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The mathematical model of load, used in the monitoring of electrical network 
operational dynamics, is suitable to describe different types of loads. The 
structure of the mathematical model is the same for all loads. In order to use 
the load model to describe specific loads, the model parameters must be 
estimated. If the existing data is not sufficient to evaluate all parameters of 
the model, type-models – a typical sets of model parameters – may be used. 
Irrespective of initial information, the result is always a complete model that 
describes all necessary details of the load. However, the accuracy of the 
model and its applications are dependent on availability of initial data and 
on the quality of type models. 

Introduction 

Mathematical model [1], describing timely changes, stochasticity and 
dependency on weather and state variables of electrical network load, may be 
applied to describe different types of loads. It is possible to observe total active 
and reactive loads of the whole power system or of some region, e.g. distribu-
tion network, different bus loads, but also loads of separate consumers. The 
scale of power may reach from some gigawatts to some hundred watts. It is 
understandable that the amount and quality of initial information is different. 
In the case of large loads, time series, where active and reactive power values 
are fixed hourly or more frequently, are available for many years. On the other 
hand, in the case of private consumers or planned industry consumers it is 
possible that only one number, yearly energy demand, may be available. 

The mathematical model includes a large number (1000) of parameters. 
The modelling principle is that in any case all those parameters must be 
assessed for each load. Simplified models caused by lack of load data are not 
observed. If initial data does not allow to estimate all model parameters, only a 
part of parameters is directly obtained basing on available data. Remaining 
parameters are transferred from a type model, i.e. from some previously 
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estimated load model, which in its nature corresponds to the observable load. 
If there is enough data available, e.g. hourly data at least for some years, and 
they are of necessary quality, then it is possible to estimate a unique model for 
every load. No computational obstacles thereby exist. However, type models 
are often needed. The main reason is insufficiency of initial data due to 
unavailability of data or a remarkable change in the nature of the load whereby 
earlier data is not applicable. The necessity to implement type models may rise 
even when enough load data is available. For example, in a distribution 
network where the stochasticity of load is high, type models may enhance the 
reliability of model parameters. When modelling the distribution network 
operation it is necessary that some model parameters, which form the model 
co-ordinates, are the same for all loads [2, 3].  

The hierarchy of model parameters contributes the use of type models. 
Actually, some model parameters are relatively unchangeable in time. Other 
parameters are more dependent on the change of the loads nature. The para-
meters belonging to the first group are determined during the initial estimation 
of load models, i.e. during load research. Those parameters may principally be 
classified and used as type models, i.e. if necessary they may be used in other 
load models. The second group consists of parameters that are more adapted to 
a certain load and ought to be estimated according to the specific load data. 
Those parameters should be adjusted separately for every load. Estimation of 
parameters of the second group is also necessary when the nature of the load 
changes with time. 

Principally, whatever load model, parameters of which are known, may be 
used as a type model. However, transfer of parameters form a type model may 
not happen randomly. It is necessary that the nature of the loads are somewhat 
similar. The concept of similarity here is different from the traditional concept. 
The similarity of the shape of the load curve and the level of load (trend) may 
not be essential, because those properties may be considered even with a small 
number of parameters, which are estimated separately according to each load. 
In this paper, a possibility of using the main parameters of the same model, i.e. 
model co-ordinates, for different loads is observed. New loads, for which 
earlier models are absent and available load data is insufficient, and the above 
mentioned modelling of distribution network operation are considered as 
applications.  

Mathematical model of load 

The mathematical model describing load changes (active power, reactive 
power, or current) consists of three basic components: 

 

( ) ( ) ( ) ( )P t E t Γ t Θ t= + + , 
 

where  E(t) is the mathematical expectation of the load,  
 )(tΓ  is the temperature-sensitive part of the load, 
 )(tΘ  is the stochastic component of the load. 
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Mathematical expectation describes regular changes of a load, such as 
general trend and seasonal, weekly, and daily periodicity. Mathematical 
expectation is principally non-stochastic and corresponds to the normal 
temperature. 

