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Abstract. Contemporary complexity science deals with problems which involve many variables interacting with each other in
such a way that a new quality appears. An important cornestone of complex systems is nonlinearity. In this paper nonlinear wave
motion in microstructured solids is analysed from the viewpoint of complexity. The basic models are derived by using the concept
of internal variables which are related to dissipation inequality. The scale dependence results in wave hierarchies where dispersive
effects are important. In such nonlinear models solitary wave structures may emerge – a typical sign of a new quality charac-
teristic of complexity. In addition, examples from biophysics are presented, which demonstrate clearly the similarity to the ideas of
complexity shown for waves in solids.
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1. INTRODUCTION

The history of mechanics is full of remarkable ideas
which have shaped the modern understanding of nature
and technology. The list of celebrated examples is
long: the movement of planets, a three-body system,
movements of a pendulum and vibrations of a string,
waves on a free surface of fluids, etc. A remark-
able physical feature, called nonlinearity (i.e. additivity
does not work), is naturally related to many physical
phenomena and therefore it is not surprising that
mechanics together with thermodynamics is a corner-
stone of an interdisciplinary field of knowledge –
complexity science. Complex systems, as a rule,
are nonlinear. They are far from the equilibrium
and exhibit the properties of the emergence of
coherent structures. Typically such systems involve many
variables (constituents) which interact with each other
in such a way that a new quality appears. In terms of
mechanics, we may recall that nonequilibrium systems
are controlled by thermodynamics, the microstructure
of solids (i.e. internal structure of materials) brings
in the interaction effects, and constitutive laws or
interaction forces are in many cases nonlinear. In terms
of complexity science, mechanics has revealed many
emergent and qualitatively new phenomena like solitons,

attractors, phase transformation, coherent wave fields,
etc. The analysis of complexity, however, faces a
certain caveat. Said A. Toffler in his preface to the
book by Prigogine and Stengers (1984): ‘One of the
most highly developed skills in contemporary Western
civilization is dissection: the split-up of problems into
their smallest possible components. We are good at
it. So good, we often forget to put the pieces back
together again’. However, the idea of putting things back
again is not new. Said Aristotle: ‘The whole is more
than the sum of the parts’. And it is mechanics that
has brought this old knowledge to our contemporary
understandings. The basic notion which has ‘changed
the world’ is nonlinearity. Although the inverse-square
law of gravitation was introduced by Newton, it was
much later when H. Poincaré understood its importance
when he solved the three-body problem. But only in the
mid-twentieth century the concepts like solitons, chaotic
attractors, and other members of the nonlinear ‘zoo’
made clear that a new quality is born when constituents
of a whole interact with each other nonlinearly. Non-
linear dynamics has brought many new ideas not only
to mechanics but also to many other fields – biology
and chemistry, econophysics and social studies, etc.,
not speaking about many other physical processes. The
reason is simple – the world around us is nonlinear and
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similar patterns emerge in different processes, similar
methods can be used in studies of different fields, and
the language of different studies is more understandable
to the general community of scientists. Shortly, the world
is complex and complexity research, as it is understood
now, is an intrinsically transdisciplinary enterprise. The
citation above by A. Toffler reflects the general view, but
the monograph by Prigogine and Stengers (1984) itself
is a proof of the contrary and describes the earlier ideas
of complex systems. More recently, Nicolis and Nicolis
(2007) summed up the main features of complexity
science, but the full and state-of-the-art description of
complex systems is presented in the Encyclopedia of
Complexity and System Science (Mayers, 2009).

Besides the main characteristics of complex systems
mentioned above, the following should be stressed.
First, an important issue in complex systems is their
multi-scale structure: a system behaves differently at the
macroscopic level than at the microscopic level. This
leads to certain hierarchies which are linked physically
and should also be reflected by proper mathematical
models where scaling is of importance. Second, non-
linearity is also a prerequisite to chaos. But complexity
does not mean directly a path to chaos; emergence
usually occurs at the edge of chaos (Holland, 1998;
Taylor, 2003). In this context it means that both order
and chaos must be properly analysed. Mechanics is full
of examples of chaotic motion starting from the three-
body system and nonlinear pendulums to the celebrated
Lorenz attractor which describes the convection in the
atmosphere. In this paper the focus is on the analysis
of waves in microstructured materials by taking the
viewpoint of complexity. Attention is on the proper
modelling of microstructure and the effects which
follow from scaling and interaction between macro- and
microstructure. In addition, some parallels are drawn
from biophysics: the modelling of cardiac contraction
where mechanics is interwoven with physiology and the
ideas of internal variables derived in mechanics are used.
In general, the paper reflects the studies of the Centre for
Nonlinear Studies, Tallinn, in this field.

