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Abstract. After 44 years it is still not known whether an operator mapping one Banach couple boundedly into another and acting
compactly on one (or even both) of the “endpoint” spaces also acts compactly between the complex interpolation spaces generated
by these couples. We answer this question affirmatively in certain cases where the “range” Banach couple is a couple of lattices on
the same measure space.
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1. INTRODUCTION

All Banach spaces in this paper will be over the complex field. The closed unit ball of a Banach space A
will be denoted by BA. For any two Banach spaces A and B, the notation T : A b→ B will mean, just like the
usual notation T : A → B, that T is a linear operator T defined on A (and also possibly defined on a larger
space) and it maps A into B boundedly. The notation T : A c→ B will mean that T : A b→ B with the additional
condition that T maps A into B compactly.

We will write A
1⊂ B when A is continuously embedded with norm 1 into B, and A 1= B when A and B

coincide with equality of norms.
For each Banach couple (or interpolation pair) ~A = (A0,A1) and each θ ∈ [0,1], we will let [A0,A1]θ

denote the complex interpolation space of Alberto Calderón [3]. We also let A◦j denote the closure of A0∩A1
in A j for j = 0,1. The couple (A0,A1) is called regular if A◦j = A j for j = 0,1. The spaces A0 ∩A1 and
A0 +A1 are Banach spaces when they are equipped with their usual norms (as e.g., on p. 114 of [3]).

For any two fixed Banach couples ~A = (A0,A1) and ~B = (B0,B1), the notation T : ~A
c,b→ ~B will mean

that the linear operator T : A0 + A1 → B0 + B1 satisfies T : A0
c→ B0 and T : A1

b→ B1. The notation
~A I ~B will mean that every linear operator T : A0 + A1 → B0 + B1 which satisfies T : ~A

c,b→ ~B also satisfies
T : [A0,A1]θ

c→ [B0,B1]θ for every θ ∈ (0,1). The notation (∗.∗) I ~B for some fixed Banach couple ~B will
mean that ~A I ~B for every Banach couple ~A. Analogously, the notation ~A I (∗.∗) for some fixed Banach
couple ~A will mean that ~A I ~B for every Banach couple ~B.

Some 44 years ago, Calderón [3] proved that (∗.∗) I ~B for all Banach couples ~B which satisfy a certain
approximation condition. Since then it has been established that ~A I ~B for a large variety of other different
choices of ~A and ~B. (See, e.g., the 12 papers and website referred to on p. 72 of [7], and [7] itself.) However,
we still do not know whether ~A I ~B holds for all choices of ~A and ~B, i.e., whether “(∗.∗) I (∗.∗)”.
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In this paper we shall add to the library of known examples of couples ~A and ~B satisfying ~A I ~B in the
context of spaces of measurable functions. We shall use the terminology lattice couple to mean a Banach
couple ~A = (A0,A1) where both A0 and A1 are complexified Banach lattices of measurable functions defined
on the same σ -finite measure space.

Cobos et al. [4, Theorem 3.2 p. 289] proved that ~A I ~B whenever both ~A and ~B are lattice couples,
provided that B0 and B1 both have the Fatou property, or that at least one of B0 and B1 has absolutely
continuous norm. Subsequently, Cwikel and Kalton [8, Corollary 7 part (c) on p. 270] generalized this
result by showing that ~A I (∗.∗) for any lattice couple ~A.

In this paper we shall obtain a different generalization of the above-mentioned result of [4], namely
we will show that (∗.∗) I ~B for every lattice couple ~B satisfying one or the other of the same conditions
imposed in [4]. In fact, some other weaker conditions on ~B are also sufficient. Roughly speaking, as
indeed the reader might naturally guess, our approach is to take the “adjoint” of the above-mentioned result
~A I (∗.∗) of [8], using arguments in the style of Schauder’s classical theorem about adjoints of operators.
But this is apparently not quite as simple to do as one might at first expect.

