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Abstract. The object of the present paper is to find necessary and sufficient conditions for invariant submanifolds of trans-Sasakian
manifolds to be totally geodesic. As a remark, particular cases of submanifolds of α-Sasakian and β -Kenmotsu manifolds are
considered and the difference between the conditions for submanifolds of α-Sasakian and β -Kenmotsu manifolds to be totally
geodesic is shown.
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1. INTRODUCTION

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric structures
by Chinea and Gonzalez, and they appear as a natural generalization of both Sasakian and Kenmotsu
manifolds [6]. Again, in the Gray–Hervella classification of almost Hermite manifolds [12], there appears a
class W4 of Hermitian manifolds that are closely related to locally conformal Kähler manifolds. An almost
contact metric structure on a manifold M̃ is called a trans-Sasakian structure [19] if the product manifold
M̃×R belongs to the class W4. The class C6⊕C5 [16,17] coincides with the class of trans-Sasakian structures
of type (α,β ). In fact, in [17], the local nature of two subclasses, namely C5 and C6 structures, of trans-
Sasakian structures are characterized completely. We note that trans-Sasakian structures of type (0,0), (0,β ),
and (α,0) are cosymplectic [2], β -Kenmotsu [13], and α-Sasakian [13], respectively.

In [10], we find the importance of Sasakian manifolds in supergravity and magnetic theory. Tanno [22]
showed that Kenmotsu manifolds are warped product space. It is well known that the notion of warped
product plays some important role in differential geometry as well as in physics. For instance, the best
relativistic model of Schwarzschild space-time that describes the outer space around a massive star or a
black hole is given as warped product [1,5,18]. Again, we know that a trans-Sasakian manifold of dimension
≥ 5 is either a co-symplectic or α-Sasakian or β -Kenmotsu manifold [16]. Hence, we claim that the study
of trans-Sasakian manifolds is important from the physical point of view.

Nowadays, the study of submanifold theory is growing rapidly. Invariant submanifolds play a crucial
role in many applied branches of mathematics. For instance, the method of invariant submanifolds is used
in the study of non-linear autonomous systems [11].

There is a well-known result of Kon that an invariant submanifold of a Sasakian manifold is totally
geodesic, provided the second fundamental form of the immersion is covariantly constant [15]. In general,
an invariant submanifold of a Sasakian manifold is not totally geodesic. For example, the circle bundle

∗ Corresponding author, avjaj@yahoo.co.in



30 Proceedings of the Estonian Academy of Sciences, 2012, 61, 1, 29–37

(S,Qn) over an n-dimensional complex projective space CPn+1 is an invariant submanifold of a (2n + 3)-
dimensional Sasakian space-form S2n+3(c) with c > −3, which is not totally geodesic [23]. On the other
hand, any submanifold of a Kenmotsu manifold is totally geodesic if and only if the second fundamental
form of the immersion is covariantly constant and the submanifold is tangent to the structure vector field
ξ [14]. Recently, Sular and Özgur [21] studied submanifolds of Kenmotsu manifolds and proved some
equivalent conditions regarding the submanifolds to be totally geodesic. Since the trans-Sasakian manifold
generalizes both Sasakian and Kenmotsu manifolds, we are naturally motivated to find the conditions under
which a submanifold of a trans-Sasakian manifold is totally geodesic. To this end, after the preliminaries
in Section 2, we study invariant submanifolds of trans-Sasakian manifolds in Section 3 and prove some
necessary and sufficient conditions for such submanifolds to be totally geodesic. Also, in this section an
interesting corollary and an important remark concerning submanifolds of α-Sasakian and β -Kenmotsu
manifolds are added. In this connection we mention that recently trans-Sasakian manifolds and their
submanifolds were studied in [8,9].

2. PRELIMINARIES

Let M̃ be an almost contact metric manifold of dimension 2ñ + 1, that is, a (2ñ + 1)-dimensional
differentiable manifold endowed with an almost contact metric structure (φ ,ξ ,η ,g). By definition φ ,ξ ,η
are tensor fields of type (1,1), (1,0), (0,1), respectively, and g is a Riemannian metric such that [2]

φ 2X =−X +η(X)ξ , η(ξ ) = 1, (2.1)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), (2.2)

for all differentiable vector fields X ,Y on M̃. Then also

φξ = 0, η(φX) = 0, η(X) = g(X ,ξ ). (2.3)