2. WAVES IN MICROSTRUCTURED SOLIDS

2.1. General theory

The conventional theories of continua describe the
behaviour of homogeneous solids resp. materials. In
reality, however, materials are always characterized by a
certain microstructure at various scales. The character
of a microstructure can be regular (like in laminated
composites) or irregular (like in polycrystalline solids
or alloys). Even more, regularity and irregularity may
be combined like for some FGMs. The characteristic
scale l of a microstructure must always be compared
with the spatial scale L of an excitation. Intuitively
speaking, if L >> l, then the excitation ‘does not feel’
the microstructure; if, however, L∼ l, then the excitation

‘feels’ strongly the microstructure. In general terms,
the starting point for describing a microstructure could
be either the discrete or the continuum approach. In
the discrete approach the volume elements are treated
as point masses with interaction forces between them
described by using assumptions on energy embedded
into the system (Askar, 1985; Maugin, 1999). The
system of governing equations is extremely large, creat-
ing enormous difficulties in numerical simulation, if it is
altogether possible. The discrete approach is often used
for laminated composites and then the effective stiff-
ness theory may be useful (Santosa and Symes, 1991).
From the viewpoint of continua, the straightforward
modelling leads to assigning all physical properties to
every volume element dV in a solid, which means
introducing the dependence on space coordinates. Thus,
the governing equations are so complicated that only
numerical simulation is possible. Although the discrete
approach seems to be appropriate for modelling the
microstructure, the question of how to determine the
interaction forces in order to reflect material properties
is difficult to answer. This is why generalized continuum
theories enter. Generalized continuum theories extend
conventional continuum mechanics for incorporating
intrinsic microstructural effects into governing equations
(Eringen and Suhubi, 1964; Mindlin, 1964; Eringen
1999). A leading concept is to separate the macro- and
microstructure in continua and to formulate the balance
laws for both structures separately (Eringen and Suhubi,
1964; Mindlin, 1964). However, a more sophisticated
way is to introduce the microstructural quantities into
one set of balance laws (Maugin, 1993, 2006). It seems
that such an approach is useful for two reasons: (i) it
reflects clearly the mechanical structure of a solid; (ii) it
allows further generalization in order to include internal
variables and to cast more light on the thermodynamic
character of wave motion. Here we refer to longer
papers by Engelbrecht (2009) and Berezovski et al.
(2010). First, Maugin (1993, 2006) has shown that on
the material manifold M 3, the balance of the canonical
(material) momentum reads

∂P
∂ t

∣∣∣∣
X
−DivRb = f int + fext + f inh, (1)

where P is the material momentum (pseudomomentum),
b is the material Eshelby stress, and finh, fext, fint are
the material inhomogeneity force, the material external
(body) force, and the material internal force, respectively.
The energy balance is governed by

∂ (Sθ)
∂ t

∣∣∣∣
X

+∇R ·Q = hint, (2)

where S is the entropy density per unit reference volume,
θ is the absolute temperature, Q is the material heat flux,
and hint is the source term. The dissipation inequality in
these terms is

Sθ̇ +S ·∇Rθ ≤ hint +∇R(θK), (3)
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where S is the entropy flux and K is the extra entropy
flux which actually vanishes for most cases.

The free energy function W together with the first
Piola–Kirchhoff stress tensor must be known in order
to determine the needed variables P,b, and forces and
the source. Although the structure of the momentum
equation shows explicitly how the forces are accounted
for, the question of how to construct the free energy
function remains.

One step forward to answer this question is to
separate variables into observable and internal (Maugin,
1990; Maugin and Muschik, 1994). The observable
variables are the usual field quantities like elastic strain
or displacement, which are observable in the real sense
of the word. Internal variables, however, are supposed
to describe the internal structure of a solid (or a body,
in general) and are observable but not controllable. This
means that internal variables should compensate for our
lack of a precise description of a microstructure. There
are several examples (Maugin and Muschik, 1994) which
demonstrate how liquid crystals, damage, or dislocation
movements can be described easily using the concept
of internal variables. Recently the concept of internal
variables has been used for describing the dynamics of
microstructured continua (Berezovski et al., 2009).