In forthcoming papers we plan to extend our main result (∗,∗) I ~B to more general lattice
couples and non-lattice couples ~B, including some which are rather close in some sense to the couple
(`∞(FL∞), `∞(FL∞

1 )). We recall (see [9], or [5]) that (∗.∗) I (`∞(FL∞), `∞(FL∞
1 )) if and only if (∗.∗) I

(∗.∗).
Pustylnik [21] recently obtained a very general compactness theorem which has some overlap with our

result here.

2. A RATHER GENERAL ARZELÀ-ASCOLI–SCHAUDER THEOREM

In this section we describe the result which will play the role of Schauder’s theorem for the proof of our
main result.

Let us recall that a semimetric space (X ,d), also often referred to as a pseudometric space, is defined
exactly like a metric space, except that the condition d(x,y) = 0 for a pair of points x,y ∈ X does not
imply that x = y. (However, d(x,x) = 0 for all x ∈ X .) Each semimetric space (X ,d) gives rise to a metric
space

(
X̃ , d̃

)
in an obvious way, where X̃ is the set of equivalence classes of X defined by the relation

x∼ y⇐⇒ d(x,y) = 0.
Here are three definitions and three propositions concerning an arbitrary semimetric space (X ,d). The

definitions are exactly analogous to standard definitions for metric spaces, and the propositions are proved
exactly analogously to the standard proofs of the corresponding standard propositions in the case of metric
spaces, or by invoking those standard propositions for the particular metric space

(
X̃ , d̃

)
.

Definition 2.1. Let B(x,r) denote the ball of radius r centred at x, i.e., for each x ∈ X and r > 0, we set
B(x,r) = {y ∈ X : d(x,y)≤ r}.

Definition 2.2. The semimetric space (X ,d) is said to be totally bounded if, for each r > 0, there exists a
finite set Fr ⊂ X such that X =

⋃
x∈Fr

B(x,r).

Definition 2.3. The semimetric space (X ,d) is said to be separable if there exists a countable set Y ⊂ X
such that infy∈Y d(x,y) = 0 for each x ∈ X .

Proposition 2.4. If (X ,d) is totally bounded, then it is separable.

Proposition 2.5. (X ,d) is not totally bounded if and only if for some r > 0 there exists an infinite set E ⊂ X
such that d(x,y) > r for all x,y ∈ E with x 6= y.

Proposition 2.6. (X ,d) is totally bounded if and only if every sequence {xn}n∈N in X has a Cauchy
subsequence, i.e., a subsequence {xnk}k∈N which satisfies limN→∞ sup

{
d(xnp ,xnq) : p,q > N

}
= 0.
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The following theorem obviously contains the classical theorem of Schauder, and it is a simple exercise
to show that it also contains the classical theorem of Arzelà-Ascoli. After obtaining it we learned that, even
though it generalizes these two very important theorems, it is itself merely a special case, a “lite” version,
of considerably more abstract results presented by Bartle in [1] (cf. also e.g., [19]) and which, as explained
in [1], have their roots in earlier work, mainly of R. S. Phillips [20], Šmulian [23], and Kakutani [14].
However, it seems easier to give a direct proof of this theorem than to deduce it from [1]. Furthermore, we
learned that essentially the same theorem had also been obtained independently, apparently slightly before
us, by Eliahu Levy. His proof in [16] is perhaps better than the one to be given here, and Dr. Levy and I
have since refined it to obtain a quantitative result [10].

Theorem 2.7. Let A and B be two sets and let h : A×B→ C be a function with the properties that

sup
a∈A

|h(a,b)|< ∞ for each fixed b ∈ B (1)

and
sup
b∈B

|h(a,b)|< ∞ for each fixed a ∈ A. (2)

Define dA(a1,a2) := supb∈B |h(a1,b)−h(a2,b)| for each pair of elements a1 and a2 in A. Define dB(b1,b2) =
supa∈A |h(a,b1)−h(a,b2)| for each pair of elements b1 and b2 in B. Then (A,dA) and (B,dB) are semimetric
spaces and

(A,dA)is totally bounded i f and only i f (B,dB) is totally bounded. (3)