Let Φ be the fundamental 2-form defined by Φ(X ,Y ) = g(X ,φY ) for all differentiable vector fields X ,Y
on M̃. An almost contact metric structure (φ ,ξ ,η ,g) on M̃ is called trans-Sasakian structure [19] if
(M̃⊗R,J,G) belongs to the class W4 [12], where J is the almost complex structure on M̃⊗R defined
by

J(X , f d/d f ) = (φX− f ξ ,η(X)d/dt),

for all vector fields X on M̃ and smooth functions f on M̃⊗R and G is the product metric on M̃⊗R. This
may be expressed by the condition [3]

(∇̃X φ)Y = α(g(X ,Y )ξ −η(Y )X)+β (g(φX ,Y )ξ −η(Y )φX), (2.4)

for smooth functions α and β on M̃, where ∇̃ is the Levi-Civita connection on M̃. We say that the trans-
Sasakian structure is of type (α,β ). From (2.4) it follows that

∇̃X ξ =−αφX +β (X−η(X)ξ ), (2.5)

(∇̃X η)Y =−αg(φX ,Y )+βg(φX ,φY ). (2.6)

Let f : (M,g) → (M̃,g) be an isometric immersion from an n-dimensional Riemannian manifold M to a
(2ñ+1)-dimensional trans-Sasakian manifold M̃. Then we have [4]

∇̃XY = ∇XY +h(X ,Y ), (2.7)

∇̃X N =−ANX + ∇̃⊥
X N, (2.8)
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for all vector fields X ,Y tangent to M and normal vector field N on M, where ∇ is the Riemannian connection
on M defined by the induced metric g and ∇⊥ is the normal connection on T⊥M of M; h is the second
fundamental form of the immersion.

A submanifold M of M̃ is said to be invariant if the structure vector field ξ is tangent to M at every point
of M and φX is tangent to M for every vector X tangent to M at every point on M. The submanifold is called
totally geodesic if its second fundamental form vanishes identically on it [23].

The first and the second covariant derivative of the second fundamental form h are given by

(∇̄X h)(Y,Z) = ∇⊥
X h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z) (2.9)

and

(∇̄X ∇̄Y h)(Z,W ) = ∇⊥
X ((∇̄Y h)(Z,W ))− (∇̄Y h)(∇X Z,W )− (∇̄Y h)(Z,∇XW )− (∇̄∇XY h)(Z,W ), (2.10)

respectively, where ∇̄ is called the van der Waerden Bortolotti connection of M [4]. It is mentioned that if
(∇̄Y ∇̄X h)(Y,Z) = 0, then the submanifold is said to have a parallel third fundamental form. If ξ is tangent
to M by (2.7), then

∇̃X ξ = ∇X ξ +h(X ,ξ ),

which implies by (2.5)
−αφX +β (X−η(X)ξ ) = ∇X ξ +h(X ,ξ ).

By equating the tangential and normal parts, from the above we get the following cases:

Case I.
h(X ,ξ ) = 0, ∇X ξ =−αφX +β (X−η(X)ξ ) (2.11)

for each vector X tangent to M, when the submanifold is invariant.

Case II.
h(X ,ξ ) = 0, ∇X ξ =−αφX (2.12)

for each vector X tangent to M, when the submanifold is invariant and β = 0.

Case III.
h(X ,ξ ) = 0, ∇X ξ = β (X−η(X)ξ ) (2.13)

for each vector X tangent to M, when α = 0. Here the condition of invariance is not required. We need only
ξ to be tangent to M.

Proposition 2.1. An invariant submanifold of a trans-Sasakian manifold is also trans-Sasakian.

Proof. We see that

(∇̃X φ)Y = ∇̃X φY −φ(∇̃XY )
= ∇X φY +h(X ,φY )−φ(∇XY )−φh(X ,Y ). (2.14)

From (2.4) and the above equation we get by considering the submanifold as invariant and comparing
tangential and normal components

(∇X φ)Y = α(g(X ,Y )ξ −η(Y )X)+β (g(φX ,Y )ξ −η(Y )φX). (2.15)

The above equation proves the proposition. ¤
Proposition 2.2. If X is an arbitrary tangent vector of an invariant submanifold of a trans-Sasakian
manifold, then ∇X ξ is also an arbitrary tangent vector different from a vector spanned by ξ .
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Proof. From (2.11) we get
∇X ξ = βX−αφX−βη(X)ξ . (2.16)

From the above equation we see that ∇X ξ is a linear combination of X , φX , and ξ . Since an invariant
submanifold of a trans-Sasakian manifold is also trans-Sasakian, the dimension of the submanifold is odd.
Hence we can consider that an orthonormal φ -basis [2] {ei,φei,ξ}, i = 1,2, . . . , n−1

