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Abstract. We continue our studies on Riesz-type families of summability methods for functions and sequences, started in Proc.
Estonian Acad. Sci., 2008, 57, 70-80 and Math. Model. Anal.,2010, 15, 103—112. Strong summability methods defined on the basis
of a given Riesz-type family {Ay} are considered here. Inclusion theorems for these methods are proved. Our inclusion theorems
allow us to compare the summability fields and speeds of convergence. The strong summability methods are also compared with
ordinary summability methods Ay and with certain methods of statistical convergence. The proved theorems generalize different
results that have already been published and are applied, in particular, to Riesz methods, generalized integral Norlund methods, and
Borel-type methods.
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1. INTRODUCTION AND PRELIMINARIES

Let x = x(u) be the functions defined for u > 0, bounded and Lebesgue-measurable on every finite interval
[0, up]. Denote the set of all these functions by X.

If the limit lim, .. x(«#) = s exists, we say that x = x(u) is convergent to s. Suppose that A is a trans-
formation of functions x = x(u) (or, in particular, of sequences x = (x,)) into functions Ax =y = y(u) € X.
If the limit lim, .. y(u) = s exists, we say that x = x(u) is convergent to s with respect to the summability
method A (or x is summable to s by the method A) and write x(u) — s(A). If the function y = y(u) is bounded,
we say that x is bounded with respect to the method A, and write x(u) = O(A). We denote by wA the set of
all these functions x, where the transformation A can be applied. The summability method A is said to be
regular if for eachx € X

lim x(u4) =s = lim y(u) =s.

U—00 U—o0

The most common summability method for functions x is an integral method A defined by the transformation

y(u) = /Oua(u,v)x(v)dv, (1.1)

where a(u,v) is a certain function of two variables (z > 0, v > 0) with a(u,v) = 0 for v > u. We also say
that the integral method A is defined by the function a(u,v).
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The notion of a statistically convergent function is also used in this paper. According to [9] we say that
x is statistically convergent to s and write x(u) — s(st) if for any € >0

lim 122l _ 0,
U—0 u
where | % ,| is the Lebesgue measure of the set
Heuw={ve0,u]:|x(v)—s| > e} (1.2)

Generalizing the given notion of statistical convergence, we come to the following definition.

Definition 1. Ler A be a regular integral method defined by transformation (1.1), where a(u,v) is some
non-negative function. We say that x = x(u) is A-statistically convergent to s and write x(u) — s(sta) if for
any € >0

lim a(u,v)dv =0,
U—eo jge,u

where Ky, is the set defined by (1.2).

In particular, the notion of A-statistical convergence for the matrix case was first defined in [3] and later
generalized and discussed in different papers (see [4] and [8] for references).

For converging sequences x = (x,,) we focus on certain semi-continuous summability methods A defined
by transformations

y(u) = i‘z)an(u)xn (u>0),

where a,(u) (n=0,1,2,...) are some functions from X.

One of the basic notions in this paper is the notion of the speed of convergence (see [10] and [12] and,
in particular for sequences, [6] and [7]). Let A = A (u) be a positive function from X such that A (u) — o as
u — oo. We say that a function x = x(u) is convergent to s with speed A if the finite limit

lim A (u) [x(u) — 5]

U—0o0
exists. Note that the limit can be zero. If we have A (u) [x(u) —s] = O(1) as u — oo, then x is said to be
bounded with speed A. We say that x is convergent or bounded with speed A with respect to the summability
method A if Ax = y(u) is convergent or bounded with speed A, respectively.

In our paper we study Riesz-type families of summability methods defined in [10] and [13].

Let {Ay} be a family of summability methods A, where! « (i) 0 and which are defined by trans-

formations of functions x = x(u) € WA, C X into functions Agx = yq = yo(#) € X. Suppose that for any
B>y (i) o we have the relation

WA, C wAp. (1.3)

Definition 2. A family {Ay} (a(f) 0p) is said to be a Riesz-type family if for every 3 > y(f) o relation
(1.3) holds and the methods Ay and Ag are connected by the relation

yp(u) = FZZIZ /Ou(u — V)B_V_l ry(v) yy(v)dv (u>0) (1.4)
with .
rg(u) =M, /0 (u— v)ﬁ_”_1 ry(v)dv (u>0), (1.5)

' The notation o <f) 0 means that we consider parameter values o > o or & > ¢ with some fixed number ¢, depending on
the specific situation.
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where ry = ry(u) and rg=rp (u) are some positive functions from X and M, g is a constant depending on 'y
and B.