Proof. It is obvious that (A,dA) and (B,dB) are semimetric spaces. For the proof of (3), because of the
symmetrical roles of A and B, we only have to prove one of the two implications. Suppose then that (A,dA)
is totally bounded. By Proposition 2.4, there exists a countable subset Y of A which is dense in A. Let us
show that

dB(b1,b2) = sup
y∈Y

|h(y,b1)−h(y,b2)| for all b1,b2 ∈ B. (4)

The inequality “≥” in (4) is obvious. For the reverse inequality, given any b1 and b2 in B and any arbitrarily
small positive ε , we choose a ∈ A such that

dB(b1,b2)≤ |h(a,b1)−h(a,b2)|+ ε/3. (5)

Then we choose z ∈ Y such that
dA(z,a) < ε/3. (6)

We have that |h(a,b1)−h(a,b2)| is bounded above by

|h(a,b1)−h(z,b1)|+ |h(z,b1)−h(z,b2)|+ |h(z,b2)−h(a,b2)|
≤ 2dA(a,z)+ sup

y∈Y
|h(y,b1)−h(y,b2)| .

This, combined with (5) and (6), completes the proof of (4).
We shall now assume that (B,dB) is not totally bounded and show that this leads to a contradiction.

By this assumption and by Proposition 2.5, there exists some positive number r and some infinite sequence
{bn}n∈N of elements of B such that

dB(bm,bn) > r for each m,n ∈ N with m 6= n. (7)

For each fixed y ∈Y it follows from (2) that the numerical sequence {h(y,bn)}n∈N is bounded and thus has a
convergent subsequence. Since Y is countable we can apply a standard Cantor “diagonalization” argument
to obtain a subsequence

{
bγn

}
n∈N of {bn}n∈N such that limn→∞ h(y,bγn) exists for each y ∈ Y . Therefore,
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after simply changing our notation, we can assume the existence of an infinite sequence {bn}n∈N in B which
satisfies (7) and also

lim
n→∞

h(y,bn) exists and is finite for each y ∈ Y. (8)

In view of (4) and (7), for each pair of integers m and n with 0 < m < n there exists an element ym,n ∈Y
such that |h(ym,n,bm)−h(ym,n,bn)|> r, and so, in particular,

|h(ym,m+1,bm)−h(ym,m+1,bm+1)|> r for all m ∈ N. (9)

Our assumption that (A,dA) is totally bounded ensures, by Proposition 2.6, that there exists a strictly
increasing sequence of positive integers {mk}k∈N such that {ymk,mk+1}k∈N is a Cauchy sequence in (A,dA).
Now we set zk = ymk,mk+1 for each k. We choose some sufficiently large integer N for which

dA(zN ,zk) < r/4 for all k ≥ N. (10)

Now we combine (9) and (10) to obtain that, for each k ≥ N,

r < |h(zk,bmk)−h(zk,bmk+1)|
≤ |h(zk,bmk)−h(zN ,bmk)|+ |h(zN ,bmk)−h(zN ,bmk+1)|

+ |h(zN ,bmk+1)−h(zk,bmk+1)|
<

r
4

+ |h(zN ,bmk)−h(zN ,bmk+1)|+ r
4
.

In view of (8), we obtain that limk→∞ |h(zN ,bmk)−h(zN ,bmk+1)| = 0. So the inequalities on the preceding
lines would imply that r ≤ r/2. This contradiction shows that (B,dB) must be totally bounded, and so
completes the proof of the theorem.

3. PRELIMINARIES ABOUT LATTICES AND LATTICE COUPLES

Let (Ω,Σ,µ) be a σ -finite measure space here and in the sequel. (Some of the assertions which we will be
making here are simply false if (Ω,Σ,µ) is not σ -finite.)

Definition 3.1. We say that a Banach space X is a CBL, or a complexified Banach lattice of measurable
functions on Ω if
(i) all the elements of X are (equivalence classes of a.e. equal) measurable functions f : Ω→ C and

(ii) for any measurable functions f : Ω → C and g : Ω → C, if f ∈ X and |g| ≤ | f | a.e., then g ∈ X and
‖g‖X ≤ ‖ f‖X .

We will now recall a number of definitions and basic facts about CBLs. In several cases the relevant
proofs of these facts in the literature to which we refer are given for Banach lattices of real valued functions.
But in all those cases it is an obvious and easy exercise to adapt those proofs to our case here.