The temperature-sensitive part of a load describes load drift, caused by 
deviations of outdoor temperature from the normal temperature. The normal 
temperature (mathematical expectation of the temperature) is the average 
outdoor temperature of the last 30 years on any given hour of the year. 
Besides other features, temperature dependency of loads is characterized by 
a delay of about 24 hours. If the actual outdoor temperature corresponds to 
the normal temperature (considering delay), the influence of temperature is 
lacking. In order to compare the temperature dependencies of different loads, 
component ( )Γ t  is normalized 

 

( ) ( ) ( )Γ t R t tγ= , 
 

where R(t) is the rate of the temperature dependency of the load, 
 )(tγ  is the normalized temperature dependency component. 

The stochastic component describes stochastic deviations of load. Due to 
the autocorrelation, the deviations of load are stochastically dependent on 
each other. It is possible to observe the stochastic component of the load as 
consisting of expected deviation )(tζ , which describes the conditional 
mathematical expectation of the stochastic component and normally 
distributed non-correlated residual deviation (white noise) )(tξ . In addition, 
it is necessary to observe peak deviations of the load by the component 

)(tπ , describing large positive or negative deviations that do not correspond 
to the normal distribution. It is also rational to normalize the stochastic 
component. The proper rate here is standard deviation of the load S(t). The 
result is  

 

[ ]( ) ( ) ( ) ( ) ( )Θ t S t t t tζ ξ π= + + . 
 

Hence, mathematical model of load takes the following form: 
 

[ ]( , , ) ( , , ) ( , , ) ( ) ( , , ) ( ) ( ) ( )P t h l E t h l R t h l t S t h l t t tγ ζ ξ π= + + + + , 
 

where load mathematical expectation, standard deviation, and rate of tem-
perature dependency are observed as a function of yearly (general) time t , 
daily time h , and type of day l . 

Mathematical expectation, standard deviation, and rate of temperature 
dependency can be described by the following expressions:  

 

( , , ) ( ) ( )T
ElE t h l h t= M G N , 

 

( , , ) ( ) ( )T
SlS t h l h t= M G N , 

 

( , , ) ( ) ( )T
RlR t h l h t= M G N , 
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where )(hM  and )(tN  are vector functions which include components 
corresponding to daily and annual load changes.  
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Matrices ElG , SlG , and RlG  consist of parameters depending on day type l  
 

El Elksg=G , Sl Slksg=G , Rl Rlksg=G , 
 

where k = 0 – MDC and s = 0 – NAC. Here the vector components, corres-
ponding to index 0, are trivial 

 

0 ( ) 1hµ ≡ , 0( ) 1tν ≡ . 
 

The number of non-trivial components MDC and NAC is, for example, 4–5. 
In Figs 1 and 2, some examples of the vector function components, )(hM  
and )(tN , are shown. 

Matrices ( )lEG , ( )S lG , and ( )R lG  can be developed into series 
 

0 0 1 1 2 2 ,El l l l l NSC NSCa a a a≅ + + + +G G G G GK , 
 

0 0 1 1 2 2 ,Sl l l l l NSC NSCb b b b≅ + + + +G G G G GK , 
 

0 0 1 1 2 2 ,Rl l l l l NSC NSCc c c c≅ + + + +G G G G GK , 
 

where 10 =G .  
 

 

 

Fig. 1. Components of vector function )(hM . 
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Fig. 2. Components of vector function )(tN . 

 
 

The result is 
 

( )( , , ) ( ) ( )T
lr r

r
E t h l h a t= ∑M G N , 

 

( )( , , ) ( ) ( )T
lr r

r
S t h l h b t= ∑M G N , 

 

( )( , , ) ( ) ( )T
lr r

r
R t h l h c t= ∑M G N , 

 

where r = 0–NSC. Actually, NSC = 10–12. 
Types of day l = 1–NTP correspond, first of all, to normal weekdays 

(l = 1–7). In addition, special days (holidays, pre-holidays, post-holidays, 
etc.), for which l > 7, are observed. The number of special days depends on 
the calendar (the country) requiring accuracy of modelling. The total number 
of type of days NTP may be up to 50–60. In a simplified case, the special 
day is considered as a similar weekday (holiday – Sunday, pre-holiday –
 Friday, etc). In that case, the number of different types of days is 7. 

