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On |A|k summability factors of infinite series
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Abstract. In an earlier paper (Rhoades, B. E. and Savaş, E. Some necessary conditions for absolute matrix summability factors.
Indian J. Pure Appl. Math., 2002, 33(7), 1003–1009) the authors obtained necessary conditions for the series ∑an to be absolutely
summable of order k by a triangular matrix. In this paper we present sufficient conditions for absolute matrix summability factors.
As a corollary we obtain a result of N. Singh (On |N, pn| summability factors of infinite series. Indian J. Math., 1968, 10, 19–24).
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Let A be a lower triangular matrix, {sn} any sequence. Then

An :=
n

∑
ν=0

anνsν .

A series ∑an, with partial sums sn, is said to be summable |A|k,k ≥ 1 if

∞

∑
n=1

nk−1|An−An−1|k < ∞.

We may associate with A two lower triangular matrices A and Â as follows:

ānν =
n

∑
r=ν

anr, n,ν = 0,1,2, . . . ,

and
ânν = ānν − ān−1,ν , n = 1,2,3, . . . .

In our previous work on absolute summability [1,2] we have assumed that the triangular matrix A had
row sums one. This condition rules out the consideration of factorable matrices that are not weighted mean
matrices. A lower triangular matrix A is said to be factorable if the nonzero terms ank can be written as anbk
for 0≤ k ≤ n. If A is a factorable matrix with row sums one, then it is a weighted mean matrix.
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We shall first establish a general theorem for triangular matrices, which also applies to factorable
matrices which need not be weighted mean matrices, and then we shall specialize this result to triangular
matrices with row sums one.

A series ∑an with partial sums sn is said to be bounded |A|k,k ≥ 1, if ∑m
ν=1 amν |sν |k = O(1) as m→ ∞.

Theorem 1. Let A be a lower triangular matrix satisfying

(i)
n−1

∑
ν=1

|∆ν ânν |= O(|ann|),n≥ 2,

(ii)
m+1

∑
n=ν+1

|∆ν ânν |= O(|aνν |),m≥ ν ,

(iii) n|ann|= O(1),

(iv) |aνr−aν+1,r|= O(|aν+1,ν+1aνr|), 0≤ r ≤ ν ,

(v)
n−1

∑
ν=1

|aνν ân,ν+1|= O(|ann|),n≥ 2, and

(vi)
m+1

∑
n=ν+1

|ân,ν+1|= O(1), m≥ ν ... .

If ∑an is bounded |A|k and {λn} is a bounded nonzero sequence satisfying

(vii)
m

∑
n=1

|ann||λn|k = O(1), and

(viii) |∆|λn|k|= O(|ann||λn|k),
then the series ∑anλn is summable |A|k,k > 1.

Proof. Let (yn) be the nth term of the A-transform of ∑n
i=0 λiai. Then

yn =
n

∑
i=0

anisi =
n

∑
i=0

ani

i

∑
ν=0

λνaν

=
n

∑
ν=0

λνaν

n

∑
i=ν

ani =
n

∑
ν=0

ānνλνaν

and, for n > 0,

Yn := yn− yn−1 =
n

∑
ν=0

(ānν − ān−1,ν)λνaν =
n

∑
ν=0

ânνλνaν .

Using Abel’s transformation, we have, for n > 1,

Yn :=
n−1

∑
ν=1

(∆ν ânν)λνsν +
n−1

∑
ν=1

ân,ν+1(∆λν)sν +annλnsn

= Tn1 +Tn2 +Tn3, say.

Since Y1 is bounded, in order to prove our theorem, it is sufficient, by Minkowski’s inequality, to show
that

∞

∑
n=2

nk−1|Tnr|k < ∞, for r = 1,2,3.
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Using Hölder’s inequality and (i), (iii), and (ii),

I1 : =
m+1

∑
n=2

nk−1|Tn1|k =
m

∑
n=2

nk−1
∣∣∣

n−1

∑
ν=1

∆ν ânνλνsν

∣∣∣
k

= O(1)
m+1

∑
n=2

nk−1
( n−1

∑
ν=2

|∆ν ânν ||λν ||sν |
)k

= O(1)
m+1

∑
n=2

nk−1
( n−1

∑
ν=1

|∆ν ânν ||λν |k|sν |k
)

×
( n−1

∑
ν=1

|∆ν ânν |
)k−1

= O(1)
m+1

∑
n=2

(n|ann|k−1
n−1

∑
ν=1

|∆ν ân,ν ||λν |k|sν |k

= O(1)
m

∑
ν=1

|λν |k|sν |k
m+1

∑
n=ν+1

|∆ν ânν |

= O(1)
m

∑
ν=1

|aνν ||λν |k|sν |k.