Any two CBLs X0 and X1 on the same underlying measure space always form a Banach couple. See
e.g., [3, p. 122 and p. 161], [15, Corollary 1, p. 42], or [12, Remark 1.41, pp. 34–35]. (As explicitly stated
and shown in [12] this is also true for non σ -finite measure spaces.)

For each CBL X on (Ω,Σ,µ), there exists a measurable subset ΩX of Ω, which may be called the support
of X , such that, for every function g ∈ X , we have g(ω) = 0 for a.e. ω ∈ Ω\ΩX . Furthermore, there exists
a function fX ∈ X such that fX(ω) > 0 for a.e. ω ∈ ΩX . (Cf. e.g., Remarks 1.3 and 1.4 on p. 14 of [12].)
Obviously the set ΩX is unique to within a set of measure zero. (Of course, on the other hand, the function
fX certainly is not unique.) If ΩX = Ω (at least to within a set of measure zero) then we say that X is
saturated.
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The set ΩX has an additional useful property: There exists a sequence of sets {En}n∈N in Σ such that

ΩX =
⋃

n∈N
En with En ⊂ En+1,µ(En) < ∞, and χEn ∈ X for each n ∈ N. (11)

The actual construction of ΩX and of the sequence {En}n∈N can be performed by an “exhaustion” process
described in the proof of Theorem 3 on pp. 455–456 of [24] and also described (perhaps slightly more
explicitly for our purposes here) in the first part of the proof of Proposition 4.1 on p. 58 of [11]. (Note
however that there is a small misprint in [11], the omission of “µ(E)”, in the third line of this latter proof, i.e.,
the numbers αk must of course be defined by αk = sup{µ(E) : E ∈ Σ,E ⊂ Fk,χE ∈ X}.) For one possible
(very easy and of course not unique) way to construct a function fX ∈ X with the above-mentioned property
see, e.g., [12, p. 14 Remark 1.4].

Lemma 3.2. If X0 and X1 are both saturated CBLs on the same measure space (Ω,Σ,µ), then X0 ∩X1 is
saturated, and [X0,X1]θ is saturated for each θ ∈ (0,1).

Proof. The function min{ fX0 , fX1} is in X0∩X1 and therefore it is also in [X0,X1]θ . It is strictly positive a.e.
on Ω. So neither of the sets Ω\ΩX0∩X1 and Ω\Ω[X0,X1]θ can have positive measure.

Given an arbitrary CBL X on (Ω,Σ,µ) we define the functional ‖·‖X ′ by

‖ f‖X ′ := sup
{∣∣∣∣

∫

Ω
f gdµ

∣∣∣∣ : g ∈ X ,‖g‖X ≤ 1
}

(12)

for each measurable function f : Ω→ C.

Remark 3.3. Obviously we can replace |∫Ω f gdµ| by
∫

Ω | f g|dµ in the formula (12).

Let X ′ be the set of all measurable functions f : Ω → C for which ‖ f‖X ′ < ∞. Clearly X ′ is a linear
space and ‖·‖X ′ is a seminorm on X ′ satisfying

∣∣∣∣
∫

Ω
f gdµ

∣∣∣∣≤ ‖ f‖X ′ ‖g‖X for all f ∈ X ′ and all g ∈ X . (13)

The space X ′ is customarily referred to as the Köthe dual or the associate space of X .
If µ(ΩX) > 0, then, via a series of theorems, including one (Theorem 1, p. 470 in [24]) which uses

Hilbert space techniques, it can be shown that X ′ is non-trivial, i.e., it contains elements which do not vanish
a.e. on ΩX . If, furthermore, X is saturated, then ‖·‖X ′ is a norm with respect to which X ′ is a saturated CBL
on (Ω,Σ,µ). (See e.g., [24, p. 472, Theorem 4].)

