
Proceedings of the Estonian Academy of Sciences,  
2012, 61, 1, 65–70 

doi: 10.3176/proc.2012.1.09 
Available online at www.eap.ee/proceedings 

 
 
 
 
 
 
 

On  conformal  geospatial  transformations  with  complex  polynomials 
 

Jüri Lippusa* and Tõnu Ojab 
 

a Institute of Cybernetics, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia 
b Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; tonu.oja@ut.ee 
 
Received 28 March 2011, revised 8 November 2011, accepted 2 January 2012, available online 15 February 2012 
 
Abstract. We consider conformal reprojections of geographic information system data with complex polynomials as compared to 
reprojections with commercial software packages. We show that in regular cases low-degree complex polynomials can be 
effectively used instead of sophisticated software packages. In less regular cases the ambiguities arising from other sources make 
the application of standard transforms problematic. 
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1. INTRODUCTION 
* 
When talking about conformal mappings of a planar 
region onto another planar region a mathematician 
usually first thinks about complex analysis, the Riemann 
mapping theorem, and mapping with analytic functions. 
A geographic information system (GIS) specialist first 
thinks about the catalogue of conformal map projections, 
unprojection, geographic datum transformation, and 
reprojection with various software packages. 

Another aspect that has to be considered is that 
conformal map projections often include quite complicated 
mathematics. The fact that the complexity is hidden 
inside software packages does not make it non-existent. 
The packages usually employ different approximation 
methods and depending on the quality of the approxi-
mation, the numerical results may vary. 

The purpose of the present paper is to demonstrate 
that if our data in a limited area can be transformed with 
acceptable accuracy, using unprojection, geographic trans-
formation, and reprojection, they can be transformed 
with comparable accuracy, using low-degree complex 
polynomials. This makes conflation of geographic data 
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from different sources significantly faster and more 
transparent. 

We consider some conformal map projections in the 
common form as presented by Snyder (1987) as our 
reference basis. These forms are common in many text-
books on geodesy and give a millimetre accuracy in the 
normal area of application. More precise formulas are 
available for many projections (e.g. Bugayevskiy and 
Snyder, 1995; Kuittinen et al., 2006, Appendix 1; 
Karney, 2011), but for our purpose millimetre accuracy 
of the formulas is sufficient. 

Datums can be thought about in two ways: geo-
metrical and statistical. In the geometrical approach 
datum means the location and orientation of the reference 
ellipsoid in space. This naturally leads to considering 
the 7-parameter (3-parameter, 9-parameter) transforms 
(Helmert, Burša–Wolf, Molodensky, Molodensky–
Badekas, etc.). In the statistical approach datum means 
a catalogue of coordinates of reference points. This in 
turn leads to various regression methods (multiple 
regression equations, triangulation, grid shift, etc.). A 
nice comparison of the two approaches can be found in 
Ordnance Survey U.K. (2008, Section 3.2). 

A large number of papers have been devoted to 
datum transformations: Vaníček and Steeves (1996), 
Soler (1998), Iz and Chen (1999), to name just a 
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random few. A thorough systematic presentation of the 
geometrical approach can be found in Awange et al. 
(2010). An interesting paper by Chen and Hill (2005) 
discusses various quality issues of both approaches. 

For reference we also consider three common 
commercial software packages. Let us denote them 
PackageA, PackageB, and PackageC. 

Our test area is a rectangle covering the territory of 
Estonia between approximately 56.05°–61.13° N and 
21.64°–28.58° E. This is the area for which we also 
have reference data from other sources available. We 
took a uniform grid with the step of 25 km in both 
directions, using the coordinate system of the Estonian 
National Grid L-EST97 (EPSG:3301). This gave us 187 
test points. The actual calculations with the formulas 
from Snyder (1987) were performed with the computer 
package Mathematica. 

