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1. INTRODUCTION

The study of Riemannian symmetric manifolds began with the work of Cartan [3]. A Riemannian manifold
(Mn,g) is said to be locally symmetric due to Cartan if its curvature tensor R satisfies the relation ∇R = 0,
where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. This condition
of local symmetry is equivalent to the fact that at every point P ∈ M, the local geodesic symmetry F(P) is
an isometry [12]. The class of Riemannian symmetric manifolds is a very natural generalization of the class
of manifolds of constant curvature.

During the last five decades the notion of locally symmetric manifolds has been weakened by many
authors in several ways to a different extent such as recurrent manifold by Walker [16], semisymmetric
manifold by Szabó [14], pseudosymmetric manifold by Chaki [4], generalized pseudosymmetric manifold
by Chaki [6], and weakly symmetric manifolds by Támassy and Binh [15]. Again a Riemannian manifold
is said to be Ricci symmetric if the condition ∇S = 0 holds, where S is the Ricci tensor of type (0, 2).
A Riemannian manifold is called Ricci recurrent if the condition ∇S = A⊗ S holds, where A is a non-
zero 1-form. Every locally symmetric manifold is Ricci symmetric but not conversely and every recurrent
manifold is Ricci recurrent but the converse does not hold, in general. Again every Ricci symmetric manifold
is Ricci recurrent but not conversely. In 1988 Chaki [5] introduced the notion of pseudo Ricci symmetric
manifolds. A Riemannian manifold (Mn,g)(n > 2) is said to be pseudo Ricci symmetric if its Ricci tensor
S of type (0, 2) is not identically zero and satisfies the relation

(∇X S)(Y,Z) = 2A(X)S(Y,Z)+A(Y )S(X ,Z)+A(Z)S(X ,Y ), (1.1)
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where A is a non-zero 1-form such that g(X ,ρ) = A(X) for every vector field X and ∇ is the operator of
covariant differentiation with respect to the metric g. Such an n-dimensional manifold is denoted by (PRS)n.

Again Chaki and Koley [7] introduced the notion of generalized pseudo Ricci symmetric manifolds. A
Riemannian manifold (Mn,g) (n > 2) is called a generalized pseudo Ricci symmetric manifold if its Ricci
tensor S of type (0, 2) is not identically zero and satisfies the condition

(∇X S)(Y,Z) = 2A(X)S(Y,Z)+B(Y )S(X ,Z)+D(Z)S(X ,Y ) (1.2)

for all vector fields X ,Y,Z,U,V ∈ χ(Mn), where A, B, D are 1-forms (not simultaneously zero) and χ(Mn)
is the set of all differentiable vector fields on Mn. Such a manifold of dimension n is denoted by G(PRS)n.
The 1-forms A, B, D are called the associated 1-forms of the manifold.

Section 2 is concerned with the study of semi-symmetric metric connection along with its physical
significance. In general relativity the matter content of the spacetime is described by the energy-momentum
tensor T which is to be determined from the physical considerations dealing with the distribution of matter
and energy. Since the matter content of the universe is assumed to behave like a perfect fluid in the standard
cosmological models, the physical motivation for studying Lorentzian manifolds is the assumption that
a gravitational field may be effectively modelled by some Lorentzian metric defined on a suitable four
dimensional manifold M. The Einstein equations are fundamental in the construction of cosmological
models which imply that the matter determines the geometry of the spacetime and conversely the motion of
matter is determined by the metric tensor of the space which is non-flat.

The present paper deals with G(PRS)n admitting a semi-symmetric metric connection. A G(PRS)n

admitting a semi-symmetric metric connection is denoted by [G(PRS)n, ∇̃]. In Section 3 of the paper we
investigate the applications of [G(PRS)n, ∇̃] to the general relativity and cosmology. It is shown that a
viscous fluid spacetime obeying Einstein’s equation with a cosmological constant is a connected Lorentzian
[G(PRS)4, ∇̃]. Consequently, [G(PRS)4, ∇̃] can be viewed as a model of the viscous fluid spacetime. Also
it is observed that in a viscous fluid [G(PRS)4, ∇̃] spacetime, none of the isotropic pressure and energy
density can be a constant and the matter content of the spacetime is a non-thermalized fluid under a certain
condition.

