Oil Shale, 2007, Vol. 24, No. 3, pp. 561-571

 

THE EFFECT OF SULPHATE ON LENGTH CHANGE OF CONCRETE

(Full text in pdf format)

 

S. OYMAEL

 

Sulphates usually affect calcium aluminates in cements. Sulphate ions might have negative effects on cement hydration and it would be a reason of decrease in cement strength. In this study, the effects of Na2SO4 solution on the concretes made from OPC with oil shale ash (OSA) addition (0, 15 and 30%) were investigated. Concretes with 15% OSA gave the lowest value of Length Change Factor (LCF). Addition of an optimum amount of super­plasticizer increases positive properties of the concrete with 15% OSA addi­tion, binds free Ca(OH)2 in OPC, makes its composition more effective, pre­vents massive alkali-aggregates reactions showing that this addition rate is proper.

 

REFERENCES

1.        Ushiyama, G. Diffusion of various ions in hardened Portland cement paste. Proc. VI. ICCC. Sec. II, 1975.

2.        Podvalnyi, A. M. Phenomenological aspect of concrete durability theory // Materials and Structures. 1976. Vol. 9, No. 51. P. 151–162.

3.        TMMOB Turkish Chamber of Civil Engineers Istanbul Branch, Durability of concrete, proceedings, 5. National Congress on Concrete, Harbiye-Istanbul, 1–3 October 2003 [in Turkish].

4.        Schramli, W. An attempt to assess beneficial and detrimental effects of alüminate in the cement on concrete performance. Part. II. // World Cement Technology. 1979. No. 3, P. 75–80.

5.        Durmuş, A. Aluminous cements in reinforced concrete // J. Turkish Eng. News. Turkish Chamber of Civil Engineers. 1981. No. 297. P. 23–24 [in Turkish].

6.        Dreux, G. Nouveau Guide du Béton, Ed. Eyrolles, Paris, 1986.

7.        Akman, M. S. Concrete Technology of Marine Structures, ITU Library, No. 1481, Istanbul, 1992. P. 132–206 [in Turkish].

8.        Seelig, B. D. Salinity and sodicity in North Dakota soils. 1984. http://www.ext.nodak.edu/extpubs/plantsci/soilfert/eb57-1.htm (27.5.2002)

9.        Erdoğan, T. Concrete. – METU Pres Publishing Company, Turkey, 2003. P. 741 [in Turkish].

10.     Neville, A. M. Properties of Concrete. – London, Pitman Publishing Ltd., 1983. P. 433–528.

11.     The European Cement Association, cement manufacturing by using industrial wastes. – Ankara Cement Manufacturers’ Association, Ankara, 1985 [in Turkish].

12.     Mine Survey Search General Directorate, oil shale and oil shale ore in Turkey, service special report number: 9202. – Ankara, Turkey, 1989 [in Turkish].

13.     Kikas, V. Application of oil shale ash in the building materials industry. – UN Symposium of Oil Shale Resources, Tallinn, 1968.

14.     Kikas, V., Rass, J., Hralovich, J. Influence of ash content of Kukeriste oil shale on the properties of self-stressing shale ash cement // Proceedings of Tallinn Polytechnic Institute. 1986. No. 618. P. 9–17.

15.     Hanni, R. Energy and valuable material by-product from firing Estonian oil shale // Waste Management. 1996. Vol. 16, No. 1. P. 97–99.
doi:10.1016/S0956-053X(96)00054-2

16.     Al-Dulaijan, S. U., Maslehuddin, M., Al-Zahrani, M. M., Sharif, A. M., Shameem, M., Ibrahim, M. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate // Cement and Concrete Composites. 2003. Vol. 25, No. 4–5. P. 429–437.
doi:10.1016/S0958-9465(02)00083-5

17.     Oymael, S. The suitability of oil shale ash as an admixture in cement and concrete. – PhD Dissertation. Firat University, Elazig, 1995. 163 pp. [in Turkish].

18.     Oymael, S., Durmuş, A. Effects of sulphates on elastic modulus of concrete samples made from blends of cements with oil shale ash // Oil Shale. 2006. Vol. 23, No. 2. P. 125–134.

19.     ASTM C 109. Test method for compressive strength of hydraulic cement mortars. 1993 Annual Book of ASTM Standards. Vol. 04.01.

20.     Turkish Standards, TS 25 – Trass. Turkish Standards Institution, Ankara, 1975.

21.     Turkish Standards, TS 819 – Rilem Cembureau Sand. Turkish Standards Institution, Ankara, 1989.

22.     ASTM C 311-04. Sampling and Testing Fly Ash for Natural Pozzolans for Use in Portland-Cement Concrete.

23.     ASTM C 1012-87, Standard Test Method for Length Change of Hydroulic-Cement Mortars Exposed to Sulfate Solution.

24.     ACI 201. 2R-77, Guide to Durable Concrete, Chapter 3, Abrasion. ACI Manual of Concrete Practice, Part I. – Detroit, 1986

25.     Tuthill, L. H. Resistance to Chemical Attack. – ASTM Sp. Tech. Publicn. No. 169 B, 1978. P. 369–387.

26.     Madej, J. Corrosion resistance of normal and silica fume-modified mortars made from different types of cement. Istanbul Conference, 1992. P. 1189–1196.

27.     Al-Hasan, M. Behavior of concrete made using oil shale ash and cement mixtures // Oil Shale. 2006. Vol. 23, No. 2. P. 135–143.

28.     ASTM C 490-93a. Standard Practice for Use of Apparatus for the Determina­tion of Length Change of Hardened Cement Paste, Mortar and Concrete, 1993.

29.     Hooton, R. D. Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, Freezing and Thawing, and Alkali-Silica Reactivity, ACI Materials Journal (Technical Paper). 1993. Vol. 90, No. 2. P. 143–151.