For numerical values of all parameters we used 
European Petroleum Survey Group (EPSG) Geodetic 
Parameter Registry Version: 7.6.3 (http://www.epsg-
registry.org/). This registry is currently maintained by 
the Geomatics Committee of the International Association 
of Oil and Gas Producers and is the definitive data 
source for many commercial software packages and 
web mapping applications. The standard way to identify 
a coordinate system in web mapping applications is by 
its code in the EPSG registry. 

Some abbreviations commonly used throughout the 
paper: 
WGS 84 – World Geodetic System 1984. This is the 

reference system used by the Global Positioning 
System (GPS); 

MSE – mean square error; 
EST97 – a synonym for the Estonian National Grid  

L-EST97 that is used in the EPSG registry. 
 
 
2. PRELIMINARIES 
 
Let C  denote the set of all complex numbers ,z x iy= +  
where i  is the imaginary unit. This set is also called the 
complex plane. 

We present here some well-known results from 
complex analysis. We give the references following the 
book by Krantz (1999), but they can be found in many 
textbooks on complex analysis. 
• Let D  be a connected open subset of the complex 

plane .C  Let ,f g  be holomorphic on .D  If 
{ : ( ) ( )}S z D f z g z= ∈ =  has an accumulation point 

in ,D  then f g≡  (Krantz, 1999, Corollary 3.2.3.1, 
p. 38). In particular this holds when S  is an open 
subset of .D  

• The Riemann Mapping Theorem. If D  is a non-
empty simply connected open subset of the complex 

plane C  which is not all of ,C  then there  
exists a biholomorphic (bijective and holomorphic) 
mapping f  from D  onto the open unit disk 

{ :| |< 1}U z z= ∈C  (Krantz, 1999, Section 6.4.3, 
p. 87). 

• If a non-empty simply connected open subset D   
of the complex plane C  is isomorphic to the  
unit disc ,U  then the family of all conformal 
mappings of D  onto U  depends on three real-
valued parameters. In particular, there exists a 
unique conformal mapping f  of D  onto U  that 
is normalized by the conditions 

 

0 0( ) 0, arg ( ) ,f z f z θ′= =  
 

where 0z  is an arbitrary point in D  and θ  is an 
arbitrary real number (Krantz, 1999, Section 6.2.1, 
p. 80). 
The important conclusion from these results is  

that if a regular planar region (e.g. a rectangle) is 
conformally mapped onto another regular region, then 
this mapping is performed by a holomorphic function. 
This mapping is fully determined by its values on an 
arbitrarily small open subset of the region. A natural 
approximation of a holomorphic function is a complex 
polynomial. 
 
 
3. DIFFERENT  PROJECTIONS,  IDENTICAL  

DATUMS 
 
Let us consider conformal projections. The two projections 
that are of most interest in our test area are the Lambert 
conformal conic projection with two standard parallels, 
which is used in the coordinate system L-EST97 
(EPSG:3301), and Transverse Mercator with central 
meridian 24°, which is used in the coordinate system 
TM-Baltic93 (EPSG:25884). Both coordinate systems 
have the same datum – European Terrestrial Reference 
System 1989 (ETRS89). These projections have no 
singular points in our area of interest, therefore in view 
of Section 2 there exists an analytic function that maps 
D  onto .D′  We can approximate this function with a 
complex polynomial of appropriate degree. The degree 
depends on the required accuracy of the approximation. 

The results are gathered in Table 1. In the column 
Maximal the maximal differences and in the column 
MSE the mean square differences from the reference 
basis are presented. The reference basis, as mentioned 
above, is calculated, using the formulas from Snyder 
(1987). The distribution of residuals for the polynomials 
of degree 5, corresponding to the third row of the table, 
is shown in Fig. 1. 
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Table 1. Differences (m) for mappings from L-EST97 into 
TM-Baltic93 
 

Method Maximal MSE 

Polynomials 3 0.6582 0.2095 
Polynomials 4 0.0079 0.0022 
Polynomials 5 0.0004 0.0001 
PackageA 0.0086 0.0045 
PackageB 0.1104 0.0706 
PackageC 0.0007 0.0007 

 
 

 
 

Fig. 1. Distribution of residuals, TM-Baltic93 approximated 
with polynomials of degree 5. The length of the longest 
arrow does not exceed 0.4 mm. 