Of course X ′ can be identified with a subspace of X∗, the dual space of X , and in some, but not all, cases
it is also a norming subspace of X∗, i.e., it satisfies

‖g‖X = sup
{∣∣∣∣

∫

Ω
f gdµ

∣∣∣∣ : f ∈ X ′,‖ f‖X ′ ≤ 1
}

for each g ∈ X . (14)

A result of Lorentz and Luxemburg, which appears as Proposition 1.b.18 on p. 29 of [17] (stated and proved
there only for Köthe function spaces), gives necessary and sufficient conditions on X for (14) to hold. In
particular the σ -order continuity of X is a sufficient condition. So is the Fatou property. (To extend the proof
of Proposition 1.b.18 to general CBLs it is necessary to make a small modification on lines 6 and 7 on p. 30
using Remark 1.3 on p. 14 of [12].)

The associate space (X ′)′ of X ′, i.e. the second associate of X , is usually denoted by X ′′. Obviously
X ⊂ X ′′ and ‖x‖X ′′ ≤ ‖x‖X for each x ∈ X . Obviously X ′′ is a CBL whenever X (and therefore also X ′) is
saturated.

As in e.g., [15], we say that the CBL X has absolutely continuous norm if limn→∞ ‖ f χEn‖X = 0 for
every f ∈ X and every sequence {En}n∈N of measurable sets satisfying En+1 ⊂ En for all n and

⋂
n∈NEn = /0.
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As in e.g., [17], we say that the CBL X is σ -order continuous if limn→∞ ‖ fn‖X = 0 for every sequence
{ fn}n∈N of functions in X satisfying 0 ≤ fn+1 ≤ fn and limn→∞ fn = 0 a.e. It is easy to see that these two
properties of X are in fact equivalent.

A CBL X is said to have the Fatou property if whenever { fn}n∈N is a norm bounded a.e. monotonically
non-decreasing sequence of nonnegative functions in X , its a.e. pointwise limit f is also in X with
‖ f‖X = limn→∞ ‖ fn‖X . If X is saturated, then X has the Fatou property if and only if X = X ′′ isometrically.
(See [24, p. 472]. Cf. also [17, p. 30], but recall that there extra hypotheses are imposed.)

We remark that obvious counterexamples (see e.g., [12, Remark 7.3 p. 92]) show that the above claims
about X ′ and X ′′ are false for certain non σ -finite measure spaces.

Given a pair of CBLs X0 and X1 on (Ω,Σ,µ) and a number θ ∈ (0,1), we define the space X1−θ
0 Xθ

1 ,
analogously to the definition in [3, Section 13.5 p. 123], to be the set of all measurable functions f : Ω→C
of the form

f = u f 1−θ
0 f θ

1 , (15)

where u ∈ L∞(µ) and f j is a nonnegative function in BX j for j = 0,1. For each f ∈ X1−θ
0 Xθ

1 we define
‖ f‖X1−θ

0 Xθ
1

= inf‖u‖L∞(µ), where the infimum is taken over all representations of f of the form (15) with the

stated properties. It can be shown that this is in fact a norm on X1−θ
0 Xθ

1 , with respect to which X1−θ
0 Xθ

1 is a
CBL. This is proved in Section 33.5 on pp. 164–165 of [3].

The norm 1 inclusions
[X0,X1]θ

1⊂ X1−θ
0 Xθ

1
1⊂ [X0,X1]θ (16)

are special cases (set B0 = B1 = C) of the results (i) and (ii) of Section 13.6 on p. 125 of [3] (proved in [3,
Section 33.6 on pp. 171–180]). Furthermore, with the help of Bergh’s theorem [2], (16) can be strengthened
to tell us that

‖x‖[X0,X1]θ = ‖x‖X1−θ
0 Xθ

1
= ‖x‖[X0,X1]θ for all x ∈ [X0,X1]θ . (17)

We will need to use the formula
(

X1−θ
0 Xθ

1

)′
= (X ′

0)
1−θ (X ′

1)
θ , (18)

which holds with equality of norms (or seminorms when ΩX0 or ΩX1 is strictly smaller than Ω) for all pairs
of CBLs X0 and X1 on (Ω,Σ,µ). This formula was originally stated and proved by Lozanovskii [18] under
certain hypotheses, then by Reisner [22] under other hypotheses. The general version stated here is proved
in [12, Section 7, pp. 91–97] using Reisner’s proof and a remark of N. J. Kalton [pers. comm.].