2 , n is the dimension of
the submanifold, and we can write

X = ∑
i

aiei +∑
i

biφei + cξ . (2.17)

Then
φX =−∑

i
biei +∑

i
aiφei. (2.18)

Here ai, bi, and c are scalars. From (2.16), (2.17), and (2.18) we obtain

∇X ξ = ∑
i
(βai +αbi)ei +∑

i
(βbi−αai)φei. (2.19)

If we write T M = D⊕< ξ >, we see that ∇X ξ ∈D and, if X is arbitrary, ∇X ξ is also arbitrary, because ai, bi,
and c are arbitrary. This completes the proof. ¤

3. INVARIANT SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS WITH THE
SECOND FUNDAMENTAL FORM SATISFYING SOME CONDITIONS

The covariant differential of the pth order, p ≥ 1, of a (0,k)-tensor field T, k ≥ 1, is denoted by ∇pT on
a Riemannian manifold M with Levi-Civita connection ∇. According to [20], the tensor T is said to be
recurrent or 2-recurrent, if the following conditions, respectively (3.1) and (3.2), hold on M:

(∇T )(X1,X2, . . . ,Xk;X)T (Y1,Y2, . . . ,Yk) = (∇T )(Y1, . . . ,Yk;X)T (X1,X2, . . . ,Xk), (3.1)

(∇2T )(X1, . . . ,Xk;X ,Y )T (Y1, . . . ,Yk;X ,Y ) = (∇2T )(Y1,Y2, . . . ,Yk;X ,Y )T (X1, . . . ,Xk), (3.2)

where X ,Y,X1,Y1, . . . ,Xk,Yk are tangent to M.
From (3.1) it follows that if the tensor T is non-zero, at a point x of M there exists a unique 1-form ω or

a (0,2)-tensor ψ, defined on a neighbourhood U of x, such that

∇T = T ⊗ω, ω = d(log||T ||), (3.3)

or
∇2T = T ⊗ψ, (3.4)

respectively, holds on U, where ||T || denotes the norm of T defined by ||T ||2 = g(T,T ). If ∇T = 0, T is
called parallel. The tensor T is said to be generalized 2-recurrent if

((∇2T )(X1, . . . ,Xk : X ,Y )− (∇T ⊗ω)(X1, . . . ,Xk;X ,Y ))

= ((∇2T )(Y1, . . . ,Yk;X ,Y )− (∇T ⊗ω)(Y1, . . . ,Yk);X ,Y )T (X1, . . . ,Xk) (3.5)

holds on M. From the above it follows that if the tensor T is non-zero, then at a point x ∈ M there exists a
unique (0,2)-tensor ψ, defined on a neighbourhood U of x, such that

∇2T = ∇T ⊗ω +T ⊗ψ (3.6)

holds on U.
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In the following we consider an invariant submanifold M of the trans-Sasakian manifold M̃. Suppose
that the second fundamental form of the submanifold M is parallel. Then

(∇̄X h)(Y,Z) = 0, (3.7)

for X ,Y,Z tangent to M. By (2.9) we obtain from the above equation

∇⊥
X h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z) = 0.

Putting Z = ξ in the above equation, we get by (2.11)

h(Y,∇X ξ ) = 0.

From Proposition 2.2 it follows that ∇X ξ = U(say) is a tangent vector of the submanifold different from a
vector spanned by ξ . Therefore, h(Y,U) = 0. Again h(Y,ξ ) = 0, for any tangent vector Y. Consequently,
the submanifold is totally geodesic. Conversely, if the submanifold is totally geodesic, then h(Y,W ) = 0, for
arbitrary tangent vectors Y and W. Hence h is trivially parallel. The above discussion helps us to state the
following:

Theorem 3.1. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if its
second fundamental form is parallel.

Let us consider that the submanifold M of M̃ has recurrent second fundamental form h. Then by (3.3)

(∇̄X h)(Y,Z) = ω(X)h(Y,Z), (3.8)

where ω is a 1-form on M. Applying (2.9) in the above equation we obtain

∇⊥
X h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z) = ω(X)h(Y,Z).

Putting Z = ξ , we get from the above

∇⊥
X h(Y,ξ )−h(∇XY,ξ )−h(Y,∇X ξ ) = ω(X)h(Y,ξ ).

By virtue of (2.11) the above equation reduces to

h(Y,∇X ξ ) = 0.

Hence, as before, the submanifold is totally geodesic. The converse also holds trivially. Thus, we have the
following:

Theorem 3.2. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if its
second fundamental form is recurrent.