In other words, a Riesz-type family is a family where every two methods are connected through the
connection formula

>
Ap=CypoAy (B> 7(_)0«)),
where Cy g is the integral method defined by the function
My, g (u—v)B=""1r(v) /rg(u) ifO<v<u
= 7.8 Y B = )
cyp (0,) { 0 itv>u. (1.6)

Next we introduce some examples of Riesz-type families (see, e.g., [15]).

Example 1. Consider the generalized Nérlund methods Ay = (N,u®"!, g(u)), where a > 0 and ¢ = g(u)
is a positive function from X. These methods are defined by the transformation of x into Agx = yo = Y (1)
with

1
)=

| = ge)amay w>o)

where ro = ro(u) = o' (u—v)*1q(v)dv. These methods form a Riesz-type family because relations (1.4)
and (1.5) are satisfied here for any 8 > v > 0 with

)
M8 =TT a7

where I'(+) is the Gamma-function. In particular, if () = 1 (u > 0), we have ry (1) = u® /o and the methods
(N,u®*~! g(u)) turn into Riesz methods (R, &) (see [5]). The methods (R, &) form the Riesz-type family for
o > 0 if we take yo(u) = x(u) and ro(u) = 1 for any u > 0.

Example 2. Let {A,} be the family of generalized Norlund methods (N, po (u),q(u)) (00 > o), defined by
the transformation

1 u
valw) = s [ palu—vigxtryay w>0)

with the help of positive functions p = p(u) € X and ¢ = ¢(u) € X and the number o such that ry(u) =
Jo pa(u—v)q(v)dv >0, where py(u) = [5'(u—v)* ! p(v)dv. Here (1.4), together with (1.5) and (1.7), hold
for any B > v > op. Hence {Ay} is a Riesz-type family.

Example 3. Consider the family {A4} of Borel-type methods Aq = (B, @,q,). Let (g,) be a non-negative
sequence such that the power series )" ¢, «" has the radius of convergence R = o and g, > 0 at least for one
n € IN. Denote

oo

v nlguu
ra(u)_}Z; F(n%—a)

n+a—1

and define the methods (B,a,q,) (o« > —1/2) for converging sequences x = (x,) with the help of the

transformation

1 & nlguute!

ra(u) = T(n+ o)
The methods (B, &, ¢,) satisty (1.4) and (1.5) with M, g = 1/T°(B — y) (see [13]). Thus {A} is a Riesz-type
family. In particular, if g, = 1/n!, we get the Borel-type methods (B, ) = (B, c, 1/n!) (see [1,2]) which
include the Borel method B = (B, 1) (see [5]).

We need the following proposition (see [10] and [14]).

Ya(u) = Xp (u>0).
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Proposition 1. The methods C, g defined by (1.6) and (1.5) are regular for all B >y > &. These mehods
are regular also for all B > v = ay, provided that

u

lim [ rg,(v)dv=rco. (1.8)

u—o J0

In the present paper the authors continue their studies on Riesz-type families started in [14] and [15].
The main idea of the paper is to define the family of strong summability methods [Aq1]x on the basis of
a given Riesz-type family {A4} (o (f) o) and to describe it with the help of different inclusion theorems.
These strong summability methods are compared with each other by summability fields, i.e., by sets of
functions x they converge, and by the speed of convergence. The strong summability methods are also
compared with methods A, and Ay and with certain methods of statistical convergence.

2. INCLUSION THEOREMS FOR STRONG SUMMABILITY METHODS [Aq 1]k

We start this section with the definition of strong summability methods for converging functions x, supposing
that {Aq} (o (f) o) is a Riesz-type family and k = k(u) is a positive function from X.

Let us denote |

ok 1 (u) = ()/Ou”a(v)|J’a()_S’k(v v @.1)

Fog+1\U

where yq (1) =Agx (x € ®Aq) and rq(u) and rg. 1 (u) are defined by the family {Aq}.