Using the boundedness of ∑an and {λn}, (iv), (viii), and (vii),

I1 = O(1)
m

∑
ν=1

|λν |k
[ ν

∑
i=0
|aν i||si|k−

ν−1

∑
i=0
|aν i||si|k

]

= O(1)
[ m

∑
ν=1

|λν |k
ν

∑
i=0
|aν i||si|k−

m−1

∑
ν=0

|λν+1|k
ν

∑
i=0
|aν+1,i||si|k

]

≤ O(1)
[
|λm|k

m

∑
i=0
|ami||si|k

+
m−1

∑
ν=1

(
|λν |k

ν

∑
i=0
|aν i||si|k−|λν+1|k

ν

∑
i=0
|aν+1,i||si|k

)]

≤ O(1)+O(1)
[m−1

∑
ν=1

(
|λν |k−|λν+1|k

) ν

∑
i=0
|aν i||si|k

+
m−1

∑
ν=1

|λν+1|k
ν

∑
i=0
|aν i−aν+1,i||si|k

]

= O(1)+O(1)
m−1

∑
ν=1

|∆(|λν |k)|+O(1)
m−1

∑
ν=1

|λν+1|k|aν+1,ν+1|
ν

∑
i=0
|aν i||si|k

= O(1)+O(1)
m−1

∑
ν=1

|aνν ||λν |k +O(1)
m−1

∑
ν=1

|aν+1,ν+1||λν+1|k

= O(1).
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Using (viii), Hölder’s inequality, (v), (iii), and (vi),

I2 : =
m+1

∑
n=2

nk−1|Tn2|k =
m+1

∑
n=2

nk−1
∣∣∣

n−1

∑
ν=1

ân,ν+1(∆λν)sν

∣∣∣
k

≤
m+1

∑
n=2

nk−1
[ n−1

∑
ν=1

|ân,ν+1||∆λν ||sν |
]k

= O(1)
m+1

∑
n=2

nk−1
[ n−1

∑
ν=1

|λν |k|sν |k|aνν ân,ν+1|
]
×

[ n−1

∑
ν=1

|aνν ân,ν+1|
]k−1

= O(1)
m+1

∑
n=2

(n|ann|)k−1
n−1

∑
ν=1

|ân,ν+1aνν ||λν |k|sν |k

= O(1)
m

∑
ν=1

aνν |λν |k|sν |k
m+1

∑
n=i+1

|ân,ν+1|

= O(1)
m

∑
ν=1

aνν |λν |k|sν |k = O(1),

as in the proof of I1.
Finally, using (iii),

m

∑
n=1

nk−1|Tn3|k =
m

∑
n=1

nk−1
∣∣∣annλnsn

∣∣∣
k

= O(1)
m

∑
n=1

nk−1|ann|k|λn|k|sn|k

= O(1)
m

∑
n=1

(n|ann|)k−1ann|λn|k−1|λn||sn|k

= O(1)
m

∑
n=1

|annλn||sn|k

= O(1),

as in the proof of I1.

Theorem 2. Let A be a lower triangular matrix with nonnegative entries satisfying
(ix) ān0 = 1,n = 0,1,2, . . .,
(x) an−1,ν ≥ anν for n≥ ν +1,
and conditions (iii)–(v) of Theorem 1.

If ∑an is bounded |A|k and {λn} is a bounded nonzero sequence satisfying conditions (vii) and (viii) of
Theorem 1, then the series ∑anλn is summable |A|k,k > 1.

Proof. Upon examining the conditions of Theorem 1 it is clear that one needs to show that conditions (ix)
and (x) imply that ân,ν+1 ≥ 0 and that conditions (i), (ii), and (vi) of Theorem 1 hold.