The physical motivation for studying various types of spacetime models in cosmology is to obtain the
information of different phases in the evolution of the universe, which may be classified into three different
phases, namely, the initial phase, the intermediate phase, and the final phase. The initial phase is just after
the Big Bang when the effects of both viscosity and heat flux were quite pronounced. The intermediate phase
is that when the effect of viscosity was no longer significant but the heat flux was still not negligible. The
final phase extends to the present state of the universe when both the effects of viscosity and heat flux have
become negligible and the matter content of the universe may be assumed to be a perfect fluid [9]. The study
of [G(PRS)4, ∇̃] is important because such spacetime represents the intermediate phase in the evolution of
the universe. Consequently the investigations of [G(PRS)4, ∇̃] help us to have a deeper understanding of the
global character of the universe including the topology, because the nature of the singularities can be defined
from a differential geometric standpoint.

In the last section the existence of G(PRS)4 is ensured by a suitable example.

2. SEMI-SYMMETRIC METRIC CONNECTION

In 1924 Friedmann and Schouten [8] introduced the notion of semi-symmetric linear connection on a
differentiable manifold. Then in 1932 Hayden [10] introduced the idea of metric connection with torsion
on a Riemannian manifold. A systematic study of the semi-symmetric metric connection on a Riemannian
manifold was published by Yano in 1970 [17].

Semi-symmetric metric connection plays an important role in the study of Riemannian manifolds. There
are various physical problems involving the semi-symmetric metric connection. For example, if a man is
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moving on the surface of the earth always facing one definite point, say Jerusalem or Mekka or the North
Pole, then this displacement is semi-symmetric and metric [13, p. 143]. During the mathematical congress in
Moscow in 1934 one evening mathematicians invented the ‘Moscow displacement’. The streets of Moscow
are approximately straight lines through the Kremlin and concentric circles around it. If a person walks in
the street always facing the Kremlin, then this displacement is semi-symmetric and metric [13, p. 143].

Let (Mn,g) be an n-dimensional Riemannian manifold of class C∞ with the metric tensor g and ∇ be
the Riemannian connection of the manifold (Mn,g). A linear connection ∇̃ on (Mn,g) is said to be semi-
symmetric [8] if the torsion tensor τ of the connection ∇̃ satisfies

τ(X ,Y ) = α(Y )X−α(X)Y (2.1)

for any vector fields X , Y on M and α is a 1-form associated with the torsion tensor τ of the connection ∇̃
given by

α(X) = g(X ,ρ), (2.2)

where ρ is the vector field associated with the 1-form α . The 1-form α is called the associated 1-form of
the semi-symmetric connection and the vector field ρ is called the associated vector field of the connection.
A semi-symmetric connection ∇̃ is called a semi-symmetric metric connection [10] if in addition it satisfies

∇̃g = 0. (2.3)

The relation between the semi-symmetric metric connection ∇̃ and the Riemannian connection ∇ of (Mn,g)
is given by [17]

∇̃XY = ∇XY +α(Y )X−g(X ,Y )ρ. (2.4)

In particular, if the 1-form α vanishes identically then a semi-symmetric metric connection reduces to the
Riemannian connection. The covariant differentiation of a 1-form ω with respect to ∇̃ is given by [17]

(∇̃X ω)(Y ) = (∇X ω)(Y )+ω(X)α(Y )−ω(ρ)g(X ,Y ). (2.5)

If R and R̃ are respectively the curvature tensor of the Levi-Civita connection ∇ and the semi-symmetric
metric connection ∇̃ then we have [17]