Definition 3. Ler {Ay} (Ot(i) 0p) be a Riesz-type family and k = k(u) be a positive function from X. We
say that a function x = x(u) is strongly convergent to s with respect to the method Ay (in short, [Agi1];-
convergent) and write x(u) — s[Ag+1]y, if O, () — 0 as u — oo,

We say that a function x = x(u) is strongly bounded with respect to the method Ag 1 (in short, [Ag41];-
bounded) and write x(u) = O[Aq+1]; if

1() / “ra(®) )Y dv = 0(1). (2.2)

rog41(U

Thus we have defined the methods [Ag 1]k (a(f)ao). In particular, if Ay = (N,u®"!,q(u)), Aq =
(N,pa(u),q(u)) orAg = (B,a,qy), then ro(u) and ry+1 (#) were defined in Examples 1, 2 or 3, respectively.

We begin proving some inclusion theorems.

Theorem 1. Let {Aq} (o (3 0g) be a Riesz-type family. Let k = k(u) and k' = k' (u) be two functions from
X. Then the following statements are true for functions x = x(u) and numbers s and 8 >y, Qo:
() if x(u) — s[Ayq1]k, then x(u) — s[Ays1)w and if x(u) = O[Ays1]k, then x(u) = O[Ay11]x, provided that

0 < K'(u) < k(u) < MK'(u), where M is some positive constant,

(ii) if x(u) — s[Ay41]k. then x(u) — s (Ays1) and if x(u) = O[Ay41 ]k, then x(u) = O (Ayy1) , provided that
1 <k(u) <sup, k(u) =M < oo,

(iii) if x(u) — s[Ayy 1]k, then x(u) — s[Ag 1]k and if x(u) = O[Ayy1]x, then x(u) = O[Ag, 1, provided that
k = k(u) is nonincreasing and k(u) > 1.

Proof. Take w.l.o.g. s =0.

(i) The quantity G{f/ﬂ (u) can be written in the form

/ 1 u
alf+1( )= 7’)/—H(Ll)/() ry(v) ‘W(V)
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Notice that k)
u
1< <M.
S @) S
Denote
K)o g >1
uy(v)— ‘yY(V)‘ 1 b’y(v)| )
0 if |yy(v)| <1
and

Thus we have the relations

m(") ‘k(

o )7 ¢ Y
‘}’Y(V) KO = U)’Y(V)‘k( )} = [”y(V)] )+ [WY(V)] A

VA

[y ()] 7T < uy(v) < Jyy(v)

oy ] > wy(0), [y)] 1 < [wy(r)] ¥

Using these relations, we get with the help of the Holder inequality and (1.5)

1 k’(V)

o) = o [T [ ] av

Fy+1
1
ry+1(u)
1

ry+1(u)

VA

L [ by [ [ ra]

Fy+1 ry+1(u)

IN

1

<o [ o] —om L [ ) o)y

Ty ryi(u)

+ Lyj(u) /Ou ry(v) |Y7/(V)‘k(v) dv} I&} .

Thus we have got the relation

ok, 1 (1) = O(1) {0,y (u) + [0k, ()] ¥}

which implies our statement (i).
(i) As

(] < 225 [0 ),

(2.3)

(2.4)
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using statement (i), we get
x(u) = s[Ayp1)k = x(u) = s[Apn]1 = x(u) — s(Ay1).

The part of statement (ii) about boundednes follows from (2.4) in an analogous way.
(iii) According to (2.1) we have

1(u) /o rp(v) |ys ()" dv.

k
O u)—=
py1 (1) o

Now we get with the help of (1.4) and the Holder inequality

k(v)

M
i dv

rg(v)

/Ov(v—t)ﬁ”*lry(t)yy(t)dt

1 u
"ﬁﬂ(u) = rﬁH(M)/O rg(v)

= 0(1)

rg(v) Jo

X <rﬁl(v) /O v(v—t)ﬁ_y_lry(t)dt) O
= o(1>rﬁ+11 0 /0 ' ( /O =BT () !yy(t)‘k(v)dt> dv

— 0(1)”3:1(”) /0 (/Ovtﬁylry(v—t) }yy(v—t)‘k(v)dt>dv
= 0(1) ! /Outﬁfyfl </u ry(v—1) ‘yy(v—t)‘k(v) dv) dt.

rg1(u) t

Vﬁ+1(’4)

Thus we have shown that

GEH(M) = O(l)r[g:l(u) /Ou Bt (/Ou_t ry(v) ‘yy(v)‘k(tw) a’v) dt.