Using the definitions of ânν and ānν , and (ix) and (x),

∆ν ânν = ânν − ân,ν+1

= ānν − ān−1,ν − ān,ν+1 + ān−1,ν+1

= anν −an−1,ν ≤ 0.
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Therefore

n−1

∑
ν=1

|∆ν ânν |=
n−1

∑
ν=1

(an−1,ν −anν)

= 1−1+an0 +ann ≤ ann,

and condition (i) of Theorem 1 is true.
Also,

m+1

∑
n=ν+1

|∆ν ânν |=
m+1

∑
n=ν+1

(an−1,ν −aνν) = aνν −am+1,ν ≤ aνν ,

and condition (ii) of Theorem 1 is true.
Finally,

m+1

∑
n=ν+1

|ân,ν+1|=
m+1

∑
n=ν+1

ν

∑
i=0

(an−1,i−ani)

=
ν

∑
i=0

m+1

∑
n=ν+1

(an−1,i−ani)

=
ν

∑
i=0

(aνi−am+1,i)≤
ν

∑
i=0

aν i = 1,

and condition (vi) of Theorem 1 is satisfied.

If one is dealing with absolute summability of order 1, then conditions (iii) and (iv) of Theorem 1 are
not needed.

Theorem 3. Let A be a lower triangular matrix satisfying conditions (ii), (iv), and (vi) of Theorem 1. If ∑an
is bounded |A| and {λn} is a bounded nonzero sequence satisfying conditions (vii) and (viii) of Theorem 1
(with k = 1), then the series ∑anλn is summable |A|.
Proof. This can be proved by using the techniques similar to that of Theorem 1. So we omit it.

Theorem 4. Let A be a lower triangular matrix with nonnegative entries satisfying conditions (ix) and (x) of
Theorem 2 and condition (iv) of Theorem 1. If ∑an is bounded |A| and {λn} is a bounded nonzero sequence
satisfying conditions (vii) and (viii) of Theorem 1, then the the series ∑anλn is summable |A|.
Proof. As in the proof of Theorem 2, conditions (ix) and (x) of Theorem 2 imply conditions (i) and (ii) of
Theorem 1.

A weighted mean matrix is a lower triangular matrix with entries ank = pk/Pn, where {pk} is a
nonnegative sequence with p0 > 0 and Pn := ∑n

k=0 pk. A weighted mean matrix is denoted by (N, pn).

Corollary 1. Let {pn} be a positive sequence such that Pn := ∑n
k=0 pk → ∞, and satisfies

(xi) npn = O(Pn).
If ∑anλn is bounded |N, pn|k and {λn} is a bounded nonzero sequence satisfying

(xii)
∞

∑
n=1

pn

Pn
|λn|k = O(1), and

(xiii) |∆λn|= O
(

pn

Pn
|λn|

)
,

then the series ∑anλn is summable |N, pn|k,k ≥ 1.
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Proof. Conditions (i), (iv), and (v) of Theorem 1 are automatically satisfied for any weighted mean method.
Conditions (iii), (vii), and (viii) of Theorem 1 become, respectively, conditions (xi), (xii), and (xiii) of
Corollary 1.

Corollary 2. If ∑an is bounded |N, p| and {λn} is a bounded nonzero sequence satisfying

(a)
m

∑
n=1

pn

Pn
|λn|= O(1), and

(b)
Pn

pn
|∆λn|= O(|λn|),

then ∑anλn is summable |N, p|.
Proof. A weighted mean matrix automatically satisfies conditions (i)–(iii) of Theorem 1. Conditions (vii)
and (viii) of Theorem 1 reduce to conditions (a) and (b) of Corollary 2, respectively.

Corollary 2 is a result of [3].
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Lõpmatute ridade |A|k-summeeruvusteguritest

B. E. Rhoades ja Ekrem Savaş

Olgu A kolmnurkne maatriks ja k ≥ 1. Artiklis on defineeritud rea |A|k-summeeruvuse ja |A|k-tõkestatuse
mõisted. On leitud piisavad tingimused selleks, et arvud λn oleksid maatriksi A k-järku absoluutse sum-
meeruvuse tegurid ehk rida ∑n anλn, kus (λn) on tõkestatud jada, oleks |A|k-summeeruv, kui rida ∑n an on
|A|k-tõkestatud. Saadud tulemus üldistab N. Singhi tulemust Rieszi kaalutud keskmiste menetluse (N, pn)
absoluutse summeeruvuse tegurite kohta [3].