4. THE MAIN RESULT

Our main result is a corollary of the following theorem.

Theorem 4.1. Let ~G = (G0,G1) be an arbitrary Banach couple and let ~X = (X0,X1) be an arbitrary couple
of saturated CBLs on an arbitrary σ -finite measure space (Ω,Σ,µ). Then every linear operator T which

satisfies T : ~G
c,b→ ~X has the compactness property

T : [G0,G1]θ
c→ [X ′′

0 ,X ′′
1 ]θ

for each θ ∈ (0,1).

Corollary 4.2. Let ~X = (X0,X1) be an arbitrary couple of saturated CBLs on a σ -finite measure space.
Suppose that either
(i) X0 and X1 both have the Fatou property, or

(ii) at least one of the spaces X0 and X1 is σ -order continuous.
Then

(∗.∗) I ~X .
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Remark 4.3. The requirement that X0 and X1 are both saturated is merely a technical convenience which
makes the formulation and proof of Theorem 4.1 simpler and shorter. In fact, it is entirely unnecessary for
Corollary 4.2. The easy and rather obvious extension of the proof of Corollary 4.2 to the nonsaturated case
uses the easily checked fact that ΩX0∩X1 = Ω[X0,X1]θ and replaces the spaces X0 and X1 in an appropriate way
by their “restrictions” to the smaller measure space ΩX0∩X1 .

Via an examination of the proofs of Theorem 4.1 and Corollary 4.2 it is clear that other conditions on
the couple ~X , weaker than those stated in Corollary 4.2, are also sufficient to ensure that (∗,∗) I ~X .

Proof of Theorem 4.1. Since [G◦
0,G

◦
1]θ = [G0,G1]θ [3, Sections 9.3 (p. 116) and 29.3 (pp. 113–114)] we

can clearly suppose without loss of generality that ~G is a regular couple. Let 〈·, ·〉 denote the duality
between G0 ∩G1 and (G0∩G1)

∗. Let G be any one of the spaces G0, G1 or [G0,G1]θ and define G# to
be the subspace of elements γ ∈ (G0∩G1)

∗ for which the norm ‖γ‖G# := sup{|〈g,γ〉| : g ∈BG∩G0∩G1}
is finite. Of course G#, when equipped with this norm, is a Banach space which is continuously embedded
in (G0∩G1)

∗. So (G#
0,G

#
1) is a Banach couple.

We could of course identify G# with the dual of G, but it is more convenient to use the above definition.
Note also that in fact G#

0 +G#
1

1= (G0∩G1)
∗. Calderón’s remarkable duality theorem [3, Section 12.1 p. 121

and Section 32.1 pp. 148–156] can be expressed by the formula ([G0,G1]θ )# 1= [G#
0,G

#
1]

θ . For a more
detailed discussion of all these issues we refer to [6].

Let T be an arbitrary linear operator satisfying T : ~G
c,b→ ~X . We may suppose, without loss of generality,

that ‖T‖~G→~X := max j=0,1 ‖T‖G j→X j
= 1. For j = 0,1, let X ′

j be the associate space of X j. For each
g ∈ G0∩G1 and each z ∈ X ′

0 +X ′
1 define h(g,z) =

∫
Ω zT gdµ . Of course (cf. (13)) the function h satisfies

|h(g,z)| ≤ ‖z‖X ′j
‖T g‖X j

≤ ‖z‖X ′j
‖g‖G j

(19)

for j = 0,1 and all g ∈ G0∩G1 and z ∈ X ′
j. Therefore h also satisfies

|h(g,z)| ≤ ‖z‖X ′0+X ′1
‖g‖G0∩G1

for all g ∈ G0∩G1 and z ∈ X ′
0 +X ′

1. (20)

For each fixed z ∈ X ′
0 +X ′

1 we define the linear functional Sz on G0∩G1 by 〈g,Sz〉= h(g,z). Of course
Sz depends linearly on z and it is clear from (20) that we have thus defined a bounded linear operator
S : X ′

0 +X ′
1 → (G0∩G1)