The main idea is to introduce the internal variables
into the free energy function. Then we can easily
calculate all the needed forces but we need also govern-
ing equations for internal variables. This is obtained by
satisfying the dissipation inequality. So we have followed
the main idea – one balance law and all what is to
be added come from the energy considerations. Let us
consider first a single internal variable of state α as a
second-order tensor. Then the free energy W per unit
volume is specified as a general sufficiently regular
function

W = W (F,θ ,α,∇Rα), (4)

where F is the deformation gradient. Following
Berezovski et al. (2009), it is possible to show that after
calculating all the needed forces, the simplest choice for
the governing equation for α is

α̇ = k (A−DivRA ) , (5)

where k ≥ 0 and

A :=−∂W
∂α

, A :=− ∂W
∂∇Rα

. (6)

This is actually a reaction-diffusion equation which
can be found in numerous applications. It means that
the microstructure is not inertial. If we introduce dual
internal variables α and β , then the situation is different
(Ván et al., 2008). We now assume

W = W (F,θ ,α,∇Rα,β ,∇Rβ ) . (7)

In order to satisfy the dissipation inequality, the simplest
forms of evolution equations for α and β are

(
α̇
β̇

)
= L

(
Ã
B̃

)
=

(
L11 L12

L21 L22

)(
Ã
B̃

)
,

Ã = A−DivRA , B̃ = B−DivRB,

A :=−∂W
∂α

, B :=−∂W
∂β

,
(8)

A :=− ∂W
∂∇Rα

, B :=− ∂W
∂∇Rβ

,

where the components of the linear operator L are
dependent on state variables. Let us consider a non-
dissipative process and assume a quadratic dependence
of the free energy with respect to β . Then from

α̇ = L12 B̃, β̇ =−L12 Ã (9)

that provides the vanishing dissipation, we obtain

α̈ =
(
L12 ·L12) · Ã, (10)

which is a hyperbolic evolution equation for the internal
variable α . In physical terms it means that the inertia of
the internal variable is taken into account.

2.2. Mathematical models

Based on arguments in Subsection 2.1, we present here
the mathematical models for longitudinal waves in the
1D setting. It has been shown by Engelbrecht et al.
(2005) that the Mindlin model can also be represented by
the approach using the material momentum (cf. Eq. (1)).
Recently Berezovski et al. (2009, 2010) have shown that,
by using the concept of dual internal variables again, the
same result can be obtained. Therefore, here we shall
omit the details of derivation and focus on the analysis of
models. The governing system is then the following:

ρ0utt = auxx +Nuxuxx +Aψx, (11)

Iψtt = Cψxx +Mψxψxx−Aux−Bψ. (12)

Here u denotes the longitudinal (macro)displacement and
ψ – the microdeformation (according to the Mindlin
model) or the internal variable (according to the concept
of internal variables). Further, ρ0 is the density and I
inertia of the microstructure, while a,A,B,C,N,M are the
material parameters specifying the free energy function
(see Engelbrecht et al., 2005). We need to introduce a
scale parameter δ ¿ 1 which characterizes the smallness
of the microstructure and another parameter ε ¿ 1 which
emphasizes that the displacement u is small compared to
the reference length. After introducing the dimensionless
variables U,X ,T and applying the ‘slaving principle’
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(see for details Engelbrecht et al., 2005), system (11),
(12) is reduced to one equation

UT T =
(

1− c2
A

c2
0

)
UXX +

1
2

kN
(
U2

X
)

X

+
c2

A

c2
B

(
UT T − c2

1

c2
0

UXX

)

XX
+

1
2

kM
(
U2

XX
)

XX ,

(13)

where c0,c1,cA,cB are velocities and kN ,kM are the
parameters expressing the strengths of physical non-
linearities on macro- and microscale, respectively. The
small parameters are embedded into the coefficients of
Eq. (13). The linear approximation

UT T =
(

1− c2
A

c2
0

)
UXX +

c2
A

c2
B

(
UT T − c2

1

c2
0

UXX

)

