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Dedicated to Jüri Engelbrecht on the occasion of his 70th birthday

Hui-Hui Daia∗ and Ting Sub

a Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
b Department of Mathematical and Physical Science, Henan Institute of Engineering, Zhengzhou, Henan, 451191, People’s

Republic of China; suting1976@163.com

Received 15 December 2009, accepted 3 February 2010

Abstract. Integrable variable-coefficient 2D Toda lattice equations are proposed by utilizing a generalized version of the dressing
method. Compatibility conditions are given, which ensures that these equations are integrable. Further, soliton solutions for the
new type of equations are shown in explicit forms.
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1. INTRODUCTION

The dressing method based on the triangular factorization of Volterra integrable operators was first
introduced by Zakharov and Shabat [1,2] for generating integrable nonlinear evolution equations and
constructing their multi-soliton solutions. A number of authors have used this method to study various
integrable equations. Chowdhury and Basak [3] applied it to obtain the soliton solution of the Hirota–
Satsuma coupled system of the KdV equations. Dye and Parker [4] examined regularized long-wave
(RLW) equation and its explicit solutions by using this method. Further, with the aid of this method,
Parker [5] studied the Sawada–Kotera equation and gave a reformulation of the dressing method via
Hirota’s formulation. In [1,2] authors only transformed constant-coefficient operators into dressed constant-
coefficient ones. Dai and Jeffrey [6] and Jeffrey and Dai [7] extended the dressing method to a variable-
coefficient and generalized version and constructed the inverse scattering transformations for certain
types of variable-coefficient KdV equation. The generalization provided a procedure for construction of
integrable variable-coefficient equations and gave their explicit solutions. In the present work we develop
the generalization to the discrete version for generating an integrable variable-coefficient Toda equation.
Also, we shall represent the one-soliton and two-soliton solutions in explicit forms.
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2. A GENERALIZED VERSION OF THE DRESSING METHOD

In this section we extend the generalized version of the dressing method for discrete systems.
First we consider three linear difference operators

F(n,m, t,y)ψn =
∞∑
−∞

F(n,m, t,y)ψm,

K+(n,m, t,y)ψn =
∞∑
n

K+(n,m, t,y)ψm,

K−(n,m, t,y)ψn =
n∑
−∞

K−(n,m, t,y)ψm.

(1)

Similar to the generalized dressing method for continuous systems, we introduce the triangular factorization
about the operator ‘F’

I+F = (I+K+)−1(I+K−), (2)

where I is the identity operator, K+(n,m, t,y) = 0 for m < n and K−(n,m, t,y) = 0 for m > n. It is assumed
that

sup
∞∑
n0

|K±(n,m, t,y)|ψm < ∞, sup
∞∑
n0

|F(n,m, t,y)|ψm < ∞,

for all n0 >−∞. For convenience, we denote F(n,m) = F(n,m, t,y), K±(n,m) = K±(n,m, t,y).
The discrete Gel′fand–Levitan–Marchenko equation can be obtained from (2), which reads (cf. [1])

F(n,m)+K+(n,m)+
∞∑

s=n

K+(n,s)F(s,m) = 0. (3)

We introduce two differential-difference operators M1 and M2 defined by

M1 = α1∂y +β1∂t +a1E+a−1E−1, M2 = α2∂y +β2∂t +b−1E−1, (4)

where E is the shift operator of the discrete variable n, defined by Ek f (n) = f (n + k), k ∈ Z; t and y are
continuous variables, a1,a−1,b−1,α1,α2,β1, and β2 are functions of t and y.

Suppose that the operator F commutes with M1 and M2, i.e.,

[M1,F] = M1F−FM1 = 0, [M2,F] = M2F−FM2 = 0. (5)

From (4) and (5) we can obtain two equations for F :

α1Fy(n,m)+β1Ft(n,m)+a1F(n+1,m)+a−1F(n−1,m)−F(n,m−1)a1−F(n,m+1)a−1 = 0, (6)

α2Fy(n,m)+β2Ft(n,m)+b−1F(n−1,m)−F(n,m+1)b−1 = 0. (7)

The dressing operators N1 and N2 are introduced from the relations

N1(I+K+(n,m))− (I+K+(n,m))M1 = 0, (8)

N2(I+K+(n,m))− (I+K+(n,m))M2 = 0. (9)
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Similar to a theorem in [1] for continuous systems, it can be proved that N1 and N2 are differential-difference
operators. For the sake of simplicity, we denote K(n,m) = K+(n,m) and K̂ = K(n,m)|m=n.