∗. For j = 0,1, in view of (19), we see that, for each z ∈ X ′
j, we have Sz ∈ G#

j with

‖Sz‖G#
j
≤ ‖z‖X ′j

, i.e., S : X ′
j

b→ G#
j . (Note, cf. [6], that we do not have to consider the extension of Sz to a

space larger than G0∩G1.)
We now wish to show that S satisfies the compactness condition

S : X ′
0

c→ G#
0. (21)

We will do this by applying Theorem 2.7. We consider the restriction of the function h(g,y) to the set A×B
where A = BG0 ∩G1 and B = BX ′0 . Given any sequence {gn}n∈N in A, we of course have (cf. (13) and (19))

that dA(gm,gn) = sup{|h(gm,z)−h(gn,z)| : z ∈ B} ≤ ‖T gm−T gn‖X0
. So the fact that T : G0

c→ X0 implies
that (A,dA) is totally bounded. (Cf., e.g., Proposition 2.5 or Theorem 15 on p. 22 of [13].) Consequently, in
view of Theorem 2.7 and Proposition 2.6, if {zn}n∈N is an arbitrary sequence in B, then it has a subsequence
which is Cauchy with respect to the semimetric

dB(y,z) = sup{|h(g,y)−h(g,z)| : g ∈ A}
= sup

{|〈g,S(y− z)〉| : g ∈ G0∩G1,‖g‖G0
≤ 1

}

= ‖S(y− z)‖G#
0
.

This is exactly the condition (21).
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Since X ′
0 and X ′

1 are both CBLs of measurable functions on the measure space (Ω,Σ,µ), we can use (21)

and S : X ′
1

b→ G#
1 and apply part (c) of Corollary 7 on p. 270 of [8] to deduce that

S : [X ′
0,X

′
1]θ

c→ [G#
0,G

#
1]θ . (22)

We are now ready for a second application of Theorem 2.7. Once more we will use the same function
h defined above and restricted to a set A× B, where this time we choose A = B[G0,G1]θ ∩G0 ∩G1 and
B = B[X ′0,X

′
1]θ . This time, for each y,z ∈ B, we of course have S(y− z) ∈ [G#

0,G
#
1]θ . So, using the isometry

([G0,G1]θ )# 1= [G#
0,G

#
1]

θ mentioned above, and then Bergh’s theorem [2], we obtain that

dB(y,z) = sup
{|〈g,S(y− z)〉| : g ∈B[G0,G1]θ ∩G0∩G1

}
= ‖S(y− z)‖([G0,G1]θ )#

= ‖S(y− z)‖[G#
0,G

#
1]θ

= ‖S(y− z)‖[G#
0,G

#
1]θ

.

The compactness property (22) of S implies that (B,dB) is totally bounded. Consequently, by Theorem 2.7,
(A,dA) is also totally bounded. In view of Proposition 2.6 and the fact that G0∩G1 is dense in [G0,G1]θ [3,
Section 9.3 (p. 116) and Section 29.3 (pp. 113–114)], this means that the proof of Theorem 4.1 will be
complete once we have shown that

dA(g1,g2) = ‖T g1−T g2‖[X ′′0 ,X ′′1 ]θ for all g1,g2 ∈ A. (23)

By definition, for each g1 and g2 in A we have

dA(g1,g2) = sup
y∈B[X ′0 ,X ′1]θ

∣∣∣∣
∫

Ω
yT (g1−g2)dµ

∣∣∣∣ .

At this stage we need not consider the particular form of the element T g1−T g2. We know that it is an
element of X0∩X1. So, to obtain (23) it suffices to show that

sup
y∈B[X ′0 ,X ′1]θ

∣∣∣∣
∫

Ω
xydµ

∣∣∣∣ = ‖x‖[X ′′0 ,X ′′1 ]θ for each x ∈ X0∩X1. (24)

Since X0∩X1 ⊂ X ′′
0 ∩X ′′

1 ⊂ [X ′′
0 ,X ′′

1 ]θ , we have, from (17) applied to the couple (X ′′
0 ,X ′′

1 ), that the right
side of (24) equals ‖x‖(X ′′0 )1−θ (X ′′1 )θ and this in turn, in view of (18) applied to the couple (X ′