If the submanifold has a parallel third fundamental form, we can write

(∇̄X ∇̄Y h)(Z,W ) = 0.

Putting W = ξ and using (2.10) in the above equation we get

∇⊥
X ((∇̄Y h)(Z,ξ ))− (∇̄Y h)(∇X Z,ξ )− (∇̄Y h)(Z,∇X ξ )− (∇̄∇XY h)(Z,ξ ) = 0.
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By (2.9) the above equation yields

∇⊥
X (∇⊥

Y h(Z,ξ )−h(∇Y Z,ξ )−h(Z,∇Y ξ ))

− (∇⊥
Y h(∇X Z,ξ )−h(∇Y ∇X Z,ξ )−h(∇X Z,∇Y ξ ))

− (∇⊥
Y h(Z,∇X ξ )−h(∇Y Z,∇X ξ )−h(Z,∇Y (∇X ξ )))

− (∇⊥
∇XY h(Z,ξ )−h(∇∇XY Z,ξ )−h(Z,∇∇XY ξ ))

= 0. (3.9)

By virtue of (2.11) the above equation yields

−∇⊥
X h(Z,∇Y ξ )+h(∇X Z,∇Y ξ )+h(∇Y Z,∇X ξ )+h(Z,∇Y (∇X ξ ))+h(Z,∇∇XY ξ ) = 0. (3.10)

Putting Y = ξ in (3.10), we get

h(∇ξ Z,∇X ξ )+h(Z,∇ξ (∇X ξ ))+h(Z,∇∇X ξ ξ ) = 0.

Replacing ∇X ξ by U in the above equation, we obtain

h(∇ξ Z,U)+h(Z,∇ξU)+h(Z,∇U ξ ) = 0.

For Z = U, the above equation yields

h(U,2∇ξU +∇U ξ ) = 0. (3.11)

Clearly, 2∇ξU + ∇U ξ = V (say) is tangent to M, because ∇ is a mapping from T M×T M → T M. In the
proof of Proposition 2.2 we obtained that ∇X ξ = U is a vector spanned by ei and φei, i = 1,2, . . . , n−1

2 , and
U has no component in the distribution spanned by < ξ > . Here, {ei,φei,ξ} is an orthonormal φ -basis at
any point of the tangent space of M. Therefore, we can write

U = ∑
i

ciei +∑
i

diφei,

where ci and di are scalars. From the above equation it follows that η(U) = 0. Again, by (2.11)

∇U ξ = −αφU +β (U−η(U)ξ )
= −αφU +βU. (3.12)

Hence, ∇U ξ ∈ D, where T M = D⊕< ξ > . Now

∇ξU = ∇ξ

(
∑

i
ciei +∑

i
diφei

)

= ∑
i

ci∇ξ ei +∑
i

di∇ξ (φei). (3.13)

We know that (∇W g)(X ,Y ) = 0 for any tangent vector X ,Y of M. Hence,

∇W g(X ,Y )−g(∇W X ,Y )−g(X ,∇WY ) = 0. (3.14)

Putting W = Y = ξ and X = ei in the above equation, we get

∇ξ g(ei,ξ )−g(∇ξ ei,ξ )−g(ei,∇ξ ξ ) = 0.
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From (2.11) it follows that ∇ξ ξ = 0. Again, g(ei,ξ ) = 0 because {ei,φei,ξ} is an orthonormal φ -basis.
Hence from the above equation g(∇ξ ei,ξ ) = 0, which implies that ∇ξ ei ∈ D, where T M = D⊕ < ξ > .
Similarly, putting W = Y = ξ and X = φei in (3.14), we can prove that ∇ξ (φei) ∈ D. Hence, from (3.13) it
follows that ∇ξU ∈D. Therefore, from (3.11) it follows that h(U,V ) = 0, for U,V ∈D. Again, h(ξ ,ξ ) = 0
and h(X ,ξ ) = 0 for any tangent vector X . Hence, we conclude that h(X ,Y ) = 0 for any tangent vector X ,Y
of M. Thus, from the above discussion it follows that the submanifold is totally geodesic. Again, it can be
trivially proved that if h = 0, then the submanifold has a parallel third fundamental form. So, we are in a
position to state the following:

Theorem 3.3. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if the
submanifold has a parallel third fundamental form.

If the second fundamental form of the submanifold is 2-recurrent, then from (3.4)

(∇̄X ∇̄X h)(Z,W ) = ω(X)h(Z,W ).

