
Proceedings of the Estonian Academy of Sciences,
2010, 59, 2, 145–149

doi: 10.3176/proc.2010.2.13
Available online at www.eap.ee/proceedings

On perturbative solutions for nonlinear waves in inhomogeneous materials
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Abstract. Complex phenomena of wave–prestress and wave–material interactions are studied. Model problems of nonlinear
propagation of longitudinal waves in materials (i) with inhomogeneous prestress and (ii) with weakly variable physical properties
are posed. In both problems two small parameters of different physical nature appear. The problems are solved using the
perturbation technique. The influence of the values of two small parameters on the content of terms of perturbative solutions
is analysed. The outcome facilitates utilization of perturbative solutions in composing algorithms for ultrasonic nondestructive
testing of materials with variable properties.

Key words: solid mechanics, nonlinear elasticity, longitudinal waves, interaction, perturbative solution, nondestructive testing.

1. INTRODUCTION

Practical application of data about complex phenomena
of nonlinear wave–wave, wave–material, and wave–pre-
stress interactions is one of the basic ways of building up
the methods for ultrasonic nondestructive characteriza-
tion of different materials [1–3]. Algorithms for ultra-
sonic nondestructive characterization of materials are
based on analytical solutions to the equations of motion
of materials [4,5]. The goal of this paper is to clarify
the peculiarities of perturbative solutions for these
algorithms, derived in [6,7]. Attention is focused on the
role of two essential small parameters in the algorithms
and on the influence of these parameters on the amount of
information about the material properties in the outcome
of the algorithms.

Many techniques of ultrasonic nondestructive cha-
racterization of the material and the prestress in the
material are based on the results of the analysis of the
nonlinear effects that occur in wave interaction pro-
cesses. Wave–prestress interaction takes place, pro-
vided the geometrical or the physical nonlinearity of the
problem is taken into account. Wave–material interaction
occurs already in the case of the linear model of wave
propagation.

Wave–prestress and wave–material interactions are
described for nonlinear propagation of longitudinal

waves in materials (i) with inhomogeneous prestress
and (ii) with weakly variable physical properties. Our
goal is to use nonlinear effects of wave propagation in
nondestructive evaluation of inhomogeneous properties
of the material. It is important that the nonlinear effects
of wave propagation contain plenty of information about
inhomogeneities. The amount of this information is
dependent in case (i) on the ratio of small parameters
in the perturbative solution, which characterize strain
intensities in the material caused by the propagating
wave and predeformation, and in case (ii) on the ratio of
the small parameter that characterizes strain intensity in
the material caused by the propagating wave to the small
parameter that describes the weak variation of material
properties. The conclusion is that wave propagation data
contain the largest amount of information about the pre-
stressed state and material properties, provided the two
different small parameters are of the same order.

2. SUPERPOSITION OR INTERACTION

Ultrasonic nondestructive characterization of the pro-
perties and states of materials is based on the data
about the recorded parameters of waves. The amount
of information about the material is important in these
parameters. For example, the recorded wave may not
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recognize the presence of prestress in the material.
Therefore, the criteria for successful nondestructive cha-
racterization of the material must be clarified.

The nonlinear theory of elasticity describes the
motion of the material by the equation [8]

[T ∗KL (δkL +δkM U∗
M,L)],K−ρ0 δkM U∗

M,tt = 0. (1)

Here ρ0 denotes the density of the material and δkL and
δkM are Euclidean shifters which connect the Lagrangian
Cartesian coordinates XK and the Eulerian Cartesian
coordinates xk. The indices K, L, and t after a comma
indicate differentiation with respect to XK , XL, and time
t, respectively. The usual summation convention is used
and all indices, except time t, run over 1, 2, and 3. Equa-
tion (1) describes the motion of the material in the actual
state that is characterized by the displacement vector U∗

K
and the second Piola–Kirchhoff stress tensor T ∗KL.

Theoretically, there are two possibilities of solving
the problem of ultrasonic nondestructive characterization
of prestress in the material. In both cases the specimen
of the material that is in the natural, prestress-free state
is considered. At some instant the material is assumed
to be in a prestressed state, generated by an appropriate
statical loading. The displacement vector and the second
Piola–Kirchhoff stress tensor at this state are denoted
by U0

K(XJ) and T 0
KL(XJ), respectively. After that, the

longitudinal wave process represented by UK(XJ , t) and
TKL(XJ , t) is excited in the prestressed material.