Model parameters lra , lrb , and lrc  can be normalized, based on mean 
value of mathematical expectation, standard deviation, and rate of load 
model, respectively. 

 

00
,

1
7 lr r

l r
a a g= ∑ , 00

,

1
7 lr r

l r
b b g= ∑ , 00

,

1
7 lr r

l r
c c g= ∑ , 

 

where 00rg  is the element of matrix rG  with index 00. Here the summing 
up is done in the range of ordinary weekdays l = 1–7 (special days are not 
considered). In the model, elements of matrices are replaced as follows: 
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lr lra a a⇒ ⋅ , lr lrb b b⇒ ⋅ , lr lrc c c⇒ ⋅ . 
 

Parameters cannot be normalized if the calculated mean value is too small 
(zero) or negative, which may occur in the case of reactive power and 
current. In that case 

 

a = b = c = 1. 
 

The load level and shape may change. Fast changes may be considered in 
the model as a step change of the model factors at a certain time. Long-term 
load increase or decrease is presented as an additional component of the 
model – trend. Trend component is given as quadratic function: 

 

2
1 0 2 0( ) 1 ( ) ( )A t a t t t tα α = + − + −  , 

 

where 1α  and 2α  are factors, and 0t  is the moment in time at which the 
computation of trend starts. Beside mathematical expectation, trend also 
belongs to the standard deviation and the rate of the temperature dependency 
as follows: 

 

2
1 0 2 0( ) 1 ( ) ( )B t b t t t tα α = + − + −  , 

 

2
1 0 2 0( ) 1 ( ) ( )C t c t t t tα α = + − + −  , 

 

where factors 1α  and 2α  as well as t0 are for practical purposes the same as 
in the case of mathematical expectation. 

Load voltage and frequency sensitivity are described as quadratic 
functions: 

 
2

1 2( ) 1U u u uµ µ= + + ,  where  / 1V Nu U U= − , 
 

2
1 2( ) 1F f f fν ν= + + ,  where  / 1V Nf F F= − . 

 

Here 2121 ,,, ννµµ  are factors and VU , NU  and VF , NF  are rated values 
of voltage and frequency, respectively. Dependency on voltage and 
frequency is considered only in connection with mathematical expectation. 
Therefore 

 

( )( , , ) ( ) ( ) ( ) ( ) ( )T
lr r

r
E t h l A t U u F f h a t= ∑M G N , 

 

( )( , , ) ( ) ( ) ( )T
lr r

r
S t h l B t h b t= ∑M G N , 

 

( )( , , ) ( ) ( ) ( )T
lr r

r
R t h l C t h c t= ∑M G N . 
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Model co-ordinates and factors 

Model parameters may be divided into two groups. The first group, named 
model co-ordinates, include vector functions )(hM  and )(tN  and matrices 

rG . The second group, named model factors, include parameters alr, blr, clr 
(shape factors), a, b, c and other factors related to trend (level factors). The 
reason of the above described grouping is due to the fact that the level of 
load and shape of the load curve is first of all determined by model factors 
even if the model co-ordinates do not change. From this the idea accrues that 
one possibility to specify type models is transferring model co-ordinates 
from one model to another. It is also possible to estimate model co-ordinates 
mutually using multiple load data, whereas model factors are found 
separately for every specific load. 

Besides model co-ordinates, sub model components of the load tempera-
ture dependency and stochasticity, )(tγ , )(tζ , )(tξ  and )(tπ , may be 
observed as typical. The mathematical representation of those components is 
not observed in this paper. 

To investigate the composition and field of application of type models we 
observe 18 loads of 5–240 MW for 2–12 years. At first, the models are 
estimated uniquely, separately for each load data. Afterwards, based on all 
load data, the model mutual co-ordinates are estimated and model factors, 
based on specific load data for each load, are found.  

The results of the estimation of mathematical expectation are summarized 
in Table 1. Here P describes average value of load and S is the average value 
of standard deviation. Deviations are found between the load values, 
normalized regarding the temperature and, mathematical expectation 

)()()()( tEtΓtPtP −−=∆ . Values dP and dS indicate the increment of 
standard deviation S∆  due to the use of mutual co-ordinates – dP = PS /∆  
and dS = SS /∆ . From Table 1 it appears that the error, due to the transition 
of the type co-ordinates, is mostly below 1% at load average values and in 
the order of 10% at load standard deviation. These errors should be 
considered as acceptable. 