XX
, (14)

demonstrates clearly the hierarchical nature of the
process: if c2

A/c2
B is small, then waves are governed

by the properties of macrostructure; if, however, c2
A/cB

is large, then waves ‘feel’ more microstructure. In
the absence of interaction between macro- and micro-
structure (i.e. when A = 0), the wave operator in
terms of U is simply UT T −UXX . It is possible to
develop such a hierarchical modelling further by intro-
ducing multiple scales. Following the Mindlin ideas, it
means that every deformable cell of the microstructure
includes new deformable cells at a smaller scale (Engel-
brecht et al., 2007a). The nonlinear effects in the models
above include also dispersive effects caused by the
microstructure. This means that soliton emergence is
possible when there is a balance between nonlinear and
dispersive effects. Indeed, it has been shown (Janno
and Engelbrecht, 2005a; Engelbrecht et al., 2007b)
that the models like Eq. (13) lead to the emergence of
solitary waves. As Eq. (13) is a two-wave equation, it is
possible to show that left- and right-going soliton trains
emerge from a single initial excitation. The influence
of nonlinearity on the microlevel affects the emergent
waves, making them asymmetric (Janno and Engelbrecht
(2005a).

3. MECHANICS TO BIOPHYSICS

Mathematical modelling of biological processes and bio-
mechanics means describing the physiological pheno-
mena and structural behaviour of living tissues, organs,
cells, neuronal networks, etc. There are many specific
features which must be taken into account (Vendelin et
al., 2007):
– biological systems need energy exchange with the

surrounding environment and represent the systems
far from the thermodynamic equilibrium;

– the processes operate over different time scales, are
spatially extended, and include many hierarchies;

– in physical terms, the models should account for
nonlinearities, dissipation, activity/excitability,
spatiotemporal coupling, etc.
These features are characteristic of complex systems

and biophysics, nowadays clearly a part of complexity
science under the chapter ‘systems biology’ (Kitano,
2001). The existence of scales and, consequently,
hierarchies must, however, be explained in more detail
(Vendelin et al., 2007). Namely, in biological tissues one
should distinguish two possible types of hierarchies: (i) a
structural hierarchy which involves strong dependence
on length scales like in mechanics (see Section 2)
and (ii) a functional hierarchy meaning that at various
levels of scale, various dynamical processes are of
importance, all of which influence the behaviour on the
macroscale. Structural hierarchies actually reflect the
enormously rich architecture of biological tissues. The
fundamental structural hierarchy is atom → molecule
→ cell → tissue → organ → human. But tissues
have themselves a complicated structure which should
be taken into account when stresses and strains in tissues
are calculated. In this sense living tissues resemble
microstructured man-made materials. For example,
for heart contraction the structural elements in the
hierarchy are: sarcomeres → myofibrils → fibres →
myocardium → heart. Functional hierarchies reflect
the complexity of functioning biosystems. The same
example of heart contraction has the following functional
hierarchy: oxygen consumption → energy transfer →
Ca2+ signals→ cross-bridge motion→ contraction. The
concept of internal variables, explained briefly above and
used for microstructured materials, can effectively be
generalized for description of hierarchies in biotissues. A
structural hierarchy can be easily described by the theory
presented in Section 2; a functional hierarchy needs a
generalization (Engelbrecht et al., 2000). The idea is the
following (Engelbrecht and Vendelin, 2000; Vendelin et
al., 2007). In addition to an observable variable χ , there
is a set of internal variables α,β ,γ, . . . . Any dependent
variable, say σ , is then calculated by an expression

σ = σ (χ,α) . (15)
The internal variable α is governed by an evolution
equation

α̇ = f1 (χ ,α,β ) , (16)
the variable β by

β̇ = f2 (χ ,α,β ,γ, . . .) , (17)
and γ by

γ̇ = f3 (χ,α,β ,γ, . . .) . (18)

Clearly the internal variables α,β ,γ form a hierarchy
which corresponds to the physical/chemical processes in
the functional hierarchy. Such an approach is used for
modelling cardiac contraction (Engelbrecht et al., 2000;
Engelbrecht and Vendelin, 2000). Here the structural
hierarchy starts from myofibrils which are composed
of repeating units of myosin and actin filaments,
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called sarcomeres. The actin filaments are made of a
double helix of actin molecules with troponin molecules
localized in certain intervals. The myosin filament con-
sists of myosin proteins with certain spatially localized
meromyosin molecules with heads resembling ‘golf-
clubs’. These heads are called cross-bridges. The
excitation of a muscle is triggered by an action potential
from the conducting system. This potential in its turn
releases Ca2+ ions in the sarcotubular system, which then
activate the troponin molecules so that they will be able
to attach the heads of myosin molecules. This attaching
means swivelling of myosin molecules that cause sliding
the actin and myosin filaments against each other, and
as a result stress is created. An ingenious mechanism,
indeed.