 
 
Another interesting case is transformation from  

L-EST97 into World Mercator WGS 84 (EPSG:3395). 
Our interest is caused by two aspects: 
1. Up to a constant factor the coordinates are the same 

as conformal latitude and longitude (see König and 
Weise, 1951, Chapter 2, Section 2). 

2. This projection is used by Google Maps and Google 
Earth (see, e.g., Google, 2011). The corresponding 
results are presented in Table 2 and Fig. 2. 
The degree of the polynomials that are needed in this 

case is slightly higher. This is caused by the fact that in 
the first case the projections were specially chosen so 
that our area of interest would lie in the area of small 
distortions. 

Analogous results can be obtained for all conformal 
projections where there are no singular points in the area 
of interest. When the area of interest is in the region of 
small distortions, complex polynomials of relatively low 
degree are sufficient to produce good approximations. 
When the area of interest is in the area of large distor-
tions, we have to raise the degree of the polynomial. 

 
 

Table 2. Differences (m) for mappings from L-EST97 into 
World Mercator WGS 84 
 

Method Max MSE 

Polynomials 4 0.8668 0.2491 
Polynomials 5 0.0367 0.0100 
Polynomials 6 0.0016 0.0004 
PackageA 0.0029 0.0028 
PackageB 0.2138 0.1363 
PackageC 0.0002 0.0002 

 
 

 
 

Fig. 2. Distribution of residuals, World Mercator 
approximated with polynomials of degree 5. The length of the 
longest arrow does not exceed 37 mm. 

 
 

4. DIFFERENT  PROJECTIONS,  7-PARAMETER  
DATUM  TRANSFORM 

 
The main difference of the mappings considered in this 
section as compared to the previous section is that they 
include three additional steps: 
• transition from geodetic coordinates into Earth-centred 

Cartesian coordinates; 
• applying the 7-parameter datum transform in the 

Cartesian coordinates;  
• projection of the Cartesian coordinates onto the 

surface of the new reference ellipsoid. 
In many GIS applications this is the standard and 

sometimes the only way to handle datum transforms. 
While being intuitively understandable and geometrically 
easy to visualize, this chain is not free of serious problems. 

First, the transitions from Earth-centred Cartesian 
coordinates into geodetic coordinates is computationally 
expensive. The common textbook formulas (e.g. Strang 
and Borre, 1997, p. 368) include solving equations with 
iteration methods. Alternative methods have been pro-
posed to accomplish this task without iterations (see, e.g., 
Bowring, 1976; Vermeille, 2002; Awange et al., 2010,   
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Chapter 11 for a thorough overview of various methods) 
but certain complexity remains in any case. 

Second, and more important, the actual parameters 
in the 7-parameter transforms are calculated from 
empirical data. Therefore for a given region there may 
exist many 7-parameter transforms and without additional 
background information we may not be able to choose 
the most accurate one. 

As an example let us consider mapping from L-EST97 
(EPSG:3301) into the Gauss–Krüger 3-degree zone with 
the central meridian 24° E and Pulkovo 1942 datum 
(EPSG:2583). We choose this projection because it  
gives good comparison to the results of the previous 
section. 

We are immediately faced with the problem that there 
is not one but two transforms in the EPSG parameter 
set, the domain of validity of which includes Estonia – 
EPSG:1334 and EPSG:15865. The registry also states that 
the accuracy of the first transform is 9 m, the accuracy of 
the second transform is 4.5 m. The maximum difference 
between these transforms on our test grid is 7.5634 m 
and the mean square deviation is 6.7600 m. Performing 
separate computations with each parameter set, we come 
to the results presented in Tables 3 and 4 and Fig. 3. 
Software PackageC offered a choice of the transformation 
and we chose the same transform as we used in direct 
calculations. PackageA did not offer a choice. It has linked 
each coordinate system to a fixed datum and uses the 
transform EPSG:1254 with unknown accuracy for all 
coordinate systems that use the Pulkovo 1942 datum. 

