
Proceedings of the Estonian Academy of Sciences,
2009, 58, 3, 146–161

doi: 10.3176/proc.2009.3.02
Available online at www.eap.ee/proceedings

Hypersurfaces with pointwise 1-type Gauss map
in Lorentz–Minkowski space
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Abstract. Hypersurfaces of a Lorentz–Minkowski space Ln+1 with pointwise 1-type Gauss map are characterized. We prove that
an oriented hypersurface Mq in Ln+1 has pointwise 1-type Gauss map of the first kind if and only if Mq has constant mean curvature
and conclude that all oriented isoparametric hypersurfaces in Ln+1 have 1-type Gauss map. Then we classify rational rotation
hypersurfaces of Ln+1 with pointwise 1-type Gauss map and give some examples.
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1. INTRODUCTION

The notion of finite type submanifolds in Euclidean space or pseudo-Euclidean space was introduced by
B. Y. Chen in the late 1970s (cf. [5,6]). Since then the theory of submanifolds of finite type has been studied
by many geometers and many interesting results have been obtained (see [7] for a report on this subject).

In [9] the notion of finite type was extended to differentiable maps, in particular, to Gauss map of
submanifolds. The notion of finite type Gauss map is especially a useful tool in the study of submanifolds
(cf. [1–4,9,14,15,19]).

If a submanifold M of a pseudo-Euclidean space Em
s has 1-type Gauss map G, then G satisfies

∆G = λ (G+C) for some λ ∈ R and some constant vector C. However, the Laplacian of the Gauss map of
several surfaces and hypersurfaces, such as catenoids and right cones in E3 [10], generalized catenoids and
right n-cones in En+1 [11], and helicoids of the 1st, 2nd, and 3rd kind, conjugate Enneper’s surfaces of the
second kind, and B-scrolls in E3

1 [16] take the form

∆G = f (G+C) (1.1)

for some non-constant function f on M and some constant vector C. A submanifold is said to have pointwise
1-type Gauss map if its Gauss map satisfies (1.1) for some smooth function f on M and some constant vector
C. A pointwise 1-type Gauss map is called proper if the function f is non-constant. A submanifold with
pointwise 1-type Gauss map is said to be of the first kind if the vector C in (1.1) is the zero vector. Otherwise,
a submanifold with pointwise 1-type Gauss map is said to be of the second kind.

In [16], Kim and Yoon gave the complete classification of ruled surfaces in a 3-dimensional Minkowski
space with pointwise 1-type Gauss map; in [18] they characterized ruled surfaces of an m-dimensional
Minkowski space Em

1 in terms of the notion of pointwise 1-type Gauss map, and moreover, they studied
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rotation surfaces of the pseudo-Euclidean space E4
2 with pointwise 1-type Gauss map in [17]. Recently,

in [13], U-H. Ki, D.-S. Kim, Y. H. Kim, and Y.-M. Roh gave a complete classification of rational surfaces
of revolution in Minkowski 3-space with pointwise 1-type Gauss map.

In this paper our aim is to study hypersurfaces of a Lorentz–Minkowski space Ln+1 with pointwise
1-type Gauss map. We first obtain a characterization of hypersurfaces Mq of index q of Ln+1 with pointwise
1-type Gauss map, that is, we show that an oriented hypersurface Mq of a Lorentz–Minkowski space Ln+1

has pointwise 1-type Gauss map of the first kind if and only if Mq has constant mean curvature. As a
consequence of this, all oriented isoparametric hypersurfaces of Ln+1 have 1-type Gauss map. Then we
classify rational rotation hypersurfaces of Ln+1 with pointwise 1-type Gauss map which extend the results
given in [13] on rational surfaces of revolution in L3 to the hypersurfaces of Ln+1. We also give examples of
a rational rotation hypersurface with pointwise 1-type Gauss map of the first and second kind.

2. PRELIMINARIES

Let Ln+1 denote the (n + 1)-dimensional Lorentz–Minkowski space, that is, the real vector space Rn+1

endowed with the Lorentzian metric 〈,〉 = (dx1)2 + · · ·+ (dxn)2 − (dxn+1)2, where (x1, . . . ,xn+1) are the
canonical coordinates in Rn+1. A vector x of Ln+1 is said to be space-like if 〈x,x〉> 0 or x = 0, time-like if
〈x,x〉< 0, or light-like (or null) if 〈x,x〉= 0 and x 6= 0.

An immersed hypersurface Mq of Ln+1 with index q (q = 0,1) is called space-like (Riemannian) or time-
like (Lorentzian) if the induced metric which, as usual, is also denoted by 〈,〉 on Mq has the index 0 or 1,
respectively. The de Sitter n-space Sn

1(x0,c) centred at x0 ∈ Ln+1, c > 0, is a Lorentzian hypersurface of
Ln+1 defined by

Sn
1(x0,c) = {x ∈ Ln+1| 〈x− x0,x− x0〉= c2}

and the hyperbolic spaceHn(x0,−c) centred at x0 ∈ Ln+1, c > 0, is a space-like hypersurface of Ln+1 defined
by

Hn(x0,−c) = {x ∈ Ln+1| 〈x− x0,x− x0〉=−c2 and xn+1− x0
n+1 > 0},

where xn+1− x0
n+1 is the (n+1)-th component of x− x0.

Let Π be a 2-dimensional subspace of Ln+1 passing through the origin. We will say that Π is non-
degenerate if the metric 〈,〉 restricted to Π is a non-degenerate quadratic form. A curve in Ln+1 is called
space-like, time-like, or light-like if the tangent vector at any point is space-like, time-like, or light-like,
respectively.

Here we will define non-degenerate rotation hypersurfaces in Ln+1 with a time-like, space-like, or light-
like axis. For an open interval I ⊂R, let γ : I →Π be a regular smooth curve in a non-degenerate 2-plane Π
of Ln+1 and let ` be a line in Π that does not meet the curve γ . A rotation hypersurface Mq with index q in
Ln+1 with a rotation axis ` is defined as the orbit of a curve γ under the orthogonal transformations of Ln+1

with a positive determinant that leaves the rotation axis ` fixed (for details see [12]). The curve γ is called
a profile curve of the rotation hypersurface. As we consider non-degenerate rotation hypersurfaces, it is
sufficient to consider the case that the profile curve is space-like or time-like. The explicit parametrizations
for non-degenerate rotation hypersurfaces Mq in Ln+1 were given in [12] according to the axis ` being time-
like, space-like, or light-like.

