mesoscopic balance of mass also contains the
orientation change velocity as components of ṽ. Both
equations will be used in the next section (Sec. 4).

4. DERIVATION OF THE EVOLUTION
EQUATION FOR THE DISTRIBUTION
FUNCTION

In mesoscopic continuum physics it is common to intro-
duce a distribution function (e.g. orientation distribution
function for liquid crystals)

f (x̃, t) :=
ρ̃(x̃, t)
ρ(x, t)

(4)

and to derive an evolution equation for the distribution
function. This can be done by using the macroscopic
balance of mass and the mesoscopic balance of mass.
The steps are as follows:
1. multiply the macroscopic balance of mass by ρ̃

ρ2 ,

2. multiply the mesoscopic balance of mass by ρ
ρ2 ,

3. subtract the new mesoscopic balance of mass from the
new macroscopic balance of mass,

4. compare with ∂ f
∂ t + ∇ · (v f ) = σ and look for

missing/additional terms in the divergence part.
The resulting evolution equation is

∂ f
∂ t

+∇x̃ · (ṽ f )− f ∇x ·vx = 0 (5)

or, with the divergence split into spatial and rotational
parts,

∂ f
∂ t

+∇x · (vx f )+∇n · (vn f )− f ∇x ·vx = 0. (6)

5. EVOLUTION EQUATION CONTRA
BALANCE EQUATIONS: USAGE SCENARIOS

The evolution equation introduced above is, however,
not independent of the mesoscopic balance of mass. Up

to now it has not been discussed in literature under
which circumstances it is preferable to use the evolution
equation for the distribution function instead of the
balance equation. An initial analysis has shown that at
least three different scenarios are possible.
• Use of the distribution function, no use of the balance

of mass.
This is useful if the macroscopic density does not

change; microcracks serve as an example for this
case. Microcracks do not heal (disappear), they
are not produced and do not flow with respect to
the surrounding material.The information content of
the length distribution function and the mesoscopic
balance of mass are identical, because the only
changes are within the mesoscopic domain.

• Use of the distribution function and use of the
macroscopic balance of mass.

The distribution function is normalized, therefore it
describes only the percentage of particles/mass with
a special property (orientation, length, . . . ) and
not the absolute number. If the macroscopic density
changes, some information is missing if only the
evolution equation for the distribution function is
used; this information is contained in the macroscopic
balance of mass.

• Use of the mesoscopic balance of mass, no use of the
distribution function.

The mesoscopic balance of mass contains the
same information as the distribution function and the
macroscopic balance of mass together. It is therefore
an alternative description to the previous case.

In cases where the macroscopic density does not
change it is preferable to use the evolution equation for
the distribution function, because in this description the
changes are more visible and calculations are easier.
The other two choices are equivalent and have to
be used when the macroscopic density changes as
well. If an integrated point of view is preferred, the
mesoscopic balance of mass will be used. If it is
preferred to differentiate between macroscopic changes
and “internal” changes that affect only the mesoscopic
variables, the macroscopic balance of mass together with
the evolution equation will be used.

6. OPEN QUESTION: VIRTUAL BOUNDARIES

Furthermore, we discovered that it is possible to
create configurations in the mesoscopic space where
the material seems to be non-contiguous (see Fig. 1b),
despite the macroscopic material being contiguous.
These, sort of “pathological” configurations have been
noticed when formulating the constitutive equation for
the mesoscopic stress tensor for calculations for twist-
waves in liquid crystals [1]. After this discovery we
thought about other fields, configurations, and pheno-
mena that would create a similar “effect”.
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(a)

(b)

Fig. 1. Possible artificial splitting of the computational domain.
Although in macroscopic description the domain (material) is
connected, mesoscopic configurations are possible so that the
domain is non-connected. (a) A connected mesoscopic domain
containing a rapid change in material properties. (b) A non-
connected mesoscopic domain containing a rapid change in
material properties. Of course fluxes (e.g. heat flux) should
pass from one part to the other, therefore specific boundary
conditions have to be invented.

Examples for such fields are liquid crystals with
different orientations in different areas, layered sand-
stone with different grain sizes for different layers, and
Weiss’ domains, with the direction of the magnetization
as the mesoscopic variable. These three examples are
described in more detail below.

Liquid crystals: In one part (R3−) of the domain only
orientations, say, between 25◦ and 40◦ and in
the other part (R3

+) only orientations between 45◦
and 60◦ are present. The areas of the meso-
scopic space with non-zero density would be
R3−× [25,40] for the first part and R3

+× [45,60]
for the second part. Or, joined as R3× ([25,40]∪
[45,60]), these parts represent two disjunct areas.
In a macroscopic description the density is non-
zero in R3 and the area is contiguous.