The functional hierarchy starts from the cross-
bridges producing force. Two states produce force and
the relative amounts of those cross-bridges, α1 and α2,
are the internal variables of the first level. The next level
is the number of all activated cross-bridges β , which is
the second-order internal variable. This internal variable
in its turn depends on the Ca2+ signal, which is the third-
order internal variable. The calculations start from the
bottom, i.e. from the third level and work step by step
up to dependent variable, which in this case is the active
stress.

The calculations for contraction of the left ventricle
by such an approach have shown good matching with
measured results (Vendelin et al., 2000). Another good
example of how the notions of mechanics can put
biophysical studies into a wider context is the nerve
pulse transmission. A nerve pulse is actually an action
potential which is transmitted down the axoplasm core
of a nerve fibre. The process is accompanied by ion
currents through the membrane between the core and
the surroundings. These currents actually ‘feed’ the
process with energy and as a result, a stable asym-
metric solitary nerve pulse propagates along the fibre.
The celebrated Hodgkin–Huxley model has specified
the ion currents by introducing three variables called
‘phenomenological’ (Hodgkin and Huxley, 1952). These
variables govern: n – the potassium conductance (turning
on), and m,h – the sodium conductance (turning on
and off, respectively). A very useful simplification of
the model is called after FitzHugh–Nagumo, which
includes only one ion current called ‘recovery’ variable.
These phenomenological and/or recovery variables are
actually internal variables in terms of continua. Maugin
and Engelbrecht (1994) have shown how to use the
formalism of internal variables for the Hodgkin–Huxley
and FitzHugh–Nagumo equations.

4. FINAL REMARKS

Nonlinearities in wave motion are important because
nonlinear models are able to describe important physical
effects like distortion of wave profiles (spectral changes),
amplitude-dependent velocities, interaction of waves,

etc. going also beyond the elastic limit. However, non-
linear effects are usually combined with other effects
– dispersion, dissipation, forcing, and coupling with
other fields (Engelbrecht, 1997). These combinations
will in many cases bring in even more effects and
the signatures of complexity are clearly seen. So, for
example, nonlinearities combined with dispersive effects
lead to coherent wave structures, scale dependence,
hierarchies, etc. Characteristically to complexity science,
the different fields are related by phenomena, methods,
and language. The concepts elaborated in mechanics
can be generalized, as shown above, to biophysics. The
waves in solids and fluids are similar in many respects,
as explicitly demonstrated by solitonics. Besides general
analysis of complexity of waves in solids, the applica-
tions are important. For example, the knowledge of the
influence of the microstructure on phase velocities or
asymmetry of solitary pulses opens new ways for solving
the inverse problems (Janno and Engelbrecht, 2005b,
2005c, 2008). Certainly there many challenges for
further studies. A great challenge is to build multiscale
models which relate mesoscopic physics to continuum
mechanics reflecting the existence of nonlinearities over
the scales, dispersive/dissipative effects, and thermo-
dynamical consistency.
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Mittelineaarsed lained ja komplekssüsteemid

Jüri Engelbrecht

Komplekssüsteemid koosnevad paljudest seostatud ja üksteisega interakteeruvatest komponentidest ning interakt-
siooni tulemusena võib tekkida uus kvaliteet. Taolises protsessis on oluline koht mittelineaarsusel. Käesolevas
artiklis on analüüsitud lainelevi mikrostruktuursetes materjalides komplekssüsteemide vaatenurgast. Põhivõrrandid
on tuletatud sisemuutujate kontseptsiooni kasutades, mis on otseselt seotud termodünaamika tingimustega. Sisemised
mastaabitegurid viivad lainehierarhiate moodustumisele, kus on oluline ka dispersiooni arvestamine. Mittelineaarsuse
ja dispersiooni koosmõjul võivad tekkida solitonstruktuurid, mis on selgeks märgiks uue kvaliteedi tekkimisest. Paar
probleemi on lisatud biofüüsikast, mis näitavad, et põhimõtteliselt on sisemuutujate kontseptsioon samuti rakendatav
ja lainelevi aspektist on mittelineaarsusel tähtis osa.