Let {η1, . . . ,ηn+1} be the standard orthonormal basis of Ln+1, that is,
〈
ηi,η j

〉
= δi j, 〈ηn+1,ηn+1〉=−1,

〈ηi,ηn+1〉= 0, i, j = 1,2, . . . ,n. Let Θ(u1, . . .un−2) denote an orthogonal parametrization of the unit sphere
Sn−2(1) in the Euclidean space En−1 generated by {η1, . . . ,ηn−1}:

Θ(u1, . . .un−2) = cosu1η1 + sinu1 cosu2η2

+ · · ·+ sinu1 · · ·sinun−3 cosun−2ηn−2 + sinu1 · · ·sinun−3 sinun−2ηn−1, (2.1)

where 0 < ui < π (i = 1, . . . ,n−3), 0 < un−2 < 2π .
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Remark 2.1. When n = 2, the term Θ(u1, . . . ,un−2) in the following definitions of rotation hypersurfaces is
replaced by η1.

Case 1. ` is time-like. In this case the plane Π that contains the line ` and a profile curve γ is Lorentzian.
Without loss of generality, we may suppose that ` is the xn+1-axis and Π is the xnxn+1-plane which is
Lorentzian.

Let γ(t) = ϕ(t)ηn +ψ(t)ηn+1 be a parametrization of γ in the plane Π with xn = ϕ(t) > 0, t ∈ I⊂R. The
curve is space-like if ε = sgn(ϕ ′2−ψ ′2) = 1 and time-like if ε = sgn(ϕ ′2−ψ ′2) =−1. So a parametrization
of a rotation hypersurface Mq,T of Ln+1 with a time-like axis is given by

fT (u1, . . . ,un−1, t) = ϕ(t)sinun−1Θ(u1, . . . ,un−2)+ϕ(t)cosun−1 ηn +ψ(t)ηn+1, (2.2)

where 0 < un−1 < π . The second index in Mq,T stands for the time-like axis. The hypersurface Mq,T is also
called a spherical rotation hypersurface of Ln+1 as parallels of Mq,T are spheres Sn−1(0,ϕ(t)).

Case 2. ` is space-like. In this case the plane Π which contains a profile curve is Lorentzian or
Riemannian. So there are rotation hypersurfaces of the first and second kind labelled by Mq,S1 and Mq,S2

in Ln+1 with a space-like axis.
Subcase 2.1. The plane Π is Lorentzian. Without losing generality we may suppose that ` is the xn-axis,

that is, the vector ηn = (0,0, . . . ,0,1,0) is the direction of the rotation axis, and Π is the xnxn+1-plane. Let
γ(t) = ψ(t)ηn +ϕ(t)ηn+1 be a parametrization of γ in the plane Π with xn+1 = ϕ(t) > 0, t ∈ I ⊂R. Thus a
parametrization of a rotation hypersurface of the first kind Mq,S1 of Ln+1 with a space-like axis is given by

fS1(u1, . . . ,un−1, t) = ϕ(t)sinhun−1Θ(u1, . . . ,un−2)+ψ(t)ηn +ϕ(t)coshun−1ηn+1, (2.3)

0 < un−1 < ∞, which is also called a hyperbolic rotation hypersurface of Ln+1 as parallels of Mq,S1 are
hyperbolic spaces Hn−1(0,−ϕ(t)).

Subcase 2.2. The plane Π is Riemannian. We may suppose that ` is the xn-axis and Π is the xn−1xn-
plane without loss of generality. Let γ(t) = ϕ(t)ηn−1 +ψ(t)ηn be a parametrization of γ in the plane Π with
xn−1 = ϕ(t) > 0, t ∈ I ⊂ R. In this case the curve γ is space-like. Similarly, a parametrization of a rotation
hypersurface of the second kind Mq,S2 of Ln+1 with a space-like axis is given by

fS2(u1, . . . ,un−1, t) = ϕ(t)coshun−1Θ(u1, . . . ,un−2)+ψ(t)ηn +ϕ(t)sinhun−1ηn+1, (2.4)

−∞ < un−1 < ∞, which is called a pseudo-spherical rotation hypersurface of Ln+1 as parallels of Mq,S2 are
pseudo-spheres Sn−1

1 (0,ϕ(t)) when n > 2. (If n = 2, then S1
1 ≡ H1.) Also Mq,S2 has index 1, that is, q = 1.

Case 3. ` is light-like. Let {η̂1, . . . , η̂n+1} be a pseudo-Lorentzian basis of Ln+1, that is, < η̂i, η̂ j >=
δi j, i, j = 1, . . . ,n− 1, < η̂i, η̂n >=< η̂i, η̂n+1 >= 0, i = 1,2, . . . ,n− 1, < η̂n, η̂n+1 >= 1, < η̂n, η̂n >= 0,
< η̂n+1, η̂n+1 >= 0. We can choose η̂1 = (1,0, . . . ,0), . . . η̂n−1 = (0, . . . ,1,0,0), η̂n = 1√

2
(0, . . . ,0,1,−1),

η̂n+1 = 1√
2
(0, . . . ,0,1,1). We may suppose that ` is the line spanned by the null vector η̂n+1 and Π is the

xnxn+1-plane without loss of generality. Let γ(t) =
√

2ϕ(t)η̂n +
√

2ψ(t)η̂n+1 be a parametrization of γ in
the plane Π with xn = ϕ(t) > 0, t ∈ I ⊂ R. Let Θ1(u1, . . . ,un−2), . . . ,Θn−1(u1, . . . ,un−2) be the components
of the orthogonal parametrization Θ(u1, . . . ,un−2) given by (2.1) of the unit sphere Sn−2(1) in the basis
{η̂1, . . . , η̂n−1}.

Then a parametrization of a rotation hypersurface Mq,L of Ln+1 with a space-like axis is given by

fL(u1, . . . ,un−1, t) = 2ϕ(t)un−1Θ(u1, . . . ,un−2)+
√

2ϕ(t)η̂n +
√

2(ψ(t)−ϕ(t)u2
n−1)η̂n+1, un−1 6= 0.

(2.5)

The subgroup of Lorentz group which fixes the direction η̂n+1 of the light-like axis ` can be seen in [12].
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Note that in the third case if ϕ(t) = ϕ0 or ψ(t) = ψ0 is a constant, the profile curve is degenerate.
However, in the other cases if ϕ(t) = ϕ0 > 0 is a constant and ψ(t) = t, the rotation hypersurface M1,T is the
Lorentzian cylinder Sn−1(0,ϕ0)×L1, M0,S1 is the hyperbolic cylinder Hn−1(0,−ϕ0)×R, and M1,S2 is the
pseudo-spherical cylinder Sn−1

1 (0,ϕ0)×R. If ϕ(t) = t and ψ(t) = ψ0 is a constant, then M0,T is a space-like
hyperplane of Ln+1, and M1,S1 and M1,S2 are time-like hyperplanes of Ln+1. Therefore all these are rotation
hypersurfaces of Ln+1 with constant mean curvature.