We write

N1 = M1 +D1, N2 = M2 +D2. (10)

Then, from (8) and (9), after some calculations, we find that

D1 = c−1E−1 + c0, D2 = d−1E−1, (11)

and

α1K̂y +β1K̂t +a−1(K(n−1,n)−K(n,n+1))+ c0(1+ K̂)+ c−1K(n−1,n) = 0, (12)

c−1(1+K(n−1,n−1))−a−1(K(n,n)−K(n−1,n−1)) = 0, (13)

d−1(1+K(n−1,n−1))−b−1(K(n,n)−K(n−1,n−1)) = 0. (14)

The following theorem in [7] is an extension of the original dressing method, which can yield a wide range
of integrable variable-coefficient nonlinear evolution equations.

Theorem. If the operators M1 and M2 satisfy

[M1,M2] = ρ1M1 +ρ2M2, (15)

where ρ1 and ρ2 are arbitrary functions of t and y, then their corresponding dressing operators satisfy

[N1,N2] = ρ1N1 +ρ2N2. (16)

Actually, variable-coefficient nonlinear evolution equations are obtained from (16).
In fact, from (15) we find that a1,a−1,b−1,α1,α2,β1,β2,ρ1, and ρ2 satisfy

α1α2y +β1α2t −α2α1y−β2α1t = ρ1α1 +ρ2α2,

α1β2y +β1β2t −α2β1y−β2β1t = ρ1β1 +ρ2β2,

α1b−1,y +β1b−1,t −α2a−1,y−β2a−1,t = ρ1a−1 +ρ2b−1,

−α2a1y−β2a1t = ρ1a1.

(17)

These are the compatibility conditions for (16) to be integrable.
Using (16), we obtain the nonlinear evolution equations

a1∆d−1−α2c0y−β2c0t −ρ1c0 = 0, (18)

α1d−1,y +β1d−1,t −α2c−1,y−β2c−1,t +(b−1 +d−1)(c0−E−1c0)−ρ1c−1−ρ2d−1 = 0, (19)

where ∆ is a difference operator, which is defined as ∆ψ(n) = ψ(n+1)−ψ(n) for any function ψ .
Let

un =
1+K(n,n)

1+K(n−1,n−1)
, c0 = vn. (20)

Utilizing (13), (14), and (20), equations (18) and (19) can be changed to

a1b−1∆un−α2vn,y−β2vn,t −ρ1vn = 0, (21)

(α1b−1−α2a−1)un,y +(β1b−1−β2a−1)un,t +b−1un(vn− vn−1) = 0. (22)
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We further let

un = exn−1−xn , vn =
(

α1−α2
a−1

b−1

)
xn,y +

(
β1−β2

a−1

b−1

)
xn,t . (23)

Substitution of (23) into (21) and (22) yields the integrable 2D variable-coefficient Toda lattice equation

a1b−1∆exn−1−xn −
[

α2

(
α1−α2

a−1

b−1

)

y
+β2

(
α1−α2

a−1

b−1

)

t
+ρ1

(
α1−α2

a−1

b−1

)]
xn,y

−
[

α2

(
β1−β2

a−1

b−1

)

y
+β2

(
β1−β2

a−1

b−1

)

t
+ρ1

(
β1−β2

a−1

b−1

)]
xn,t

−
[

α2

(
β1−β2

a−1

b−1

)
+β2

(
α1−α2

a−1

b−1

)]
xn,ty−α2

(
α1−α2

a−1

b−1

)
xn,yy

−β2

(
β1−β2

a−1

b−1

)
xn,tt = 0. (24)

For the N-soliton solution of the integrable equation (24), we let F be

F(n,m) =
N∑

j=1

f j(t,y,n)g j(t,y,m), (25)

where f j(t,y,n) and g j(t,y,m) are some l× l matrices, whose expressions can be obtained from (6) and (7).
Moveover, we suppose that

K(n,m) =
N∑

j=1

k j(t,y,n)g j(t,y,m). (26)

Substituting (25) and (26) into the discrete GLM equation (3) gives

K(n,n) =
N∑

j=1

k j(t,y,n)g j(t,y,n) =−( f1, f2, · · · , fN)L−1(g1,g2, · · · ,gN)T , (27)

where L is defined by

L jl = δ jl +
∞∑

s=n

g j(t,y,s) fl(t,y,s), 1≤ j, l ≤ N.

The N-soliton solution for (24) can be obtained from (20) and (27).
In the following section we consider some special forms of M1 and M2.