For W = ξ , the above equation yields
(∇̄X ∇̄Y h)(Z,ξ ) = 0.

Therefore, by Theorem 3.3 we immediately obtain the following:

Theorem 3.4. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if its
second fundamental form is 2-recurrent.

Now, let us consider that the second fundamental form h of M is generalized 2-recurrent. Then by (3.6)

(∇̄X ∇̄Y h)(Z,W ) = ψ(X ,Y )h(Z,W )+ω(X)(∇̄Y h)(Z,W ),

where ψ and ω are 2-form and 1-form, respectively. Putting W = ξ in the above equation, we have with the
help of (2.11)

(∇̄X ∇̄Y h)(Z,ξ ) = ω(X)(∇̄Y h)(Z,ξ ).

Using (2.9) and (2.10), we get from the above equation

∇⊥
X (∇⊥

Y h(Z,ξ )−h(∇Y Z,ξ )−h(Z,∇Y ξ ))

− (∇⊥
Y h(∇X Z,ξ )−h(∇Y ∇X Z,ξ )−h(∇X Z,∇Y ξ ))

− (∇⊥
Y h(Z,∇X ξ )−h(∇Y Z,∇X ξ )−h(Z,∇Y (∇X ξ )))

− (∇⊥
∇XY h(Z,ξ )−h(∇∇XY Z,ξ )−h(Z,∇∇XY ξ ))

= ω(X)(∇⊥
Y h(Y,ξ )−h(∇Y Z,ξ )−h(Z,∇Y ξ )). (3.15)

By (2.11) the above equation yields

−∇⊥
X h(Z,∇Y ξ )+h(∇X Z,∇Y ξ )+h(∇Y Z,∇X ξ )

+h(Z,∇Y (∇X ξ ))+h(Z,∇∇XY ξ )

= ω(X)h(Z,∇Y ξ ). (3.16)

For Y = ξ , the above equation gives

h(∇ξ Z,∇X ξ )+h(Z,∇ξ (∇X ξ ))+h(Z,∇∇X ξ ξ ) = 0.
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Hence, as before, the submanifold is totally geodesic. If h = 0, then it can be trivially proved that the
second fundamental form of the submanifold is generalized 2-recurrent. Thus we obtain the following:

Theorem 3.5. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if its
second fundamental form is generalized 2-recurrent.

Chinea and Prestelo [7] proved that an invariant submanifold of a trans-Sasakian manifold is totally
geodesic if and only if R̃(X ,Y )h = 0, where R̃ denotes the curvature transformation on the manifold M̃, that
is, the second fundamental form h is semi-parallel. Hence we obtain the following corollary.

Corollary 3.1. For an invariant submanifold of a trans-Sasakian manifold the following conditions are
equivalent:

(i) the submanifold is totally geodesic,
(ii) the second fundamental form of the submanifold is parallel,

(iii) the second fundamental form of the submanifold is recurrent,
(iv) the second fundamental form of the submanifold is 2-recurrent,
(v) the second fundamental form of the submanifold is generalized 2-recurrent,

(vi) the third fundamental form of the submanifold is parallel,
(vii) the second fundamental form of the submanifold is semi-parallel.

Remark 3.1. From Case II and Case III of Section 2, it follows that for α-Sasakian manifolds the above
theorems are also valid. For β -Kenmotsu manifolds the above results are true for any submanifolds tangent
to ξ , the invariant condition is not needed.

4. CONCLUSION

A trans-Sasakian manifold arose in a natural way from the classification of almost contact metric structures.
The study of trans-Sasakian manifolds is important from physical point of view. Invariant submanifolds play
a crucial role in many applied branches of mathematics. For an invariant submanifold of a trans-Sasakian
manifold the following conditions are equivalent:
• the submanifold is totally geodesic,
• the second fundamental form of the submanifold is parallel,
• the second fundamental form of the submanifold is recurrent,
• the second fundamental form of the submanifold is 2-recurrent,
• the second fundamental form of the submanifold is generalized 2-recurrent,
• the third fundamental form of the submanifold is parallel,
• the second fundamental form of the submanifold is semi-parallel.
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Trans-Sasaki muutkonna invariantsetest alammuutkondadest

Avijit Sarkar ja Matilal Sen

On leitud tarvilikud ja piisavad tingimused selleks, et trans-Sasaki muutkonna invariantne alammuutkond
oleks täielikult geodeetiline (teoreem 3.5). Lisaks on tõestatud, et niisuguse alammuutkonna teise ja kol-
manda fundamentaalvormi teatavad omadused on ekvivalentsed (järeldus 3.1).