Let ∇ and ∇′ denote the Riemannian connection on Mq and Ln+1, respectively. Then, for any vector
fields X ,Y tangent to Mq, we have the Gauss formula

∇′
XY = ∇XY +h(X ,Y ), (2.6)

where h is the second fundamental form which is symmetric in X and Y . For a unit normal vector field ξ ,
the Weingarten formula is given by

∇′
X ξ =−Aξ X , (2.7)

where Aξ is the Weingarten map or the shape operator with respect to ξ . The Weingarten map Aξ is a
self-adjoint endomorphism of T M which cannot be diagonalized in general. It is known that h and Aξ are
related by

〈h(X ,Y ),ξ 〉=
〈
Aξ X ,Y

〉
. (2.8)

The covariant derivative of the second fundamental form h is defined by

(∇̄X h)(Y,Z) = ∇⊥
X h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z), (2.9)

where ∇⊥ denotes the linear connection induced on the normal bundle T⊥M. Then the Codazzi equation is
given by

(∇̄X h)(Y,Z) = (∇̄Y h)(X ,Z). (2.10)

Also, from (2.9) we have

(∇̄X h)(Y,Z) = (∇̄X h)(Z,Y ). (2.11)

For any normal vector ξ the covariant derivative ∇Aξ of Aξ is defined by

(∇X Aξ )Y = ∇X(AξY )−Aξ (∇XY ). (2.12)

Let ξ be a unit normal vector. Since ∇⊥
X ξ = 0, we have by (2.9)

〈
(∇X Aξ )Y,Z

〉
=

〈
(∇̄X h)(Y,Z),ξ

〉
. (2.13)

Let Mq be a hypersurface with index q in Ln+1. The map G : Mn → Qn(εG) ⊂ Ln+1 which sends each
point of Mq to the unit normal vector to Mq at the point is called the Gauss map of the hypersurface Mq,
where εG(=±1) denotes the signature of the vector G and Qn(εG) is an n-dimensional space form given by

Qn(εG) =

{
Sn

1(0,1) in Ln+1 if εG = 1

Hn(0,−1) in Ln+1 if εG =−1.

Let e1, . . . ,en be an orthonormal local tangent frame on a hypersurface Mq of Ln+1 with signatures
εi = 〈ei,ei〉 = ∓1, and AG denote the shape operator of Mq in the unit normal direction G. Then the mean
curvature H of Mq is defined by

H =
1
n

εG(trAG)G =
1
n

n

∑
i=1

εGεi 〈AG(ei),ei〉G.

A space-like hypersurface of Ln+1 with vanishing mean curvature is called maximal.
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3. HYPERSURFACES WITH POINTWISE 1-TYPE GAUSS MAP

In this section we give a characterization of hypersurfaces of Lorentz–Minkowski space with pointwise
1-type Gauss map.

Lemma 3.1. Let Mq be a hypersurface with index q in a Lorentz–Minkowski space Ln+1. Then we have

trace(∇AG) = n∇α, (3.1)

where α =
√

εG 〈H,H〉 and εG = 〈G,G〉.

Proof. Let e1, . . . ,en be a local orthonormal tangent basis on Mq with εi = 〈ei,ei〉, i = 1, . . . ,n. For any vector
X tangent to Mq we have by using (2.9)–(2.11) and (2.13)

〈trace(∇AG),X〉=
n

∑
i=1

εi 〈(∇eiAG)ei,X〉

=
n

∑
i=1

εi
〈
(∇̄eih)(ei,X),G

〉

=
n

∑
i=1

εi
〈
(∇̄eih)(X ,ei),G

〉

=
n

∑
i=1

εi
〈
(∇̄X h)(ei,ei),G

〉

=
n

∑
i=1

εi[
〈

∇⊥
X h(ei,ei),G

〉
−2〈h(∇X ei,ei),G〉]

=

〈
∇⊥

X

( n

∑
i=1

εih(ei,ei)
)
,G

〉
−2

n

∑
i, j=1

εiω j
i (X)

〈
h(e j,ei),G

〉

=
〈

n∇⊥
X H,G

〉
= nXα = n〈∇α,X〉

because εiω j
i + ε jω i

j = 0, where ω j
i , i, j = 1, . . . ,n, are the connection forms associated to e1, . . . ,en, and

∇α is the gradient of the mean curvature. Therefore we obtain (3.1).

Lemma 3.2. Let Mq be a hypersurface with index q in a Lorentz–Minkowski space Ln+1. Then the Laplacian
of the Gauss map G is given as

∆G = εG‖AG‖2G+n∇α, (3.2)

where ‖AG‖2 = tr(AGAG), εG = 〈G,G〉, and α =
√

εG
〈
H,H

〉
.

Proof. Let C0 be a fixed vector in Ln+1. For any vectors X ,Y tangent to M using the Gauss and Weingarten
formulas we have

Y X
〈
G,C0

〉
=−〈

∇Y (AG(X))+h(AG(X),Y ),C0
〉
. (3.3)

Let e1, . . . ,en be a local orthonormal tangent basis on Mq with εi = 〈ei,ei〉. By using (2.12), (3.3), and
Lemma 3.1, we calculate the Laplacian of

〈
G,C0

〉
as follows:



U. Dursun: Hypersurfaces with pointwise 1-type Gauss map 151

∆
〈
G,C0

〉
=

n

∑
i=1

εi(∇eiei− eiei)
〈
G,C0

〉

=
n

∑
i=1

εi
〈−AG(∇eiei),C0

〉
+

n

∑
i=1

εi
〈
∇ei(AG(ei))+h(AG(ei),ei),C0

〉

=

〈
n

∑
i=1

εi{∇ei(AG(ei))−AG(∇eiei)},C0

〉
+

〈
n

∑
i=1

εih(AG(ei),ei),C0

〉

=
〈
trace(∇AG)+‖AG‖2G,C0

〉
(3.4)

as ∑n
i=1 εih(AG(ei),ei) = εG‖AG‖2G. Since (3.4) holds for any C0 ∈ Ln+1, the proof is complete.

Now, from definition (1.1) and equation (3.2) we state the following theorem which characterizes the
hypersurfaces of Lorentz–Minkowski spaces with pointwise 1-type Gauss map of the first kind.

Theorem 3.3. Let Mq be an oriented hypersurface with index q in a Lorentz–Minkowski space Ln+1. Then
Mq has proper pointwise 1-type Gauss map of the first kind if and only if Mq has constant mean curvature
and ‖AG‖2 is non-constant.

Hence we have

Corollary 3.4. All oriented isoparametric hypersurfaces of a Lorentz–Minkowski space Ln+1 have 1-type
Gauss map.