0,X
′
1), equals

‖x‖((X ′0)1−θ (X ′1)θ)′ . It follows that (24) is equivalent to the formula

sup
y∈B[X ′0,X ′1 ]θ

∣∣∣∣
∫

Ω
xydµ

∣∣∣∣ = sup
y∈B(X ′0)1−θ (X ′1)θ

∣∣∣∣
∫

Ω
xydµ

∣∣∣∣ for each x ∈ X0∩X1. (25)

Applying (17) to the couple (X ′
0,X

′
1), we of course obtain the inequality “ ≤ ” in (25). To show the

reverse inequality “ ≥ ”, we fix some x ∈ X0 ∩X1 and y ∈B(X ′0)1−θ (X ′1)θ and we shall construct a sequence
{yn}n∈N in B[X ′0,X

′
1]θ for which

lim
n→∞

∫

Ω
xyndµ =

∫

Ω
xydµ. (26)

By Lemma 3.2, since X ′
0 and X ′

1 are both saturated, so is [X ′
0,X

′
1]θ . Consequently (cf. (11)) there exists an

expanding sequence {En}n∈N of sets in Σ such that Ω =
⋃

n∈NEn and χEn ∈ [X ′
0,X

′
1]θ for each n∈N. Let yn =

yχEn∩{ω∈Ω:|y(ω)|≤n}. Then yn ∈ [X ′
0,X

′
1]θ and we have |xyn| ≤ |xy| and limn→∞ x(ω)yn(ω) = x(ω)y(ω) for all

ω ∈Ω. The function xy is integrable, since X0∩X1
1⊂ [X0,X1]θ

1⊂ X1−θ
0 Xθ

1 and (X ′
0)

1−θ (X ′
1)

θ 1=
(
X1−θ

0 Xθ
1

)′
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(cf. (17) and (18) and Remark 3.3). So (26) follows from the Lebesgue dominated convergence theorem.
As already explained, this implies (25) and therefore also (24) and (23), and so completes the proof of the
theorem.

Proof of Corollary 4.2. This uses all steps of the preceding proof up to (23). Then it is required to establish
a variant of (23) or of (24) where ‖·‖[X ′′0 ,X ′′1 ]θ is replaced by ‖·‖[X0,X1]θ or (cf. (17)) by ‖·‖X1−θ

0 Xθ
1

. If X0 and X1

both have the Fatou property then X ′′
0 = X0 and X ′′

1 = X1 and we are done. Otherwise, in view of (25) and
(18), it will suffice if we show that sup{|∫Ω xydµ| : y ∈B(X1−θ

0 Xθ
1 )′}= ‖x‖X1−θ

0 Xθ
1

for each x ∈ X0∩X1.

This will hold whenever
(
X1−θ

0 Xθ
1

)′
is a norming subspace of the dual of X1−θ

0 Xθ
1 (and possibly also

under a weaker assumption than that, since we are only considering elements x in X0 ∩X1). As already
observed above (just after (14)), one sufficient condition for this to happen is when X1−θ

0 Xθ
1 is σ -order

continuous. The σ -order continuity of X1−θ
0 Xθ

1 can be ensured by requiring that at least one of the spaces
X0 and X1 is σ -order continuous (cf. Proposition 4 on p. 80 of [22] or Theorem 1.29 on p. 27 of [12]).
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Võrepaaridesse kujutavate kompaktsete operaatorite kompleksne interpolatsioon

Michael Cwikel

Küsimus, kas Banachi (ruumide) paaride vahel tegutsev tõkestatud lineaarne operaator, mis tegutseb ühel
(või isegi mõlemal) lähteruumil kompaktselt, tegutseb kompaktselt ka nende ruumide poolt genereeritud
komplekssete interpolatsiooniruumide vahel, on püsinud lahtisena juba 44 aastat. Artiklis on vastatud sellele
küsimusele jaatavalt juhul, kui operaatori sihtpaar on teatavaid loomulikke eeldusi rahuldav (ühel ja samal
mõõduga ruumil tegutsevate) Banachi võrede paar.