In the first case the displacement at the actual state is
expressed as the sum

U∗
K(XJ , t) = U0

K(XJ)+UK(XJ , t), (2)

and in the second case the stress at the actual state is
expressed as the sum

T ∗KL(XJ) = T 0
KL(XJ)+TKL(XJ). (3)

In both cases the strain is stated by the Green–Lagrange
strain tensor [8]

2EKL =
∂U∗

K
∂XL

+
∂U∗

L
∂XK

+
∂U∗

M
∂XK

∂U∗
M

∂XL
, (4)

where the indices K, L, and M range over 1, 2, 3. The
constitutive equation for the nonlinear elastic material is
formulated by

T ∗KL =(λ I1 +3ν1I2
1 +ν2I2)

∂ I1

∂EKL

+(µ +ν2I1)
∂ I2

∂EKL
+ ν3

∂ I3

∂EKL
+ · · · . (5)

Here I1, I2, and I3 are invariants of the Green–Lagrange
strain tensor EKL. Expression (5) characterizes the five-
constant nonlinear theory of elasticity, where λ and µ
are Lamé constants or the elastic constants of the second

order and ν1, ν2, and ν3 are the elastic constants of the
third order.

It is important to pay attention to the discrepancy
between the approaches described by Eqs (2) and (3).
The closed system of equations of the nonlinear theory
of elasticity [8] may be solved for both cases (2) and
(3). It is essential that if the displacement U∗

K is given by
Eq. (2), the substitution of Eq. (2) into Eq. (4) determines
the Green–Lagrange strain tensor EKL. If, instead, the
stress T ∗KL is given by Eqs (3) and (5) or the strain
EKL is given, the determination of the three unknowns
U∗

K requires the solution of six partial differential equa-
tions (4). Such a system is overdetermined and for
the existence of a single-valued continuous displace-
ment field restrictions (compatibility conditions) must
be imposed upon EKL. The relevant information is pre-
sented, for example, in [8,9]. Subsequently the displace-
ment approach is used, i.e., the displacement U∗

K is given
by Eq. (2).

A decisive question is the following: What do we
describe by the algorithm of nondestructive testing if
we record the displacement UK evoked by wave motion
– is it the superposition of effects caused by different
actions or is it the interaction of these effects? Do the
recorded data contain information about the prestress in
the material?

In ultrasonic nondestructive characterization of
prestress the question about superposition or interaction
turns into the problem of mutual action of strains caused
by wave propagation and prestress. This mutual action
is determined by expressions (4) and (5). Analysis of
these expressions leads to the conclusion that if the com-
pletely linear problem is considered, i.e., the geometrical
nonlinearity (the third term in Eq. (4)) and the physical
nonlinearity (terms with the third-order elastic constants
in Eq. (5)) are neglected, there is no interaction between
strains of different origins. The result is that wave pro-
pagation is not affected by prestress and does not contain
information about prestress.

Interaction of strains caused by wave propagation
and prestress can be described by taking the geometrical
nonlinearity, physical nonlinearity or both into account.
This problem is analysed in [10] where theoretical results
are compared with experimental data. The conclusion is
that there exist special cases when consideration of only
one kind of nonlinearity gives satisfactory results. In
most cases it is necessary to take both nonlinearities into
account, because often the influence of the geometrical
and physical nonlinearity on the final result is of the same
order.

3. WAVE–PRESTRESS INTERACTION

Wave–prestress interaction is studied using the per-
turbative solutions of the governing equations that
describe wave motion in a prestressed material. Per-
turbative solutions form a theoretical basis for the
algorithms for ultrasonic nondestructive characterization
of prestress [6,11].
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Propagation of one-dimensional longitudinal waves
in the geometrically and physically nonlinear prestressed
material is described by the equation [11]

(1+ k1U0
1,1 + k2 U0

2,2) U1,11

+(k1 U0
1,11 + k3 U0

1,22 + k5 U0
2,12) U1,1

+ k1 U1,11 U1,1− c−2 U1,tt = 0, (6)

where c denotes the phase velocity and U, U0 denote
displacements caused by the propagating wave and by
prestress, respectively. Indices after a comma indicate
differentiation with respect to the coordinates X1 and X2,
and time t. Equation (6) is solved by the assumption that
prestress corresponds to plane strain and the displace-
ment U0 is a solution of the set of two equations

(1+ k1 U0
I,I + k2 U0

J,J) U0
I,II +(2 k3 U0

I,J +2 k4 U0
J,I) U0

I,IJ

+(k7 + k3 U0
I,I + k3 U0

J,J) U0
I,JJ

+(k4 U0
I,J + k3 U0

J,I) U0
J,II

+(k3 U0
I,J + k4 U0

J,I) U0
J,JJ

+(k6 + k5 U0
I,I + k5 U0

J,J) U0
J,JI

=0, (7)

where the indices are I = 1, J = 2 for the first equation
and I = 2, J = 1 for the second equation. The constants
ki, i = 1,2, ...,7, in Eqs (6) and (7) are functions of the
second- and the third-order elastic constants [6].