For example, space-like hyperplanes, Lorentzian hyperplanes, hyperbolic spaces Hn(0,−c), de Sitter
spaces Sn

1(0,c), Lorentzian cylinders Sn−1(0,c)×L1, hyperbolic cylindersHn−1(0,−c)×R, and the pseudo-
spherical cylinders Sn−1

1 (0,c)×R of Ln+1 have 1-type Gauss map.
From Lemma 3.2 we can also state

Theorem 3.5. If an oriented hypersurface Mq with index q in a Lorentz–Minkowski space Ln+1 has proper
pointwise 1-type Gauss map of the second kind, then the mean curvature of M is a non-constant function
on Mq.

4. ROTATION HYPERSURFACES WITH POINTWISE 1-TYPE GAUSS MAP OF THE
FIRST AND THE SECOND KIND

In this section we obtain a classification of rotation hypersurfaces of Ln+1 with pointwise 1-type Gauss map
of the first and the second kind, and give some examples.

Lemma 4.1. Let Mq be one of the rotation hypersurfaces Mq,T , Mq,S1 , or M1,S2 of Ln+1. If Mq has pointwise
1-type Gauss map in Ln+1, then either the Gauss map is harmonic, that is, ∆G = 0 or the function f defined
in (1.1) depends only on t and the vector C in (1.1) is parallel to the axis of the rotation of Mq.

Proof. Let Mq = Mq,T , which is defined by (2.2). The Gauss map of Mq,T is given by

G =
1√

ε(ϕ ′2−ψ ′2)
[ψ ′(t)(sinun−1Θ+ cosun−1ηn)+ϕ ′(t)ηn+1] (4.1)

with εG = 〈G,G〉=−ε, where ε = sgn(ϕ ′2−ψ ′2) =±1.
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The principal curvature of the shape operator AG of Mq,T in the direction G was obtained in [12]. By a
direct computation (or following [12]) we have the mean curvature α of Mq,T as

α =
1

n
√

ε(ϕ ′2−ψ ′2)

(
−(n−1)ψ ′

ϕ
+

ψ ′ϕ ′′−ϕ ′ψ ′′

ϕ ′2−ψ ′2

)
, (4.2)

which is the function of t, and the square of the length of the shape operator as

‖AG‖2 =
ε

ϕ ′2−ψ ′2

(
(n−1)ψ ′2

ϕ2 +
(ψ ′ϕ ′′−ϕ ′ψ ′′)2

(ϕ ′2−ψ ′2)2

)
. (4.3)

Since the mean curvature α is the function of t, by a direct computation we obtain the gradient of α as

∇α =
α ′

ϕ ′2−ψ ′2 [ϕ ′(t)(sinun−1Θ+ cosun−1ηn)+ψ ′(t)ηn+1].

Also, by (4.1) we write

∇α =
εϕ ′α ′(t)

ψ ′
√

ε(ϕ ′2−ψ ′2)
G− α ′(t)

ψ ′ ηn+1. (4.4)

Using (3.2) and (4.4), the Laplacian of the Gauss map (4.1) becomes

∆G = ε


 ϕ ′α ′(t)

ψ ′
√

ε(ϕ ′2−ψ ′2)
−‖AG‖2


G− nα ′(t)

ψ ′ ηn+1. (4.5)

If M has pointwise 1-type Gauss map, then (1.1) holds for some function f and some vector C. When
the Gauss map is not harmonic, equations (1.1), (2.1), (4.1), and (4.5) imply that C = cηn+1 which is the
rotation axis of Mq,T for some nonzero constant c ∈ R, and

ε


 ϕ ′α ′(t)

ψ ′
√

ε(ϕ ′2−ψ ′2)
−‖AG‖2


 = f and − nα ′(t)

ψ ′ = c f , (4.6)

from which the function f is independent of u1, . . . ,un−1.
In the case Mq = Mq,S1 or Mq = M1,S2 , we obtain the same result by a similar discussion.

Theorem 4.2. There do not exist rotation hypersurfaces Mq in Ln+1 with a light-like rotation axis and
harmonic Gauss map.

Proof. Without losing generality we may parametrize Mq by (2.5), that is, Mq = Mq,L. Then the Gauss map
Ĝ of Mq,L is given by

Ĝ =
1√

2ε̂ϕ ′ψ ′ [ϕ
′(
√

2un−1Θ+ η̂n)− (ψ ′+ϕ ′u2
n−1)η̂n+1] (4.7)

with ε̂Ĝ =
〈
Ĝ, Ĝ

〉
=−ε̂ , where ε̂ = sgn(ϕ ′ψ ′) =±1.

By a direct computation (or see [12]) we have the mean curvature α̂ of Mq,L as

α̂ =
1

n
√

ε̂ϕ ′ψ ′

(
−(n−1)ϕ ′

2ϕ
+

ϕ ′ψ ′′−ψ ′ϕ ′′

4ϕ ′ψ ′

)
, (4.8)
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which is the function of t, and the square of the length of the shape operator AĜ as

‖AĜ‖2 =
ε̂

4ϕ ′ψ ′

(
(n−1)ϕ ′2

ϕ2 +
(ϕ ′ψ ′′−ψ ′ϕ ′′)2

4ϕ ′2ψ ′2

)
. (4.9)

Since the mean curvature α̂ is the function of t, we then obtain the gradient of α̂ as

∇α̂ =
√

2α̂ ′(t)
4ϕ ′ψ ′ [ϕ ′(

√
2un−1Θ+ η̂n)+(ψ ′−ϕ ′u2

n−1)η̂n+1].

Also, by using (4.7), we have

∇α̂ =
ε̂ α̂ ′(t)

2
√

ε̂ϕ ′ψ ′G+
√

2α̂ ′(t)
2ϕ ′

η̂n+1. (4.10)

Using (3.2) and (4.10), the Laplacian of the Gauss map (4.7) becomes

∆Ĝ = ε̂

(
nα̂ ′(t)

2
√

ε̂ϕ ′ψ ′ −‖AĜ‖2

)
Ĝ+

√
2nα̂ ′(t)
2ϕ ′

η̂n+1. (4.11)

Suppose that the Gauss map is harmonic, that is, ∆Ĝ = 0. Then, considering (4.7), we have ‖AĜ‖ = 0
from (4.11), which implies ϕ ′ = 0 because of (4.9). This is not possible as the hypersurface is nondegenerate,
that is, ϕ ′ψ ′ 6= 0. Therefore the Gauss map of Mq,L is not harmonic.

Lemma 4.3. Let Mq,L be a rotation hypersurface of Ln+1 with a light-like rotation axis parametrized by
(2.5). If Mq,L has pointwise 1-type Gauss map in Ln+1, then the function f in (1.1) depends only on t, and
the vector C in (1.1) is parallel to the rotation axis.