R̃(X ,Y )Z = R(X ,Y )Z−P(Y,Z)X +P(X ,Z)Y −g(Y,Z)LX +g(X ,Z)LY, (2.6)

where P is a tensor field of type (0, 2) given by

P(X ,Y ) = g(LX ,Y ) = (∇X α)(Y )−α(X)α(Y )+
1
2

α(ρ)g(X ,Y ) (2.7)

for any vector fields X and Y . From (2.6) it follows that

S̃(Y,Z) = S(Y,Z)− (n−2)P(Y,Z)−ag(Y,Z), (2.8)

where S̃ and S denote respectively the Ricci tensor with respect to ∇̃ and ∇, a = traceP. The tensor P of
type (0,2) given in (2.7) is not symmetric in general and hence from (2.8) it follows that the Ricci tensor S̃
of the semi-symmetric metric connection ∇̃ is not so either. But if we consider that the 1-form α , associated
with the torsion tensor τ , is closed then it can be easily shown that the relation

(∇X α)(Y ) = (∇Y α)(X) (2.9)
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holds for all vector fields X ,Y and hence the tensor P(X ,Y ) is symmetric. Consequently, the Ricci tensor
S̃ is symmetric. Conversely, if P(X ,Y ) is symmetric then from (2.7) it follows that the 1-form α is closed.
This leads to the following:

Proposition 2.1 [1]. Let (Mn,g) (n > 2) be a Riemannian manifold admitting a semi-symmetric metric
connection ∇̃. Then the Ricci tensor S̃ of ∇̃ is symmetric if and only if the 1-form α, associated with the
torsion tensor τ, is closed.

Contracting (2.8) with respect to Y and Z, it can be easily found that

r̃ = r−2(n−1)a, (2.10)

where r̃ and r denote respectively the scalar curvature with respect to ∇̃ and ∇.

Definition 2.1. A Riemannian manifold (Mn,g) (n > 2) is called generalized pseudo Ricci symmetric
manifold admitting semi-symmetric metric connection if its Ricci tensor S̃ of type (0,2) is not identically
zero and satisfies the condition

(∇̃X S̃)(Y,Z) = 2Ã(X)S̃(Y,Z)+ B̃(Y )S̃(Z,X)+ D̃(Z)S̃(X ,Y ), (2.11)

where Ã, B̃, D̃ are distinct 1-forms (not simultaneously zero) and ∇̃ denotes the semi-symmetric metric
connection.

The 1-forms Ã, B̃, and D̃ are known as the associated 1-forms of the manifold. Such an n-dimensional
manifold is denoted by [G(PRS)n, ∇̃]. In view of (2.4) and (2.8), it follows from (2.11) that

(∇X S)(Y,Z)−2Ã(X)S(Y,Z)− [α(Y )+ B̃(Y )]S(Z,X)− [α(Z)+ D̃(Z)]S(X ,Y )

= (n−2)[(∇X P)(Y,Z)+P(ρ,Z)g(X ,Y )+P(Y,ρ)g(X ,Z)

−2Ã(X)P(Y,Z)− B̃(Y )P(Z,X)− D̃(Z)P(X ,Y )

−α(Y )P(X ,Z)−α(Z)P(Y,X)]− [2aÃ(X)−da(X)]g(Y,Z)

− [aB̃(Y )+α(QY )]g(Z,X)− [aD̃(Z)+α(QZ)]g(X ,Y ), (2.12)

where Q is the Ricci operator, i.e., S(X ,Y ) = g(QX ,Y ).
In particular, if the 1-form α vanishes identically, then (2.12) reduces to (1.2) with Ã = A, B̃ = B and

D̃ = D. Hence the manifold G(PRS)n is a particular case of [G(PRS)n, ∇̃]. Also the manifold G(PRS)n could
be a [G(PRS)n, ∇̃] when it admits a semi-symmetric metric connection ∇̃ different from the Riemannian
connection ∇. We now prove the following Lemma.

Lemma 2.1. If in a [G(PRS)n, ∇̃] the 1-form α, associated with the torsion tensor τ, is closed, then its Ricci
tensor S̃ is of the form:

S̃ = r̃ γ⊗ γ, (2.13)

where γ is a non-zero 1-form defined by γ(X) = g(X ,µ), µ being a unit vector field.