Problem (6), (7) is solved by the assumption that the
strain evoked in the material by different actions is small
but finite. This leads to the idea to solve the problem
by making use of the perturbation theory. Solutions of
Eqs (6) and (7) are sought by assuming that the displace-
ment due to wave motion can be expressed by the series

U1 =
p∑

n=1

εn
1 U (n)

1 (8)

and the displacement of the prestressed state can be
expressed by the series

U0
K =

p∑

m=1

εm
2 U0(m)

K . (9)

Here ε1 and ε2 are the small parameters (| ε1 | ¿ 1,
| ε2 |¿ 1) that have the physical meaning of small strain
evoked in the material by wave motion and prestress,
respectively, and p is a positive number.

Below, the perturbation technique is used, i.e.,
series (8) and (9) are inserted into Eq. (6). Three different
cases are considered: case (i) when the strains evoked
by wave motion and prestress are of the same order
(ε1 ≈ ε2), case (ii) when a weak wave is excited in

the prestressed material (ε1 ≈ ε2
2 ), and case (iii) when

a strong wave is excited (ε2
1 ≈ ε2). In all cases the

small parameter ε2 is determined through ε1 and hence-
forth the resulting equations contain only one small para-
meter ε1. Following the perturbation technique, terms
of equal power in ε1 are equated to zero in all result-
ing equations. This gives a system of equations to be
satisfied by the coefficients of series (8). For each of
the three cases a different system is obtained. Con-
sequently, series (8) describes a different behaviour of
wave propagation, depending on how the small para-
meters ε1 and ε2 are related to each other. From the point
of view of nondestructive testing it is desirable that the
displacement U1 contains the largest amount of informa-
tion about the prestress described by the static displace-
ment U0

K .
The problem is studied on the basis of nonlinear

propagation of a harmonic wave with the frequency ω .
Solution (8) with accuracy of three leading terms may be
expressed in the form

U1 =
3∑

n=2

εn
1 A(n)

0 +
3∑

n=1

εn
1 A(n)

1 sin(ωζ (n) +θ (n)
1 )

+
3∑

n=2

εn
1 A(n)

2 sin(2ωζ (n) +θ (n)
2 )

+
3∑

n=3

εn
1 A(n)

3 sin(3ωζ (n) +θ (n)
3 ) .

(10)

Here A(n)
0 is the nonperiodic term, A(n)

J and θ (n)
J , J =

1,2,3, denote the amplitudes and phase shifts of
harmonics, and ζ (n) = t −X1/c(n). The different phase
velocities c(n) are the result of the fact that some
constituents in sums of Eq. (10) describe wave motion
in the prestress-free material and some of them in the
prestressed material.

In all three cases the first term in Eq. (8) describes
propagation of the first harmonic in the prestress-free
physically linear elastic material. The contribution of the
second and the third term in series (8) to the first three
terms of Eq. (10) depends on the case. In case (i) the
second term in Eq. (8) describes the nonperiodic term
in Eq. (10) and the evolution of the second harmonic
in the physically nonlinear prestress-free material. In
addition, it introduces the influence of prestress on the
first harmonic. In case (ii), when the weak wave is
excited in the prestressed material, the second term in
Eq. (8) introduces the influence of physical nonlinearity
and prestress on the propagation of the first harmonic
in Eq. (10). It does not describe the nonlinear wave
propagation, i.e., the second harmonic in Eq. (10). In
case (iii), when the strong wave is excited in the pre-
stressed material, the second term in Eq. (8) does not
correct the first harmonic but describes the nonperiodic
term in Eq. (10) and the evolution of the second harmonic
in the physically nonlinear prestress-free material.
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The third term in Eq. (8) has maximum effect on
the content of terms in Eq. (10) in case (i). In this
case it corrects the first harmonic once again, corrects
the nonperiodic term, describes the influence of pre-
stress on the evolution of the second harmonic, and
describes the propagation of the third harmonic in the
physically nonlinear prestress-free material. By weak
wave propagation (case (ii)) the third term corrects
the first harmonic in Eq. (10) once again, describes
the nonperiodic term, and the evolution of the second
harmonic in the prestress-free material. If the strong
wave is propagating in the material (case (iii)), the third
term introduces the influence of prestress on the first
harmonic in Eq. (10) and describes the propagation of
the third harmonic in the physically nonlinear prestress-
free material.