Proof. The Gauss map of Mq,L and its Laplacian are given by (4.7) and (4.11), respectively. Suppose that
Mq,L has pointwise 1-type Gauss map in Ln+1. By (1.1), (2.1), (4.7), and (4.11) we see that C = cη̂n+1 which
is the rotation axis of Mq,L for some nonzero constant c ∈ R, and

ε̂

(
nα̂ ′(t)

2
√

ε̂ϕ ′ψ ′ −‖AĜ‖2

)
= f and

√
2nα̂ ′(t)
2ϕ ′

= c f , (4.12)

from which the function f is independent of u1, . . . ,un−1.

Here we give some examples for later use. Let ϕ(t) = t, t > 0 and ψ(t) = g(t) in the definitions of
rotation hypersurfaces Mq,T , Mq,S1 , M1,S2 , and Mq,L, where g(t) is a differentiable function. In [12], the
following results were obtained for the rotation hypersurfaces of Ln+1 with constant mean curvature:
1) The rotation hypersurface Mq,T of Ln+1 has constant mean curvature α if and only if the function g(t) is

given by

g(t) =
∫ t a±αtn

√
(a±αtn)2 + εt2(n−1)

dt, (4.13)

where a is an arbitrary constant, ε = sgn(1−g′2) =±1, and q = 0 for ε = 1 and q = 1 for ε =−1.
2) The rotation hypersurface of the first kind Mq,S1 of Ln+1 has constant mean curvature ᾱ if and only if the

function g(t) is given by

g(t) =
∫ t a± ᾱtn

√
(a± ᾱtn)2− ε̄t2(n−1)

dt, (4.14)

where a is an arbitrary constant, ε̄ = sgn(g′2−1) =±1, and q = 0 for ε̄ = 1 and q = 1 for ε̄ =−1.
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3) The Lorentzian rotation hypersurface of the second kind M1,S2 of Ln+1 has constant mean curvature α̃ if
and only if the function g(t) is given by

g(t) =
∫ t a± α̃tn

√
t2(n−1)− (a± α̃tn)2

dt, (4.15)

where a is an arbitrary constant.
4) The rotation hypersurface Mq,L of Ln+1 has constant mean curvature α̂ if and only if the function g(t) is

given by

g(t) =
∫ t

ε̂
t2(n−1)

(a−2α̂tn)2 dt, (4.16)

where a is an arbitrary constant, ε̂ = sgn(g′) =±1, and q = 0 for ε̂ = 1 and q = 1 for ε̂ =−1.

Example 4.4. The rotation hypersurface Mq,T of Ln+1 defined by (2.2) for the function g(t) given by (4.13)
has the Gauss map from (4.1) as

G =
a±αtn

tn−1 (sinun−1Θ+ cosun−1ηn)+

√
(a±αtn)2 + εt2(n−1)

tn−1 ηn+1 (4.17)

with εG = 〈G,G〉=−ε . Since Mq,T has constant mean curvature, we have the Laplacian of the Gauss map
by using (3.2) and (4.3) as

∆G =−ε
(

nα2 +
n(n−1)a2

t2n

)
G,

which implies that the rotation hypersurface Mq,T for the function (4.13) has proper pointwise 1-type Gauss
map of the first kind if a 6= 0. For instance, when α = 0, the generalized catenoids of the first and the third
kind have proper pointwise 1-type Gauss map of the first kind. If a = 0 and α 6= 0, then Mq,T has 1-type
Gauss map. In this case, M0,T is a part of a hyperbolic n-space Hn(c0ηn+1,−1/|α|) when ε = 1, and the
Lorentzian rotation hypersurface M1,T of Ln+1 is a part of the de Sitter n-space Sn

1(c0ηn+1,1/|α|) when
ε =−1 for some c0 ∈ R ([12]).

Example 4.5. The Gauss map of the rotation hypersurface Mq,S1 of Ln+1 defined by (2.3) for the function
g(t) given by (4.14) is given by

Ḡ =
a± ᾱtn

tn−1 (sinhun−1Θ+ coshun−1ηn+1)+

√
(a±αtn)2− ε̄t2(n−1)

tn−1 ηn (4.18)

with ε̄Ḡ =
〈
Ḡ, Ḡ

〉
=−ε̄ . By a direct calculation from (3.2) we have the Laplacian of the Gauss map as

∆Ḡ =−ε̄
(

nᾱ2 +
n(n−1)a2

t2n

)
Ḡ,

which implies that the rotation hypersurface Mq,S1 for the function (4.14) has proper pointwise 1-type Gauss
map of the first kind if a 6= 0. For instance, when ᾱ = 0, the generalized catenoids of the second and the
fourth kind have proper pointwise 1-type Gauss map of the first kind. If a = 0 and ᾱ 6= 0, then Mq,S1 has
1-type Gauss map. In this case, M0,S1 is a part of a hyperbolic n-spaceHn(c0ηn+1,−1/|ᾱ|) when ε̄ = 1, and
the Lorentzian rotation hypersurface M1,S1 of Ln+1 is a part of the de Sitter n-space Sn

1(c0ηn+1,1/|ᾱ|) when
ε̄ =−1 for some c0 ∈ R ([12]).

Example 4.6. Now we consider the rotation hypersurface M1,S2 of Ln+1 defined by (2.4) for the function
g(t) given by (4.15). Then the Gauss map G̃ of M1,S2 is obtained as

G̃ =
a± α̃tn

tn−1 (coshun−1Θ+ sinhun−1ηn+1)−
√

t2(n−1)− (a± α̃tn)2

tn−1 ηn (4.19)
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with ε̃G̃ =
〈
G̃, G̃

〉
= 1. By a direct calculation from (3.2) we have the Laplacian of the Gauss map as

∆G̃ =
(

nα̃2 +
n(n−1)a2

t2n

)
G̃,

which implies that the rotation hypersurface M1,S2 for the function (4.15) has proper pointwise 1-type Gauss
map of the first kind if a 6= 0. For instance, when α̃ = 0, the generalized catenoids of the fifth kind have
proper pointwise 1-type Gauss map of the first kind. If a = 0 and α̃ 6= 0, then M1,S2 has 1-type Gauss map,
and it is a part of the de Sitter n-space Sn

1(c0ηn+1,1/|α̃|) for some c0 ∈ R ([12]).