Proof. Interchanging Y and Z in (2.11) we obtain

(∇̃X S̃)(Z,Y ) = 2Ã(X)S̃(Z,Y )+ B̃(Z)S̃(Y,X)+ D̃(Y )S̃(X ,Z). (2.14)

Since the 1-form α , associated with the torsion tensor τ , is closed, from Proposition 2.1 it follows that the
Ricci tensor S̃ is symmetric. Subtracting the last relation from (2.11) we get

[B̃(Y )− D̃(Y )]S̃(X ,Z) = [B̃(Z)− D̃(Z)]S̃(X ,Y ), (2.15)

where the symmetry property of S̃ has been used.
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Let us consider Ẽ(X) = g(X ,ν) = B̃(X)− D̃(X) for all vector fields X and ν is a vector field associated
with the 1-form Ẽ. Then the above relation reduces to

Ẽ(Y )S̃(Z,X) = Ẽ(Z)S̃(X ,Y ). (2.16)

Contracting (2.16) with respect to X and Z we have

r̃Ẽ(Y ) = Ẽ(Q̃Y ), (2.17)

where Q̃ is the Ricci operator associated with the Ricci tensor S̃, i.e., S̃(X ,Y ) = g(Q̃X ,Y ). Also from (2.16)
we have

Ẽ(ν)S̃(X ,Y ) = Ẽ(Y )S̃(X ,ν) = Ẽ(Y )g(Q̃X ,ν) = Ẽ(Y )Ẽ(Q̃X), (2.18)

which, in view of (2.17), yields

S̃(X ,Y ) =
r̃

Ẽ(ν)
Ẽ(X)Ẽ(Y )

= r̃ γ(X)γ(Y ), (2.19)

where γ(X) = g(X ,µ) = 1√
Ẽ(ν)

Ẽ(X), µ being a unit vector field associated with the 1-form γ . Hence the

lemma is proved.
Using (2.13) and (2.10) in (2.8) we obtain

S(Y,Z) = ag(Y,Z)+ [r−2(n−1)a]γ(Y )γ(Z)+(n−2)P(Y,Z), (2.20)

provided that the 1-form α , associated with the torsion tensor τ , is closed. The unit vector field µ associated
to the 1-form γ is called the generator of [G(PRS)n, ∇̃] and P is known as the structure tensor of [G(PRS)n, ∇̃].

A non-zero vector V on a manifold M is said to be timelike (resp., non-spacelike, null, spacelike) if it
satisfies g(V,V ) < 0 (resp. ≤ 0, = 0, > 0) [2,12].

Since µ is a unit vector field on the connected and non-compact Riemannian manifold M = [G(PRS)n, ∇̃]
with metric tensor g, it can be easily shown [12, p. 148] that g̃ = g−2γ⊗ γ is a Lorentz metric on M. Also,
µ becomes timelike so the resulting Lorentz manifold is time-orientable.

3. GENERAL RELATIVISTIC VISCOUS FLUID [G(PRS)4, ∇̃] SPACETIME

A viscous fluid spacetime is a connected Lorentz manifold (M4,g) with signature (-, +, +, +). In general
relativity the key role is played by Einstein’s equation

S(X ,Y )− r
2

g(X ,Y )+λg(X ,Y ) = kT (X ,Y ) (3.1)

for all vector fields X , Y , where S is the Ricci tensor of type (0, 2), r is the scalar curvature, λ is the
cosmological constant, k is the gravitational constant, and T is the energy-momentum tensor of type (0, 2).
Let us consider the energy-momentum tensor T of a viscous fluid spacetime of the following form [11]

T (X ,Y ) = pg(X ,Y )+(σ + p)γ(X)γ(Y )+P(X ,Y ), (3.2)

where σ , p are the energy density and isotropic pressure, respectively, and P denotes the anisotropic pressure
tensor of the fluid, µ is the unit timelike vector field, called flow vector field of the fluid associated with the
1-form γ given by g(X ,µ) = γ(X) for all X . Then by virtue of (3.2), (3.1) can be written as