3. AN INTEGRABLE 2D VARIABLE-COEFFICIENT TODA LATTICE EQUATION

Let differential-difference operators be

M1 = α1∂y +a1E+a−1E−1, M2 = β2∂t +b−1E−1. (28)

From (17) we have

−β2α1t = ρ1α1, α1β2y = ρ2β2,

−β2a1t = ρ1a1, α1b−1,y−β2a−1,t = ρ1a−1 +ρ2b−1.
(29)
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Then, from (24), after some calculations, we obtain the integrable 2D variable-coefficient Toda lattice
equation

exn−xn+1 − exn−1−xn −h1(t)h2(y)xn,yt +h2
1(t)h2(y)h3(y)xn,tt +

1
2
(h2

1(t))th2(y)h3(y)xn,t = 0, (30)

where h1(t) = β2
b−1

,h2(y) = α1
a1

, and h3(y) = a−1
α1

are arbitrary functions. The above equation becomes the
well-known 2D Toda lattice for α1 = β2 = a1 = a−1 = b−1 = 1 , ξ = y− t.

Case 1. One-soliton solution
We take N = 1 in (25). From (6) and (7) we have the special solution

F(n,m) = ew(t)+q(y)+p1m+p2n, (31)

with q(y) = (e−p1 − ep2)
∫

h−1
2 (y)dy+(ep1 − e−p2)

∫
h3(y)dy, w(t) = (ep1 − e−p2)

∫
h−1

1 (t)dt.

We obtain the one-soliton solution of equation (30)

un =
(1− ep1+p2 + ew(t)+q(y)+(p1+p2)(n−1))(1− ep1+p2 + ew(t)+q(y)+(p1+p2)(n+1))

(1− ep1+p2 + ew(t)+q(y)+(p1+p2)n)2 . (32)

Case 2. Two-soliton solution

We take N = 2 in (25). From (6) and (7) we have the following special solution:

F(n,m) =
2∑

j=1

f j(t,y,n)g j(m, t,y) = ew1(t)+q1(y)+p(2)
1 nep(1)

1 m + ew2(t)+q2(y)+p(2)
2 nep(1)

2 m, (33)

with

q j = (e−p(1)
j − ep(2)

j )
∫

h−1
2 (y)dy+(ep(1)

j − e−p(2)
j )

∫
h3(y)dy, w j = (ep(1)

j − e−p(2)
j )

∫
h−1

1 (t)dt, j = 1,2,

p(1)
j and p(2)

j are arbitrary negative constants.
Then, from (27) we have

K(n,n) =− 1
|L|

[
ew1(t)+q1(y)+p(2)

1 n + ew2(t)+q2(y)+p(2)
2 n

+
(ep(1)

2 +p(2)
2 − ep(1)

2 +p(2)
1 )ew1(t)+w2(t)+q1(y)+q2(y)+(p(2)

1 +p(1)
2 +p(2)

2 )n

(1− ep(1)
2 +p(2)

2 )(1− ep(1)
2 +p(2)

1 )

+
(ep(1)

1 +p(2)
2 − ep(1)

1 +p(2)
1 )ew1(t)+w2(t)+q1(y)+q2(y)+(p(2)

1 +p(1)
1 +p(2)

2 )n

(1− ep(1)
1 +p(2)

1 )(1− ep(1)
1 +p(2)

2 )

]
, (34)

with

|L|= 1+
ew2(t)+q2(y)+(p(1)

2 +p(2)
2 )n

1− ep(1)
2 +p(2)

2

+
ew1(t)+q1(y)+(p(1)

1 +p(2)
1 )n

1− ep(1)
1 +p(2)

1

+
ew1(t)+w2(t)+q1(y)+q2(y)+(p(1)

1 +p(2)
1 +p(1)

2 +p(2)
2 )n

(1− ep(1)
1 +p(2)

1 )(1− ep(1)
2 +p(2)

2 )
− ew1(t)+w2(t)+q1(y)+q2(y)+(p(1)

1 +p(2)
1 +p(1)

2 +p(2)
2 )n

(1− ep(1)
1 +p(2)

2 )(1− ep(1)
2 +p(2)

1 )
.

Using (20), we can have the two-soliton solution of equation (30).
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Üldistatud rüütamismeetod muutuvate kordajatega Toda võrrandi integreerimiseks

Hui-Hui Dai ja Ting Su

Zakharov ja Shabat [1,2] konstrueerisid nn rüütamismeetodi (ingl dressing method) integreeruvate evolut-
sioonivõrrandite solitoni-tüüpi lahendite leidmiseks. Meetodi idee seisneb mittelineaarsete võrrandite
teisendamises (rüütamises) lihtsamalt lahenduvaks lineaarsete integraalvõrrandite süsteemiks. Dai ja
Jeffrey [6,7] on seda meetodit üldistanud muutuvate kordajatega evolutsioonivõrrandite analüüsiks. Selle
üldistuse baasil on käesolevas artiklis lahendatud muutuvate kordajatega Toda võrrand ja esitatud vastavad
pidevustingimused. Näitena on konstrueeritud ühe- ja kahesolitonilised lahendid.