Denoting

k(t+v .
uy(m)=1{ Pr0) e ()| > 1
n 0 if |y, (v)| <1

and

k(t+v .
wy(nt) =4 Pr0v)] i )| < 1,
e 0 if ly,(v)| > 1
yY i

we get the relations

|k(t+v)

‘yy(v) =uy(v,t) +wy(v,t) (v>0,1>0),

uy (1) < [y ) wy(v1) < [y, (0)].

Further we use also the notation

01110 = s [ 1) yy(0)|

Ty+1

[ w0 (s f =P oo

)

243

(2.5)

(2.6)
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Developing (2.5) with the help of the last relations, we get

ok, (W) = O(1) [r,;:] o /0 Cpr ( /0 W) uy(v,t)dv) dt
+ r,3+11(u) /Out'B*“V*1 </Out ry(v) wy(v,t)dv> dt]
= o(1) [rﬁ+11(u) /outﬁ—y—l < /Outry(v) |yy(v)‘k(v)dv> dt

n rmll(u) /O By < /0 ! ry(v) ‘yy(v)‘dv) dz]
1

= 0(1)[rﬁ+1(14)/0 P i (u—t) of (u—1t)dt
1 woa o
+ r/;+1(u)/0 Py ]rHl(u—t)G}],H(u—t)dt].

So we have proved the relation

ot = 0 | [t T ) o)

1
rﬁ+1(“)

/0 =0 () 6l (;)dz] . 2.7)

It follows from (2.7) that if G}’fH(u) — 0, then Gngl(u) — 0 (as u — oo), because G{fH

G; +1(u) — 0 by statement (i) and C,, g is a regular method by Proposition 1. The part of state-
ment (iii) about boundedness follows from (2.7) analogously. [l

Remark 1.
(i) If we weaken the restrictions on k and kK’ allowing also the case
Theorem 1 is not true in general (see Remark 2 in [11]).
(ii) If 0 < k(u) < 1, then statement (ii) is not true in general (see Remark 4 in [11]).
(iii) In particular, if k(u) = r, then relation (2.5) takes the form

(1) — 0 implies

k(u)
K (u)

— oo, then statement (i) of

og () = O(1) [rﬁ:l(u) /Ou(u—v)ﬁ_y_lryﬂ(v) Oy (v)dv (2.8)

and completes the proof of statement (iii) of Theorem 1.

Theorem 2. Let {Ay} (o (f) 0p) be a Riesz-type family. Then the following statements are true for functions
x = x(u) and numbers s and v > o :
(i) if x(u) — s (Ay) , then x(u) — s[Ay. 1]k, provided that inf, k(u) = m > 0, and provided that also condition
(1.8) holds if ay is included,
(i) if x(u) = O (Ay) , then x(u) = O[Ay .11, provided that sup, k(u) = M < oo.
Proof. Take w.l.o.g. s =0.
(i) As k(u) >m > 0 for any u > 0 and |yy(u)‘ < 1 for sufficiently large u#, we have !yy(u) }k(u) < |yy(u)

") — 0/if yy(u) — 0. Thus of,,

m
’ for

sufficiently large u and therefore |y, ()
u — o) due to (2.1) and regularity of Cy 1.

(u) — 0 as yy(u) — 0 (as

Statement (ii) is also true because y,(u) = O(1) implies !y,,(u) }k(u) =0(1). O
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Theorem 3. Let {Ay} (@ (f) 0) be a Riesz-type family. Suppose that 1 < k(u) < sup, k(1) =M < oo. Then

the following statements are true for functions x = x(u) and numbers s and 'y (f) Q:

(i) x(u) — s[Ays 1]k if and only if x(u) — s(Ays1) and |yys1 (1) — yy (1) ‘k(u) — 0(Cy,y+1), provided that (1.8)
holds if oy is included,

.. . , k

(ii) x(u) = O[Ay11]x if and only if x(u) = O(Ay41) and ‘)’y+1 (u) —yy(”)‘ .
Cy,y+1 is defined by (1.6).

Proof. (i) Necessity. Denote?