S(X ,Y ) =
( r

2
+ kp−λ

)
g(X ,Y )+ k(σ + p)γ(X)γ(Y )+ kP(X ,Y ), (3.3)
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which, in view of (2.20), shows that the spacetime under consideration is a [G(PRS)4, ∇̃] with µ as the
unit timelike flow vector field of the fluid and P as the anisotropic pressure tensor, where the 1-form α ,
associated with the torsion tensor τ , corresponding to the semi-symmetric metric connection ∇̃, is closed.
Hence we can state the following:

Theorem 3.1. A viscous fluid spacetime obeying Einstein’s equation with a cosmological constant is a
connected non-compact Lorentzian [G(PRS)4, ∇̃] with closed 1-form α, associated with the torsion tensor
τ, corresponding to the semi-symmetric metric connection ∇̃, the generator µ as the flow vector field of the
fluid and the structure tensor P as the anisotropic pressure tensor of the fluid.

Now by virtue of (3.3), (2.20) yields
( r

2
+ kp−λ −a

)
g(X ,Y )+(kσ + kp+6a− r)γ(X)γ(Y )+(k−2)P(X ,Y ) = 0. (3.4)

Setting X = Y = µ in (3.4) we obtain by virtue of (2.10) that

σ =
1
2k

[3r̃−2λ +4a−2(k−2)b], (3.5)

where b = P(µ,µ). Again, contracting (3.4) we find by virtue of (2.10) that

p =
1
6k

[6λ −3r̃−2(k +4)a−2(k−2)b]. (3.6)

This leads to the following:

Theorem 3.2. In a viscous fluid [G(PRS)4, ∇̃] spacetime, with closed 1-form α associated with the torsion
tensor τ corresponding to the semi-symmetric metric connection ∇̃, obeying Einstein’s equation with a
cosmological constant λ none of the isotropic pressure and energy density can be a constant.

Now suppose that σ > 0 and p > 0. Then we have from (3.5) and (3.6) that

λ <
3r̃ +4a−2(k−2)b

2
and λ >

3r̃ +2(k +4)a+2(k−2)b
6

and hence

3r̃ +2(k +4)a+2(k−2)b
6

< λ <
3r̃ +4a−2(k−2)b

2
(3.7)

and
r̃ >

k−2
3

(a+4b). (3.8)

This leads to the following:

Theorem 3.3. In a viscous fluid [G(PRS)4, ∇̃] spacetime, with closed 1-form α associated with the torsion
tensor τ corresponding to the semi-symmetric metric connection ∇̃, obeying Einstein’s equation, the
cosmological constant λ satisfies the relation (3.7) and the scalar curvature r̃ satisfies the relation (3.8)
provided that the energy density and isotropic pressure are both positive.

We now investigate whether a viscous fluid [G(PRS)4, ∇̃] spacetime with µ as the unit timelike flow
vector field can admit heat flux or not. Therefore, if possible, let the energy-momentum tensor T be of the
following form [11]

T (X ,Y ) = pg(X ,Y )+(σ + p)γ(X)γ(Y )+ γ(X)η(Y )+ γ(Y )η(X), (3.9)
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where η(X) = g(X ,V ) for all vector fields X ; V being the heat flux vector field; σ , p are the energy density
and isotropic pressure, respectively. Thus we have g(µ,V ) = 0, i.e., η(µ) = 0. Hence by virtue of the last
relation, (2.10) and (2.20), (3.1) yields

2P(X ,Y )+
(

λ − r̃
2
− kp−2a

)
g(X ,Y )+ [r̃− k(p+σ)]γ(X)γ(Y )

−k[γ(X)η(Y )+ γ(Y )η(X)] = 0. (3.10)

Setting Y = µ in (3.10) we obtain

2P(X ,µ)+
(

λ − 3
2

r̃ + kσ −2a
)

γ(X)+ kη(X) = 0. (3.11)

Putting X = µ in (3.11) we obtain

2b−
(

λ − 3
2

r̃ + kσ −2a
)

= 0. (3.12)

Using the last relation in (3.11) we obtain

η(X) =−2
k
[P(X ,µ)+bγ(X)], since k 6= 0. (3.13)

Thus we have the following:

Theorem 3.4. A viscous fluid [G(PRS)4, ∇̃] spacetime, with closed 1-form α associated with the torsion
tensor τ corresponding to the semi-symmetric metric connection ∇̃, obeying Einstein’s equation with a
cosmological constant λ admits heat flux given by (3.13) unless P(X ,µ)+bγ(X) 6= 0 for all X .