Example 4.7. The rotation hypersurface Mq,L of Ln+1 defined by (2.5) for the function g(t) given by (4.16)
has the Gauss map as

Ĝ =
1√

2tn−1(a− α̂tn)
{(a− α̂tn)2(

√
2un−1Θ+ η̂n)− [ε̂t2(n−1) +(a− α̂tn)2u2

n−1]η̂n+1} (4.20)

with a− α̂tn > 0 and εĜ =
〈
Ĝ, Ĝ

〉
=−ε̂ , where η̂n are η̂n+1 vectors in the pseudo-orthonormal basis given

in the definition of Mq,L. By a direct calculation from (3.2) we have the Laplacian of the Gauss map as

∆Ĝ =−ε̂
(

nα̂2 +
n(n−1)a2

4t2n

)
Ĝ,

which implies that the rotation hypersurface Mq,L for the function (4.16) has proper pointwise 1-type Gauss
map of the first kind if a 6= 0. For instance, when α̂ = 0, the Enneper’s hypersurfaces of the second and the
third kind [12] have proper pointwise 1-type Gauss map of the first kind. If a = 0 and α̂ 6= 0, then Mq,L has
1-type Gauss map. In this case, M0,L is a part of a hyperbolic n-space Hn(c0η̂n+1,−1/|α̂|) when ε̂ = 1, and
the Lorentzian rotation hypersurface M1,L of Ln+1 is a part of the de Sitter n-space Sn

1(c0η̂n+1,1/|α̂|) when
ε̂ =−1 for some c0 ∈ R ([12]).

Example 4.8. (Spherical n-cone) Consider the rotation hypersurface Mq,T of Ln+1 parametrized by (2.2) for
the functions ϕ(t) = t,(t > 0) and ψ(t) = at, a > 0. It is a right n-cone Ca,T with a time-like rotation axis
based on a sphere Sn−1, which is space-like if 0 < a < 1 and time-like if |a|> 1. The Gauss map G of Ca,T
and its Laplacian ∆G are, respectively, given by

G =
1√

ε(1−a2)
[a(sinun−1Θ+ cosun−1ηn)+ηn+1]

and

∆G =
n−1

t2

(
G− 1√

ε(1−a2)
ηn+1

)
,

where ε = sgn(1−a2). Therefore the spherical n-cone Ca,T has proper pointwise 1-type Gauss map of the
second kind.

Example 4.9. (Hyperbolic n-cone) Now we consider the rotation hypersurface Mq,S1 of Ln+1 parametrized
by (2.3) for the functions ϕ(t) = t,(t > 0) and ψ(t) = at, a > 0. It is a hyperbolic n-cone Ca,S1 of the first
kind with a space-like rotation axis based on a hyperbolic space Hn−1, which is space-like if |a| > 1 and
time-like if 0 < a < 1. The Gauss map Ḡ of Ca,S1 and its Laplacian ∆Ḡ are, respectively, given by

Ḡ =
1√

ε̄(a2−1)
[a(sinhun−1Θ+ coshun−1ηn+1)+ηn]

and

∆Ḡ =−n−1
t2

(
Ḡ− 1√

ε̄(a2−1)
ηn

)
,
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where ε̄ = sgn(a2−1). Therefore the hyperbolic n-cone Ca,S1 of the first kind has proper pointwise 1-type
Gauss map of the second kind.

Example 4.10. (Pseudo-spherical n-cone) The rotation hypersurface M1,S2 of Ln+1 parametrized by (2.4)
for the functions ϕ(t) = t,(t > 0) and ψ(t) = at, a > 0 is a hyperbolic n-cone Ca,S2 of the second kind with
a space-like rotation axis. It is a time-like (Lorentzian) n-cone based on a pseudo-sphere Sn−1

1 which has the
Gauss map G̃ as

G̃ =
1√

ε̃(a2 +1)
[a(coshun−1Θ+ sinhun−1ηn+1)−ηn]

and the Laplacian ∆G̃ of Gauss map G̃ is given by

∆G̃ =
n−1

t2

(
Ḡ+

1√
ε̄(a2 +1)

ηn

)
,

where ε̄ = sgn(a2−1). Therefore the pseudo-spherical n-cone Ca,S2 of the second kind has proper pointwise
1-type Gauss map of the second kind.

The notion of rotation surfaces of polynomial and rational kinds was introduced by Chen and Ishikawa
in [8]. A rotation hypersurface in Ln+1 is said to be of polynomial kind if the functions ϕ(t) and ψ(t) in the
parametrization of the rotation hypersurfaces given in the first section are polynomials, and it is said to be
of rational kind if ϕ(t) and ψ(t) are rational functions. A rotation hypersurface of rational kind is simply
called rational rotation hypersurface. Without loss of generality we consider rotation hypersurfaces Mq,T ,
Mq,S1 , or M1,S2 in Ln+1 given by (2.2), (2.3), and (2.4), respectively, for ϕ(t) = t, t > 0 and ψ(t) = g(t),
where g(t) is a function of class C3.

By the following theorem we classify rational rotation hypersurfaces of Ln+1 in terms of pointwise
1-type Gauss map of the first kind.

Theorem 4.11.
(1) A rational rotation hypersurface Mq,T of Ln+1 parametrized by (2.2) has pointwise 1-type Gauss map of

the first kind if and only if it is an open portion of a space-like hyperplane or a Lorentzian cylinder
Sn−1×L1 of Ln+1.

(2) A rational rotation hypersurface Mq,S1 of Ln+1 parametrized by (2.3) has pointwise 1-type Gauss map of
the first kind if and only if it is an open portion of a time-like hyperplane or a hyperbolic cylinder
Hn−1×R of Ln+1.

(3) A rational rotation hypersurface Mq,S2 of Ln+1 parametrized by (2.4) has pointwise 1-type Gauss map
of the first kind if and only if it is an open portion of a time-like hyperplane or a pseudo-spherical cylinder
Sn−1

1 ×R of Ln+1.
(4) A rational rotation hypersurface Mq,L of Ln+1 parametrized by (2.5) has pointwise 1-type Gauss map of

the first kind if and only if it is an open portion of hyperbolic n-space Hn, de Sitter n-space Sn
1 or

Enneper’s hypersurface of the second kind or the third kind.
Moreover, the Enneper’s hypersurfaces of the second kind and the third kind of Ln+1 are the only poly-

nomial rotation hypersurfaces of Ln+1 with proper pointwise 1-type Gauss map of the first kind.

Proof. In the parametrization (2.2) of Mq,T , if ϕ is a constant, the hypersurface Mq,T is an open portion of
a Lorentzian cylinder Sn−1×L1 of Ln+1. If ϕ is not a constant, we put ϕ = t, t > 0 and ψ(t) = g(t) in the
parametrization (2.2) of Mq,T . In [12] it was shown that Mq,T has constant mean curvature α if and only if
the function g(t) is given by (4.13). Now, if a = α = 0 in (4.13), then g(t) is a constant. In this case, the
hypersurface Mq,T is an open portion of a space-like hyperplane.