) = O(Cy,y+1), where the method

80— [0 g () =) 29)

Fy+1
Using the Minkowski inequality and the inequality
la+b|° <la|°+|b]° (c<1) (2.10)

with ¢ = k(u) /M, we get

S—
QU
<
——
NI

u k(v M
[&H(”)W = { l(u) ry(v) (‘)’VJrl(V)—SJFS—YY(V)‘L))

{mf(u) [0 (Isysn) =5/ 4 )=o) dv}

1 1

[/Ou FY(V)) [y ) _s}k(V) dv] " [/ou i) vy (v) —S|k(v) dV] "

Pyt (u ry+1(u)

IN

Thus we have proved the inequality

1

(8, ()] < [/Our:ﬁ?u) Yyt (v) —s\k(v)dv] " [o’;H(u)]Ab. 2.11)

If x(u) — s[Ay41]k, then x(u) — s(Ay41) due to Theorem 1 (ii), and thus the right side of inequality (2.11)
tends to zero. Then also the left side of (2.11) tends to zero and therefore 5{; 1 (u) = 0asu— oo,
(1) Sufficiency. Using the same technique as in the proof of necessity, we get the inequality

1

ofu10] * < [ [0 Dyea ) =51 ]+ 15 @12

Fy+1
If x(1t) — s(Aye1) and |yys1 (1) — yy ()| = 0(Cyy11), then it follows from (2.12) that x — 0[Ay41]x.
Statement (ii) can be proved in an analogous way with the help of (2.11) and (2.12) if s = 0. ]

Remark 2. In particular, if k(u) = r, Theorems 1-3 are formulated with some hints at proofs in [13] as
Theorems 4-6. Theorems analogous to Theorems 1-3 for the matrix case are proved in [11] (as Theorems 4
and 5), where also references for partial cases can be found.

2 We keep 68X

1 (1) defined by (2.9) till the end of the paper.
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3. COMPARATIVE ESTIMATIONS FOR SPEEDS OF [A,|,~-CONVERGENCE

Let {Aq} (Ot(i)ao) be a Riesz-type family and k = k(u) be a positive function from X. Suppose that
A = A(u) is a positive function from X such that A (u) — oo as u — co.

Definition 4. We say that a function x = x(u) is [Ag+1]k-convergent to s with speed A if there exists the finite
limit
lim A () 04, (1),

Uu—o0

where %, | (u) is defined by (2.1).

In this paper mainly the limit
lim A (u) 65, 1 (u) =0

U—oo
is used, but also the relation

Au) 06, (1) = O(1)
is used for describing the speed of [Aq.1]x-convergence of x.

The following Theorems 4—6 help us to estimate the speed of [Aq1]x-convergence.

Theorem 4. Let {Ay} (@ (f) o) be a Riesz-type family. Let there be given some positive function

A = A(u) — oo from X. Then the following statements are true for any y > Qy:

Q) if [A (u)|M G{,‘H (u) =0(1), then A(u) G{fﬁrl (u) = o(1), provided that k(u) and k'(u) satisfy the conditions
0<k(u) <k(u) <MK (u),

(i) if [A (u)M G}/f+1 (u) = o(1), then A(u)[yy+1(u) —s] = o(1), provided that 1 < k(u) < sup, k(u) =M < co.

Proof. Take w.l.o.g. s =0.

(1) By (2.3) we have the relation

N

Au) oy (1) = O({A ()04 ()} + O({[A ()" o (1)},
which implies statement (i) immediately.
(ii) By (2.4) and (2.6) we have the inequality
A(u) [yys1 ()| < Myy1A(u) qu+1 (u).
Statement (i) and the last inequality complete the proof of (ii):

AG)M 6%, () = 0 = A1) 6Ly (1) = 0 = A(u) yy1(u) — 0. 0

Remark 3. Theorem 4 remains true if we replace o(1) by O(1) everywhere in it.