Without additional background information we are 
unable to decide which of the two transformations  
to prefer. Judging by formal parameters EPSG:15865 
would seem a better choice. On the other hand, 
comparing with reference data from the archives of 
datasets of the Estonian Land Board – catalogue of 
triangulation points in the Pulkovo 1942 datum (archive 
numbers GF-1-10-II-258–GF-1-10-II-283), we see that 
the datum transform EPSG:1334 produces a mean 
square deviation of approximately 1.17 m and the datum 
transform EPSG:15865 respectively 6.83 m. This also 
demonstrates that the accuracy estimate in the EPSG 
catalogue for the second transform may be over-optimistic 
(see also Rüdja, 2004, pp. 204–208). 

A closer study of the EPSG transforms reveals some 
more interesting properties. Comparing the transforms 
EPSG:1331 (EST92 to ETRS89 (1), the identity transform) 
and EPSG:1333 (EST92 to WGS 84 (1)), we see that  
the latter presumes the WGS 84 Doppler realization  
(cf. McCarthy, 1992, p. 18, Table 3.1). Similarly, 
comparing the transforms EPSG:1648 (EST97 to 
ETRS89 (1), the identity transform) and EPSG:1649 
(EST97 to WGS 84 (1), the identity transform as well), we 
see that in this case a more recent realization of the 
WGS 84 datum is used (G873). This means that trans-

forming coordinates from EST97 into EST92 via WGS 84 
would introduce a transformation error of approximately 
1 m, whereas it is known that the actual difference 
between control points of these systems is 4–8 cm  
(the mean square difference is 4.4 cm, see Lippus, 
2004a). Unfortunately, the strategy of conducting all 
transforms via WGS 84 is used in many widely spread 
commercial software packages, e.g. PackageA in our 
comparison. 

 
 

Table 3. Differences (m) for mappings from L-EST97 into  
the Pulkovo 1942 Gauss–Krüger 3-degree zone with central 
meridian 24°, datum transform EPSG:1334 
 

Method Max MSE 

Polynomials 3 0.6585 0.2096 
Polynomials 4 0.0078 0.0023 
Polynomials 5 0.0007 0.0003 
PackageA 10.6234 9.6977 
PackageB n/a n/a 
PackageC 0.0008 0.0007 

———————— 
n/a, not applicable. 

 
 

Table 4. Differences (m) for mappings from L-EST97 into  
the Pulkovo 1942 Gauss–Krüger 3-degree zone with central 
meridian 24°, datum transform EPSG:15865 
 

Method Max MSE 

Polynomials 3 0.6585 0.2096 
Polynomials 4 0.0078 0.0023 
Polynomials 5 0.0009 0.0005 
PackageA 5.9762 5.1589 
PackageB n/a n/a 
PackageC 0.0007 0.0007 

———————— 
n/a, not applicable. 

 
 

 
 

Fig. 3. Distribution of residuals, Gauss–Krüger approximated 
with polynomials of degree 5. The length of the longest 
arrow does not exceed 1 mm. 
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5. IDENTICAL  PROJECTIONS,  OTHER  
DATUM  TRANSFORMS 

 
Other datum transforms are usually applied on the 
projection plane of some fixed projection (see, e.g., 
Dewhurst, 1990; Ordnance Survey U.K., 2005, 
Chapter 3; Ordnance Survey U.K., 2008, Section 6.3). If 
we have to work in some other projection, the sequence 
of steps would be as follows: 
• reprojection from the source projection into the fixed 

projection; 
• applying the datum transform; 
• reprojection from the fixed projection into the target 

projection. 
To the first and the last step in this sequence we may 

apply the results of Section 3. 
In grid shift methods the area of interest is divided 

into regular square tiles and we have different map-
pings on different tiles. We have a table of the values of 
the shift vectors in the corners of the tiles. The values of 
the transform in other points are computed by using 
bilinear interpolation. Bilinear interpolation generally 
is not conformal, so grid shift transform can be 
considered nearly conformal if the shift vectors are 
small. 