From (3.13) it follows that

V =−2
k
(L+bI)µ, (3.14)

where P(X ,Y ) = g(LX ,Y ) for all vector fields X , Y . This implies that V = 0 if and only if −b is the
eigenvalue of P corresponding to the eigenvector µ . Hence we can state the following:

Theorem 3.5. A viscous fluid [G(PRS)4, ∇̃] spacetime, with closed 1-form α associated with the torsion
tensor τ corresponding to the semi-symmetric metric connection ∇̃, cannot admit heat flux if and only if −b
is the eigenvalue of P corresponding to the eigenvector µ .

4. EXAMPLE OF G(PRS)4

This section deals with an example of G(PRS)4.

Example. Let M4 = {(x1,x2,x3,x4) ∈ R4} be an open subset of R4 endowed with the metric

ds2 = gi jdxidx j = f (x1,x3)(dx1)2 +2dx1dx2 +(dx3)2 +(dx4)2

(i, j = 1,2, ..,4), (4.1)

where f is a continuously differentiable function of x1 and x3 such that f·33 6= 0, f·331 6= 0, and f·333 6= 0,
and ‘·’ denotes the partial differentiation with respect to the coordinates. Then the only non-vanishing
components of the Christoffel symbols, the curvature tensor, the Ricci tensor, and their covariant derivatives
are given by

Γ3
11 =−1

2
f·3 =−Γ2

13, Γ2
11 =

1
2

f·1,
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R1331 =
1
2

f·33, S11 =
1
2

f·33, S11,1 =
1
2

f·331, S11,3 =
1
2

f·333

and the components which can be obtained from these by the symmetry properties, where ‘,’ denotes the
covariant differentiation with respect to the metric tensor g. Therefore our M4 with the considered metric
is a Riemannian manifold which is neither Ricci symmetric nor Ricci recurrent and is of vanishing scalar
curvature.

Now we shall show that this M4 is G(PRS)4, i.e., it satisfies (1.2). We consider the 1-forms

Ai(x) =
f·331

2 f·33
for i = 1

=
f·333

2 f·33
for i = 3

= 0, otherwise,

Bi(x) =
1
2

for i = 1

= 0, otherwise,

Di(x) = −1
2

for i = 1

= 0, otherwise

at any point x ∈M. Then in our M4, (1.2) reduces to the following equations

S11,1 = 2A1S11 +B1S11 +D1S11, (4.2)

S11,3 = 2A3S11 +B1S31 +D1S13, (4.3)

since for the cases other than (4.2) and (4.3), the components of each term of (1.2) vanish identically and
the relation (1.2) holds trivially.

Now the right hand side of (4.2) = (2A1 +B1 +D1)S11

=
1
2

f·331

= left hand side of (4.2).

Similarly it can be proved that the relation (4.3) is true. Hence our considered M4 equipped with the
considered metric given by (4.1) is a G(PRS)4. Thus we can state the following:

Theorem 4.1. Let (M4,g) be a Riemannian manifold endowed with the metric (4.1). Then (M4,g) is
a generalized pseudo Ricci symmetric manifold with vanishing scalar curvature which is neither Ricci
symmetric nor Ricci recurrent.
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Poolsümmeetrilist meetrilist seost järgivatest üldistatud pseudo Ricci sümmeetrilistest
muutkondadest

Absos Ali Shaikh, Cihan Özgür ja Sanjib Kumar Jana

Artikli eesmärgiks on uurida poolsümmeetrilist meetrilist seost järgivate üldistatud pseudo Ricci sümmeet-
riliste muutkondade rakendamist üldrelatiivsusteoorias ja kosmoloogias. Ühtlasi on näite abil veendutud
üldistatud pseudo Ricci sümmeetriliste muutkondade olemasolus.