Consequently, the information about material pro-
perties and prestress in periodic terms of solution (10)
depends on the values of small parameters ε1 and ε2. The
best results can be achieved in case (i).

4. WAVE–MATERIAL INTERACTION

Wave–material interaction occurs already in the case of
the linear model of wave propagation in materials. The
velocity of the one-dimensional longitudinal wave in the
homogeneous isotropic material is determined by the
formula

c =
√

(λ +2 µ)/ρ (11)

that determines the dependence of the wave velocity c on
the physical properties of the material. In addition, the
stress field evoked in the material by wave propagation
acts upon the properties of deformable materials.

Nonlinear propagation of the one-dimensional
longitudinal wave in the physically nonlinear inhomo-
geneous elastic material is described by the equation [7]

[1+ k1(X)U,X (X , t) ] U,XX (X , t)+ k2(X)U,X (X , t)

+ k3(X) [U,X (X , t)]2− k4(X)U,tt(X , t) = 0 , (12)

where the coefficients k j(X), j = 1,2, ...,4, are functions
of the material density ρ(X) and the elastic coefficients
λ (X), µ(X), ν1(X), ν2(X), and ν3(X), all of which may
depend on the space coordinate X . In the considered one-
dimensional case the elastic coefficients are grouped to
the linear elastic coefficient α(X) and to the nonlinear
elastic coefficient β (X) in accordance with the equations

α(X) = λ (X)+2 µ(X),

β (X) = 2 [ν1(X)+ν2(X)+ν3(X)].
(13)

Let us assume that the variation of physical pro-
perties of the material is weak and can be described by
the function

γ(X) = γ(1) + ε3 γ(2)(X). (14)

Here ε3 is a dimensionless positive constant that satisfies
the condition | ε3 | ¿ 1. The function γ(X) is repre-
sentative for the material density ρ(X), the Lamé coeffi-
cients λ (X) and µ(X), and the third-order elastic coeffi-
cients ν1(X), ν2(X), and ν3(X).

The perturbation technique is used and the solution
to Eq. (12) is sought in the form of a series with a small
parameter ε4 [7]

U =
p∑

n=1

εn
4 U (n). (15)

If the aim is to characterize weakly variable material
properties on the basis of wave propagation data, it
is necessary also here to pay attention to the values
of the dimensionless small parameters ε3 and ε4 that
have a different physical nature. It turns out that solu-
tion (15) contains maximum information about the
material properties, provided the small parameters ε3
and ε4 are of the same order. The first term in solu-
tion (15) describes linear wave propagation in a material
with constant properties. Subsequent terms correct the
solution by material inhomogeneity and nonlinearity.
This correction depends on the values of small para-
meters similarly to the cases described by wave–prestress
interaction.

5. CONCLUSIONS

The specific character of different perturbative solutions
derived in [6,7] for algorithms of ultrasonic non-
destructive characterization of inhomogeneous prestress
and weak material inhomogeneity in the nonlinear elastic
material is analysed. It is shown that consideration of
the physical and geometrical nonlinearity of the problem
in algorithms enhances essentially the possibilities of
nondestructive testing.

On the basis of previous analyses the following may
be stated. It is important to pay attention to the intensity
of the applied wave in ultrasonic nondestructive cha-
racterization of prestress or material properties. Using
the algorithms that are based on the first terms of the
perturbative solution, the best results may be achieved
by choosing the values of two essential small parameters
in the problem to be of the same order.
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Häiritusmeetodil baseeruvatest lahenditest mittelineaarse lainelevi
kirjeldamisel mittehomogeensetes materjalides

Arvi Ravasoo

On uuritud lainelevi ja eelpinge ning lainelevi ja materjali interaktsiooni. On püstitatud mudelülesanded pikilainete
mittelineaarsest levist (i) mittehomogeense eelpingega ja (ii) nõrgalt muutuvate füüsikaliste omadustega materjalides.
Ülesanded on lahendatud häiritusmeetodit kasutades. On analüüsitud kahe väikese parameetri väärtuste mõju saa-
dud lahendi komponentide sisule. Tulemus lihtsustab häiritusmeetodil baseeruvate lahendite kasutamist muutuvate
omadustega materjalide ultraheliga mittepurustavate katsetuste algoritmide koostamisel.