In papers [14] and [15] the speeds A, and Ag of convergence x = x(u) with respect to methods Ay and
Ag (B > y) are compared in a Riesz-type family (see [14], Theorem 1 and [15], Theorem 2). Speed A, = 4
is supposed to be a given speed and Ag = Ag(u) is defined by the relations

Ap () = ;’;:1 ((Z)) bpy1(u) =M, g /Ou(u—v)ﬁ_y_lberl(v) dv, by () = ”;(115;‘) 3.1)

Further we see that these speeds can be compared also for strong summability methods.
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Theorem 5. Let {Aq} (o (f) O) be a Riesz-type family. Let there be given some function A = A(u) € X

satisfying the condition 0 < inf, A(u) < A(u) — oo. Suppose that k(u) = r > 1. Then we have for any
B> }/(f) o the implication

A(u) oy, (u) = o(1) = Ay (u) o, (1) = o(1) (3.2)
(as u — o), provided that
’}grolo/o byt1(v)dv = oo. (3.3)

Proof. 1t follows from (2.8) that
Apyi(u) v 1Ty (1)
A A =0(1 7/ —tﬁylyilt 4 tdt:|.
ﬁ-‘rl(u) O-ﬂJrl(u) ( ) [7‘[3+1(M) 0 (Lt ) l(l) ( )G}’+1( )
Using formulas (3.1), we get

A1 (1) . () = O(1) [bﬁl() | =0 by 020) o;H(z)dr] . (3.4)

The integral method F), g, defined with the help of the function

My g (u=v)P 7 by (v) :
Frp () = Py f0<v<u, (35)
’ 0 ifv>u,
is regular by Proposition 1. That is why implication (3.2) follows from (3.4). (]

Remark 4. Theorem 5 remains true if we replace o(1) by O(1) in (3.2). Comparative estimates for speeds
A and Ag; defined through (3.1) can be found in [14] (Propositions 2, 3 and Examples 5-9). Note that
Ag41(u) — oo if u — oo due to (3.3) (see Remark 2 in [15]).

Theorem 6. Let {Aq} (o (f) o) be a Riesz-type family and 0 < A(u) T o. Let for each }/(f) o the function
Ays1 = Ayr1(u) be defined with the help of the relations

Ayyi(u) = ;’:11((13 with by, 1(u) = My y1 /Ou by(v)dv and by(u) = MrY(u) (3.6)

where (3.3) is satisfied with 7y instead of v+ 1. Then the following statements are true for any y(f) oy as

U — oo;

@) if A(u)[yy(u) —s] = o(1), then Ay (u) y+l( u) = o(1), provided that inf, k(u) =m > 0,

(it) if [A (u)] },H(u) o(1), then Ay;1(u )5y+1( u) = o(1), provided that 1 < k(u) < sup,k(u) =M < oo,

(iii) if Ayg1(u) y+1(”) = o(1) and A(u) [yy+1(u) —s] = o(1), then Ayy () y+l(”) o(1), provided that
1 <k(u) <sup,k(u) =M < oo

Proof.
(i) By (2.1) and (3.6) we have

Ayi1(u) G’;H(u) — /Ou Mry(V) M(V) [yy(v)_s”k(v) dv
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Statement (i) follows from the last equality, because the integral method F, ;.| defined by (3.5) is regular.

(ii) We realize that A (u) > 1 and therefore A1 (u) < [A(u)]™ for sufficiently large u. As 67, 1 (u) is defined
by (2.9), we get from (2.11) with the help of (3.6) for sufficiently large u:

€1
M

i1 () 8,1 ()] L

Ay () / " (v

— 5| ay
) @ F0 bra) =] ]

[)L%Ll H] %
(s [ =i}
+{ A" of )}

Statement (ii) follows now immediately from the last inequality, because the method Fy y, defined by

(3.5) is regular and [A (u)|" & Jljﬂ( u) — 0 implies | (

S

u) [yy1(u) —s] ‘k(u) — 0 by Theorem 4 (ii).
(iii) Starting from (2.12), we prove the inequalities which imply (iii) immediately:

1

() ofs )]

A +1(u u (v v ML
”7y+11((u)) /o [A(T}()]k(v) 2(0) [y (v) — 5] [ dv]
[ 0810 ”

5 L?m /by ) [20) [y7+1()_s]‘k(‘))dv:|

Pt st w)] 0

S

Remark 5. Theorem 6 remains true if we replace o(1) by O(1) everywhere in it.

4. COMPARISON OF [A4+1]-CONVERGENCE WITH STATISTICAL CONVERGENCE

Here we compare [Aq]r-convergence (@ i) o) of x = x(u) with its A-statistical convergence, where the
method A = Cy o+ is defined by (1.6).