The software packages that we studied were all  
able to work with regular grid shift files, but no such 
files have been published for Estonia. Therefore we 
cannot continue the comparison of software packages 
here. 

From other methods that can be used in this context 
we would mention affine mapping on a triangulation 
and piecewise conformal mapping on convex polygons. 
The software packages in our comparison are unable to 
work with these methods. 

The triangulation shift datum transform has been 
used in Finland (see Kuittinen et al., 2006). The difference 
of this method from the grid shift method is that the  
grid tiles are triangular (Delaunay triangulation) and 
affine interpolation is used inside the triangles. Affine 
interpolation is conformal only inside the triangles where 
the transformation matrix is orthogonal. 

Piecewise conformal mappings with low-degree 
complex polynomials were studied in Lippus (2004a, 
2004b) (see also González-Matesanz and Malpica, 
2006). The idea of the method is that if the acceptable 
accuracy cannot be achieved with a global conformal 
mapping, we split the area of interest into smaller 
polygons and solve the conformal mapping problem on 
each polygon independently. The individual solutions 
are combined into a global solution by using window 
functions. The global solution is not conformal in the 
transition areas from one polygon to another. 
 
 

6. DISCUSSION  AND  CONCLUSIONS 
 
We can make three main conclusions that are relevant to 
map conflation problems. 
1. If our data can be transformed with reasonable 

accuracy, using unprojection, geographic datum trans-
formation, and reprojection, they can be transformed 
with practically the same accuracy, using complex 
polynomials of low degree. The degree of the 
polynomials that are needed depends more on the 
projections involved than on the datum transformation. 

2. In other words: if our data cannot be transformed with 
reasonable accuracy using complex polynomials of 
low degree, there exists no 7-parameter transformation 
that would transform our data with better accuracy. 

3. The naïve use of transformations from the EPSG 
registry, or from the lists of software packages, can 
introduce certain errors. The risk of such errors can 
be reduced if the provider of data avoids using 
potentially ambiguous or little known coordinate 
systems. For example, if we deliberately label 
EPSG:3300 data as being EPSG:3301 data, the risk 
of accidentally introducing the 1 m shift described in 
Section 4 can be reduced. 
The main advantage of complex polynomials is the 

simplicity of computations. 
 
Remark. Commercial software packages may not fully 
implement all aspects of the coordinate system as given 
in the EPSG registry. This concerns especially the 
order of coordinates. All commercial packages in our 
comparison assume that the first coordinate in a 
coordinate pair is Easting and the second is Northing, 
no matter what is contained in the Coordinate Axes 
section of the EPSG record. 
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Konformsetest  georuumilistest  teisendustest  komplekssete  polünoomidega 
 

Jüri Lippus ja Tõnu Oja 
 
On vaadeldud geoinfosüsteemide andmete teisendamist komplekssete polünoomidega võrdluses samade andmete 
teisendamisega kommertstarkvara pakettidega. On näidatud, et regulaarsetel juhtudel võib keeruliste pakettidega 
tehtavad teisendused edukalt asendada madala astme (4. või 5. astme) polünoomidega tehtavate teisendustega. Vähem 
regulaarsetel juhtudel aga hakkavad muudest allikatest tulevad ebamäärasused sageli varjutama puhtalt arvutustest 
tulenevaid erinevusi. Artiklis esitatud tulemuste võimalik rakendusala on kiirete teisendusfiltrite konstrueerimine 
geoinfosüsteemide tarbeks. 
 