Sandstone: The grain diameter is used as the meso-
scopic variable. In this case we assume a layer
with grain size between 0.02 and 0.08 mm and

the next layer with grain size between 0.06 and
0.12 mm. Figure 1a shows a mesoscopic material
with a rapid change in the mesoscopic variable.

The step in the mesoscopic variable gives a
vivid idea about why reflections of acoustic waves
occur at layer interfaces, e.g. in geology. This
idea is easy to grasp though not quite correct,
because intuitively in Fig. 1b one would assume
that total reflection will occur and nothing is
transmitted to the second domain. In Fig. 1b the
transmission of the wave seems only impossible
due to the discontiguous domain, therefore
appropriate (artificial) boundary conditions have
to be introduced.

Weiss’ domains: Near-discontinuities appear in the
case of Weiss’ domains, with the direction of the
magnetization as the mesoscopic variable.
Although the change in magnetization is
continuous, the thickness of the Bloch wall is
about 30 nm, which is below the resolution for
simulations on a macroscopic length scale and can
therefore be considered a discontinuity.

Another possibility is that particles with distinct
properties exist in the same three-dimensional volume
element, e.g. particles with orientations within 25–40◦
and particles with orientations between 45◦ and 60◦, or
the above-mentioned sand could be a mixture of grains
with sizes between 0.02 and 0.08 mm and between 0.12
and 0.2 mm. This would lead to obvious schematic plots
like Fig. 2 in terms of n.

For all the above cases the macroscopic material
consists of one contiguous piece. In the mesoscopic
description, however, the material becomes non-
contiguous. These cases need not be static but may
disappear or appear during the process or calculation.
In these cases “virtual” boundaries appear and boundary
conditions have to be introduced with care, because the
fluxes can flow from one part to the other.

The discontinuity in the mesoscopic variable is more
serious than just a discontinuity of a function (e.g. tem-
perature or density) on the space. A macroscopic analogy
of the discontinuity in a mesoscopic variable would be
water-splashes (drops separating from the water body),
or cracks.

Fig. 2. Mesoscopic distribution of a mixture of two compo-
nents with distinct properties (e.g. grain sizes).
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The problem of virtual boundaries has not been dis-
cussed in literature up to now and needs further inves-
tigation. Potentially there is a serious gap in the theory.

Figures 1b and 2 clearly show that a non-local stress
tensor is necessary, because the material in the two meso-
scopically non-connected domains is macroscopically
connected. One possibility is to postulate a stress tensor
with the following dependence:

t̃((x,n), t)

= t̃
((∫ x+δx

x−δx

∮
α(|η−n|, |ξ −x|)ρ((ξ ,η), t)dηdξ

)
, t
)
,

because, e.g., for liquid crystals the particles close to the
virtual boundary affect each other, even if they are in
different domains.

7. CONCLUSIONS AND OUTLOOK

Different scenarios of the usage of the distribution
function with its evolution equation together with
different versions of the balance of mass were described.
Although these usages may seem obvious, they have not
been mentioned in the literature before.

(Virtually) disconnected mesoscopic domains were
discussed. The problem that continuous three-
dimensional domains may become discontinuous when
using the mesoscopic space is not inherent to the
strict high-dimensional formulation employed here, but
just more visible. It also appears in the “traditional
formulation” used by other authors (e.g. [2]).

Under certain circumstances, i.e., when the meso-
scopic domain becomes non-connected, mesoscopic
continuum physics requires a strongly non-local
formulation of constitutive functions. A weakly non-
local formulation containing gradients is not sufficient
any more.

It is important to answer these open questions as
continuum methods are desirable also at micro- and
nanoscale, although the assumption of a continuum
breaks down at atomistic scales, because they are
often computationally more efficient and can lead to

physically illuminating analytical solutions [6]. The
authors currently investigate if numerical methods like
the ones discussed in [6] are suitable for determining the
virtual boundary conditions.
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Selgitusi mesoskoopilise pideva keskkonna füüsika juurde: jaotusfunktsiooni
evolutsioonivõrrand ja lahtised küsimused

Heiko Herrmann ja Jüri Engelbrecht

On selgitatud mesoskoopilise massijäävuse seaduse ja massi jaotusfunktsiooni seoseid. On näidatud jaotusfunktsiooni
evolutsioonivõrrandi tuletamise võimalusi ja analüüsitud vastavaid stsenaariume. Uudse momendina selgub, et makro-
skoopilisest pidevusest hoolimata on mesoskoopilises skaalas võimalik pidevuse kadu. Taolised “virtuaalsed” piirid
vajavad aga täiendavaid rajatingimusi. See tähendab, et mesoskoopiline pideva keskkonna teooria nõuab oleku-
võrrandite tugevat mittelokaalsust, mis väärib süvendatud analüüsi koos füüsikaliste parameetrite määramisega.