  

Table 1. Estimation errors of mathematical expectation  

Number 1 2 3 4 5 6 7 8 9 

P, MW 4.5 4.9 8.6 10.8 14.6 18.0 18.3 18.4 29.1 
S, MW 0.3 0.4 0.6 0.8 1.0 1.2 1.0 1.0 1.9 
dP, % 0.6 1.1 0.6 0.6 0.6 0.4 0.5 0.6 1.3 
dS, % 8.1 14.2 8.9 9.0 9.3 5.6 8.4 12.0 20.5 
Number 10 11 12 13 14 15 16 17 18 
P, MW 47.0 64.7 113.4 121.4 130.0 158.7 185.7 195.0 240.0 
S, MW 3.0 3.5 6.3 4.8 8.6 7.1 8.3 9.4 12.6 
dP, % 0.2 0.5 0.5 0.6 0.6 0.5 0.8 0.5 0.5 
dS, % 3.0 9.6 8.9 14.7 9.8 12.7 18.2 9.8 9.4 
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Beside the average values of errors, it is interesting to see to what extent 
it is possible to represent different curves (mathematical expectation) of the 
load, using the type co-ordinates. In Fig. 3, Fig. 4 and Fig. 5 examples of 
normalized values of three loads and corresponding mathematical expecta-
tion values are presented. It is evident that in the same co-ordinates it is 
possible to represent different shapes of mathematical expectation curves.  
 

 

 
Fig. 3. Normalized value of load number 18 (1), and mathematical expectation 
based on unique model (2) and type model (3). 
 
 

 
Fig. 4. Normalized value of load number 15 (1), and mathematical expectation 
based on unique model (2) and type model (3). 
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Fig. 5. Normalized value of load number 10 (1), and mathematical expectation 
based on unique model (2) and type model (3). 

 
 
When observing a longer period of changes of load, e.g. a year, it is possible 
to notice that the values of mathematical expectation, based on a unique 
model and the values, based on a type model are practically identical. It 
should be emphasised that the mathematical expectation is found based on 
previously described relations, and model factors are found as averages up to 
the whole observable data interval (2–12 years).  

The actual values of load are presented here only for comparison. Of 
course, when using the model for load forecasting, the adjustment of model 
factors (for example, once a year) is possible. During the forecasting, the 
actual values of load are used only for calculating deviation ( )tζ , which, if 
added to the mathematical expectation in the form of ( ) ( ) ( ) ( )E t Γ t S t tζ+ + , 
gives the short-term forecast of the load. 

In addition to mathematical expectation, also temperature dependency 
and standard deviation of load are of interest. The importance of temperature 
dependency may be high in some cases. In Fig. 6 an example of temperature 
influence on the load (number 18 in Table 1) in the winter period is pre-
sented. The average values of temperature influence vary in an interval 
between –60–+90 MW, which forms 62% of the average value of a load. 
Daily average values of temperature influence, which are calculated based 
on a unique model and a type model, practically coincide here.  

 
 
 



M. Meldorf, J. Kilter 252

 
Fig. 6. Daily average values of temperature influence based on a unique (1) and a 
type model (2). 

Conclusions 

In the case of insufficient initial data or for some other reason, necessity for 
implementation of type models may arise when estimating the mathematical 
model of load. One version of type models is to identify model co-ordinates 
for different loads, i.e. representing the model in the same co-ordinates. 
Thereby, the model factors are found separately, based on specific load data. 
Based on the observed 18 loads, it is possible to indicate that such definition 
and implementation of the type model gives acceptable results.  

However, it is not possible to generalize the obtained results for any 
loads. For every specific case the load research should be performed in order 
to determine which loads can and which cannot be modelled in the same co-
ordinates. Nevertheless, it could be declared that the accepted co-ordinates 
may be used for a relatively long period of time (decades), while adjusting 
model factors only from time to time. Unique models, which are estimated 
separately according to a specific load, give more accurate results to a 
certain extent and are therefore preferable, if enough high quality load data is 
available.  
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