Theorem 7. Let {Ay} (o (f) 0p) be a Riesz-type family satisfying (1.8) if o is included. Suppose that

sup, k(u) = M < oo. Then the following statements are true for functions x = x(u) and numbers s and
>
¥ %

(i) if x(u) — s[Ayt1]x, then Ayx — s(stc,,.,);
(ii) if x(u) = O(Ay) and Ayx — s(stc,,,, ), then x(u) — s[Ay 1]k, provided that inf, k(u)
Proof. Choose an arbitrary € > 0. According to (1.2) we denote

=m>0.

u=A{vel0,ul:|yy(v)—s| = e}.
(i) We get for o, +1( u) defined by (2.1) the inequalities

”Y+1(”)

0175+1(M)2/% o) yy(v) — s deh(s)/ ) dv,
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where h(g) = min{1,&M}. Therefore, if © o, k.1 (1) — 0 (as u — o0), then also the integral in the right side
of the last inequalities tends to zero, i.e., yy(u) — s(stc,,., ). That proves (i).
(ii) Denoting 7", = {v € [0,u] : [yy(v) — 5| < €}, we get

‘yy —s‘k(v) dv

k ry k(v) ry(v)
Oy (u) = )—s| " dv+
Hl( ) /%u ”y+1 ‘ Y ’ Heu ry+1(”

M ry(v) “ory(v)
(L+]s]) /f A He) /O T

where |yy(u)| < L and H(¢) = max{e™, eM}. If u — oo, then

. ry(v)
lim of < (L+|s M lim Y
U—s00 Y+1 ( ) ( | D U—00 %‘u r,y+1(u)

IN

dV+H(8)/My7y+1,

where My 1 is defined in Definition 2. If Ayx — s(stc, ., ), i.e., if the limit in the right side of the last
inequality is zero, then

lim of, (u) < H(e) [Myys1.

As € > 0 is arbitrarily chosen, the last inequality implies that o, k() =o(1) asu — oo. O

In particular, if we consider the family of Riesz methods Aq = (R,o) (a > 0) and k(u) = r, then
Theorem 7 gives for ¥ = 0 Theorem 2 from [3].

In order to see how statistical convergence is related to ordinary convergence in statements (i) and (ii) of
Theorem 7, we formulate the proposition which can be proved in the same way as Theorem 7 (take k(u) = 1
in its proof).

Proposition 2. Let {Ay} ((xC)ao) be a Riesz-type family satisfying (1.8) if ao is included. Then the
following statements are true for functions x = x(u) and numbers s and 'y (i) (07

(i) if x(u) — s(Ay), then Ayx — s(stc,,.,);
(ii) if x(u) = O(Ay) and Ayx — s(stc,,,,, ), then x(u) — s(Ayi1).

5. CONCLUSIONS

In this paper a Riesz-type family of summability methods A, (o (i) 0p) is considered (see Definition 2).

The strong summability methods [Aq1]x are defined (see Definition 3) and described with the help of
inclusion theorems. These theorems give the conditions for comparing the methods [Ag+1]r With each
other and with methods A, (for different values of o) by summability fields (see Theorems 1-3) and by
speed of convergence (see Theorems 4—6). The methods [A 1], are compared also with certain methods of
statistical convergence (see Theorem 7). Theorems 1-3 generalize the theorems known earlier, in particular,
for the case k = k(u) = r (see [13]), showing that the methods [Ay1]x defined here are more flexible. In
the authors’ view the notion of methods [Ay41]x can be further generalized with the help of a modulus
function f. A convexity theorem can also be proved for these methods.
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Tugeva summeeruvuse menetlused Rieszi tiilipi peres

Anna Seletski ja Anne Tali

Autorid jéitkavad summeerimismenetluste Rieszi tiilipi perede {Aq} (o (i

)Oto) uurimist (vt [14] ja [15]).
On vaadeldud menetluste Ag; jaoks defineeritud tugeva summeeruvuse menetlusi [Ag1];. On tdestatud
sisalduvusteoreemid, mis lubavad vaadeldavaid tugeva summeeruvuse menetlusi vorrelda (parameetri o
erinevate véirtuste korral) omavahel ja menetlustega perest {A } nii summeerimisvéljade kui -kiiruste jargi.

Tugeva summeeruvuse menetlusi on vorreldud ka teatavate statistilise koonduvuse menetlustega.