If a 6= 0 and α = 0, that is, Mq,T is the generalized catenoid of the first or the third kind ([12]), then
(4.13) implies that the function g(t) can be expressed in terms of elliptic functions and g(t) is not a rational
function of t.
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If a = 0 and α 6= 0, then from (4.13), we get g(t) = α−1
√

α2t2 + ε + c, which is not rational, where c
is an arbitrary constant and t > 1/|α| when ε = −1. Therefore Mq,T is not rational kind. In this case, the
hypersurface Mq,T is an open portion of a hyperbolic n-space Hn−1 when ε = 1 or an open portion of a
de Sitter n-space Sn−1

1 when ε =−1.
If aα 6= 0, then g(t) given by (4.13) cannot be rational even if n = 2. If it were rational, its derivative

would be rational, which contradicts the integrand in (4.13). The converse is trivial.
Parts 2 and 3 can similarly be proved by using (2.3), (2.4), (4.14), and (4.15).
For the proof of part 4, we put ϕ = t, t > 0 and ψ(t) = g(t) in the parametrization (2.5) of Mq,L. In [12],

it was proved that Mq,L has constant mean curvature α̂ if and only if the function g(t) is given by (4.16).
Now, if a = 0 and α̂ 6= 0 in (4.16), then we obtain g(t) = c− ε̂

4α̂2t which is a rational function, and Mq,L is
an open part of a hyperbolic n-space Hn when q = 0 (ε̂ = 1) and Mq,L is an open part of a de Sitter n-space
Sn

1 when q = 1 (ε̂ =−1).
If a 6= 0 and α̂ = 0, then we have g(t) = ε̂t2n−1

a2(2n−1) +c which is a polynomial. In this case, Mq,L is an open
portion of Enneper’s hypersurface ([12]) of the second or the third kind according to ε̂ = 1 or ε̂ =−1. From
Example 4.7 it is seen that Enneper’s hypersurfaces are the only polynomial (rational) rotation hypersurfaces
of Ln+1 with proper pointwise 1-type Gauss map of the first kind.

If aα̂ 6= 0, then the function g(t) given by (4.16) is not rational for n ≥ 2 because the integration of
t2(n−1)/(a−2α̂tn)2 contains at least one term involving a logarithmic or arctangent function. The converse
of part 4 follows from Corollary 3.4 and Example 4.7.

Corollary 4.12. The rotation hypersurface Mq,L of Ln+1 parametrized by (2.5) for the function g(t) =
c− ε̂

4α̂2t is the only non-polynomial rational rotation hypersurface of Ln+1 with pointwise 1-type Gauss
map.

The proof follows from the proof of Theorem 4.11 and Example 4.7.

Theorem 4.13. Let Mq be one of the rotation hypersurfaces Mq,T , Mq,S1 , or M1,S2 in Ln+1 parametrized by
(2.2), (2.3), and (2.4), respectively. If Mq is a polynomial kind rotation hypersurface, then it has proper
pointwise 1-type Gauss map of the second kind if and only if it is an open portion of a spherical n-cone,
hyperbolic n-cone, or pseudo-spherical n-cone.

Proof. Let Mq = Mq,T . In the parametrization (2.2) of Mq,T we take ϕ(t) = t, t > 0 and ψ(t) = g(t), where
g(t) is a polynomial. Then we have the Gauss map G from (4.1) as

G =
1√

ε(1−g′2)
[g′(t)(sinun−1Θ+ cosun−1ηn)+ηn+1] (4.21)

with εG = 〈G,G〉 = −ε , where ε = sgn(1−g′2) =±1 and |g′| 6= 1. Also, from (4.5) the Laplacian of the
Gauss map G is given by

∆G = ε


 nα ′

g′
√

ε(1−g′2)
−‖AG‖2


G− nα ′

g′
ηn+1, (4.22)

where ‖AG‖2 is given by (4.3) for ϕ(t) = t and ψ(t) = g(t) and the derivative of α from (4.2) is evaluated
as

α ′(t) =
1

n
√

ε(1−g′2)

(
(n−1)g′

t2 − (n−1)g′′

t(1−g′2)
− g′′′

1−g′2
− 3g′g′′2

(1−g′2)2

)
. (4.23)
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Suppose that M has pointwise 1-type Gauss map of the second kind. Then, by definition, the vector C in
(1.1) is nonzero and by Lemma 4.1 C = cηn+1 for some nonzero constant c. Thus, (1.1) and (4.22) imply
that

ε


 nα ′

g′
√

ε(1−g′2)
−‖AG‖2


 = f and − nα ′

g′
= c f .

Eliminating f in the above equations and using (4.3) and (4.23), we obtain

P(t) = c
√

ε(1−g′2)Q(t), (4.24)

where
P(t) = ((n−1)g′′+ tg′′′)(1−g′2)2t +3g′g′′(1−g′2)t2− (n−1)g′(1−g′2)3,

Q(t) = (n−1)g′(1−g′2)3− (n−1)g′′(1−g′2)t−g′′′(1−g′2)t2−4g′g′′2t2.

If degg(t) ≥ 2, then degP(t) = degQ(t) ≥ 7, which is a contradiction. Consequently, degg(t) = 1. That is,
g′(t) = a for some nonzero constant a with |a| 6= 1. Hence, we get c = −1/

√
ε(1−a2). Therefore, the

rotation hypersurface Mq,T with the parametrization (2.2) for ϕ(t) = t, t > 0 and ψ(t) = at + b is an open
portion of a spherical n-cone. The proof of the converse for Mq = Mq,T follows from Example 4.8.

By a similar discussion as above it can be shown that if Mq = Mq,S1 or Mq = Mq,S2 , then it is an open
portion of a hyperbolic n-cone or an open portion of a pseudo-spherical n-cone, respectively.

Theorem 4.14. There do not exist rational rotation hypersurfaces Mq,T , Mq,S1 , or M1,S2 in Ln+1, except
polynomial hypersurfaces, with pointwise 1-type Gauss map of the second kind.

Proof. Let Mq = Mq,T . Assume that Mq,T is a rational rotation hypersurface in Ln+1, except polynomial
hypersurface, with pointwise 1-type Gauss map of the second kind. In the parametrization (2.2) of Mq,T ,
we take ϕ(t) = t, t > 0 and ψ(t) = g(t), where g(t) is a rational function. The derivatives of g(t) are also
rational functions in t. We may put g′(t) = r(t)/q(t), where r(t) and q(t) are relative prime polynomials.
Let degq(t) = k.

From (4.24) we know that
√

ε(1−g′2) is also a rational function. Hence there exists a polynomial p(t)
satisfying q2(t)− r2(t) = ε p2(t), where r(t), q(t), and p(t) are relatively prime. Put

P1(t) = g′′(1−g′2)2t, P2(t) = g′′′(1−g′2)
2
t2,

P3(t) = g′g′′(1−g′2)t2, P4(t) = g′(1−g′2)3,

Q1(t) = g′′(1−g′2)t, Q2(t) = g′′′(1−g′2)t2,

Q3(t) = g′g′′2t2, Q4(t) = P4(t).

Then these functions are also rational.
Suppose that k≥ 1. Then, for each i = 1, . . . ,4, we see that q7(t)Pi(t) is a polynomial. Similarly, we see

that for each i = 1, . . . ,3, q6(t)Qi(t) is a polynomial. However, we have

q6(t)Q4(t) =
εr(t)p6(t)

q(t)
.

As (4.24) gives

P(t) = c
p(t)
q(t)

Q(t), (4.25)

it follows that q6(t)Q4(t) is a polynomial. This is a contradiction because r(t), q(t), and p(t) are relatively
prime. Therefore g′(t) is not rational, so is g(t). Hence k = 0, that is, g(t) is a polynomial, and by
Theorem 4.13 Mq = Mq,T is nothing but a spherical n-cone.

By a similar discussion, when Mq = Mq,S1 or Mq = Mq,S2 , we have the same result.
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Theorem 4.15. There do not exist rational rotation hypersurfaces Mq,L in Ln+1 with a light-like axis and
pointwise 1-type Gauss map of the second kind.

Proof. Suppose that Mq,L given by (2.5) is a rational rotation hypersurface with pointwise 1-type Gauss map
of the second kind. Then we put ϕ(t) = t, t > 0 and ψ(t) = g(t) in (2.5), where g(t) is a rational function.
From (4.7) and (4.11) the Gauss map Ĝ of Mq,L and its Laplacian ∆Ĝ are, respectively, given by

Ĝ =
1√
2ε̂g′

(√
2un−1Θ+ η̂n− (g′+u2

n−1)η̂n+1
)

(4.26)

and

∆Ĝ = ε̂

(
nα̂ ′(t)
2
√

ε̂g′
−‖AĜ‖2

)
Ĝ+

√
2nα̂ ′(t)

2
η̂n+1, (4.27)

where ε̂ = sgn(g′) =±1,

α̂ ′(t) =
1

2n
√

ε̂g′

(
n−1

t2 +
(n−1)g′′

2tg′
+

g′′′

2g′
− 3g′′2

4g′

)
(4.28)

from (4.8), and

‖AĜ‖2 =
ε̂

4g′

(
n−1

t2 +
g′′2

4g′2

)
. (4.29)

Since Mq,L has pointwise 1-type Gauss map of the second kind, by Lemma 4.3 the vector C in the
definition (1.1) is parallel to η̂n+1, that is, C = cη̂n+1, and (1.1) and (4.27) imply that

ε̂

(
nα̂ ′(t)
2
√

ε̂g′
−‖AĜ‖2

)
= f and

√
2nα̂ ′(t)

2
= c f .

Eliminating f in the above equations, and using (4.28) and (4.29), we obtain

P(t) = c
√

2ε̂g′Q(t), (4.30)

where
P(t) = 4g′3 +2g′2g′′′t2−3g′g′′2t2 +2(n−1)g′2g′′t,

Q(t) = g′g′′′t2−2g′′2t2 +(n−1)g′g′′t,

which are rational functions as g(t) is rational. The function
√

ε̂g′ in (4.30) is also a rational function. Then
we may put g′ = ε̂r2(t)/q2(t), where r(t) and q(t) are relatively prime polynomials. Taking derivative, we
have

g′′(t) =
ε̂R1(t)

q3 and g′′′(t) =
ε̂R2(t)

q4 ,

where
R1(t) = 2r(qr′− rq′),

R2(t) = 2(q2r′2 +q2rr′′−4rqr′q′− r2qq′′+3r2q′2),

which are polynomials in t. Hence,

P(t) =
ε̂r2P̄(t)

q8 and Q(t) =
Q̄(t)
q6 ,
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where
P̄(t) = r4q2 +2t2r2R2(t)−3t2R2

1(t)+2(n−1)tr2qR1(t),

Q̄(t) = t2r2R2(t)−2t2R2
1(t)+(n−1)tr2qR1(t).

Therefore equation (4.30) becomes
r(t)P̄(t) = cε̂

√
2q(t)Q̄(t). (4.31)

Let degr(t) = m and degq(t) = k. We may write r(t) = ∑m
s=0 asts and q(t) = ∑k

s=0 bsts such that am 6= 0
and bk 6= 0. Then, by a straightforward computation we obtain

R1(t) = 2(m− k)a2
mbkt2m+k−1 + · · ·+a0(a1b0−a0b1) (4.32)

and
R2(t) = 2(m− k)(2m−2k−1)a2

mb2
kt2m+2k−2 + · · ·+d0, (4.33)

where d0 = 2(a2
1b2

0 +3a2
0b2

1 +2b2
0a0a2−2a2

0b0b2−4a0b0a1b1). Using (4.32) and (4.33), we get degP̄(t) =
4m+2k and degQ̄(t) = 4m+2k if m 6= k, and degQ̄(t)≤ 4m+2k−1 if m = k.

Now, if m 6= k, then deg(r(t)P̄(t)) = 5m + 2k and deg(q(t)Q̄(t)) = 4m + 3k. Hence, by comparing the
degree of the polynomials r(t)P̄(t) and q(t)Q̄(t), from (4.31) we have 5m + 2k = 4m + 3k, which implies
that m = k, which is a contradiction. If m = k, then deg(r(t)P̄(t)) = 7m and deg(q(t)Q̄(t))≤ 7m−1, which
is also a contradiction because of (4.31). Therefore

√
2ε̂g′ is not a rational function, and so is g(t).

Corollary 4.16. There do not exist polynomial rotation hypersurfaces Mq,L in Ln+1 with a light-like axis and
pointwise 1-type Gauss map of the second kind.

Considering Theorem 4.13, Theorem 4.14, and Theorem 4.15, we have the following classification
theorem for rational rotation hypersurfaces of Ln+1 with pointwise 1-type Gauss map of the second kind.

Theorem 4.17. Let M be a rational rotation hypersurface of Ln+1. Then M has pointwise 1-type Gauss map
of the second kind in Ln+1 if and only if it is an open portion of a spherical n-cone, hyperbolic n-cone, or
pseudo-spherical n-cone.
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Hüperpinnad punktiti 1-tüüpi Gaussi kujutusega Lorentzi-Minkowski ruumis

Uǧur Dursun

On tõestatud, et orienteeritud hüperpind Mq indeksiga q Lorentzi-Minkowski ruumis n + 1 on punktiti
esimest liiki 1-tüüpi Gaussi kujutusega siis ja ainult siis, kui see Mq on konstantse keskmise kõverusega. Siit
on järeldatud, et iga orienteeritud isoparameetriline hüperpind ruumis n + 1 on 1-tüüpi Gaussi kujutusega.
On klassifitseeritud kõik ratsionaalsed 1-tüüpi Gaussi kujutusega hüperpöördpinnad ruumis n+1 ja esitatud
sellekohaseid näiteid.


