Oil
Shale, 2007, Vol. 24, No. 3, pp. 547-560
THERMAL BEHAVIOR
AND PYROLYSIS OF AVGAMASYA ASPHALTITE
Y. TONBUL, A. SAYDUT
The pyrolysis and thermal behavior of Avgamasya (SE Anatolia, Turkey) asphaltite was performed using thermogravimetric analysis at atmospheric pressure in dynamic nitrogen atmosphere (30mL min–1). Four heating rate profiles (2.5, 5, 10 and 20 K min–1) were applied, with a final temperature 1123 K. Two-stage decomposition was observed in the experiments. During the stage 1, when the temperature is lower, only weaker chemical bonds are destroyed and some small gaseous molecules are produced. During the stage 2, when temperature is higher, the cracking is faster and stronger chemical bonds are broken, so that larger molecules decompose into small molecules in the gaseous phase. Kissinger (differential) and Coats-Redfern (integral) methods were applied to thermogravimetric data to obtain kinetic parameters (activation energy and Arrhenius constant).
REFERENCES
1.
Hicyilmaz, C., Altun, N. E. Improvements on combustion
properties of asphaltite and correlation of activation energies with combustion
results // Fuel Process. Technol. 2006. Vol. 87, No. 6. P. 563–570.
doi:10.1016/j.fuproc.2005.07.010
2.
Kök, M. V., Bagci, A. S.,
Ceylan, E., Ozkilic, O. Combustion characteristics of
asphaltites // Energ. Source. 2005. Vol. 27, No. 5. P. 417–422.
3.
Ballice, L., Saglam, M. Co-pyrolysis of Göynük-oil shale and
Sirnak-asphaltite from Turkey and analysis of co-pyrolysis products by capillary
GC total stream sampling technique // Fuel. 2003. Vol. 82, No. 5. P.
511–522.
4. Kök, M. V., Pamir, M. R. Pyrolysis and combustion studies of fossil fuels by thermal analysis methods // J. Anal. Appl. Pyrol. 1995. Vol. 35, No. 2. P. 145–156.
5.
Kök, M. V. Thermal analysis applications in fossil fuel science: Literature
survey // J.
Therm. Anal. Cal. 2002. Vol. 68, No. 3. P. 1061–1077.
6.
Duz, M. Z., Tonbul, Y., Baysal, A., Akba, O., Saydut, A.,
Hamamci, C.
Pyrolysis kinetics and chemical composition of Hazro coal according to particle
size //
J. Therm. Anal. Cal. 2005. Vol. 81, No. 2. P. 395–398.
doi:10.1007/s10973-005-0798-z
7.
Kök, M. V., Pamir, M. R. ASTM kinetics of oil
shales // J. Thermal Anal. Cal. 1998. Vol. 53, No. 2. P. 567–575.
8.
Steiner, G., Rath, J.,
Wolfinger, M. G., Staudinger, G. A method to determine the course of heating
value and heat production rate of volatiles during the pyrolysis of a solid
fuel particle // Thermochim. Acta. 2003. Vol. 398, No. 1–2. P. 59–71.
doi:10.1016/S0040-6031(02)00396-9
9.
Altun, N. E., Hicyilmaz, C.,
Kök, M. V.
Effect of particle size and heating rate on the pyrolysis of Silopi
asphaltite // J. Anal. Appl. Pyrol. 2003. Vol. 67, No. 2.
P. 369–379.
doi:10.1016/S0165-2370(02)00075-X
10.
Jaber, J. O.,
Probert, S. D. Pyrolysis and gasification
kinetics of Jordanian oil shales // Applied Energy. 1999. Vol. 63. P. 269–286.
doi:10.1016/S0306-2619(99)00033-1
11.
Jing-Song, G.,
Wei-Biao, F., Bei-Jing, Z. A Study on the
pyrolysis of asphalt // Fuel. 2003. Vol. 82, No. 1. P. 49–52.
12.
Li, S., Yue, C. Study of pyrolysis kinetics of oil
shale // Fuel. 2003. Vol. 82, No. 3. P. 337–342.
13.
Tonbul, Y.,
Saydut, A., Hamamci, C. Pyrolysis kinetics
of asphaltites determined by thermal analysis // Oil Shale. 2006.
Vol. 23, No. 3. P. 286–293.
14. Wang, H., Yang, J.,
Long, S., Wang, X., Yang, Z., Li, G. Studies on thermal degradation of poly (phenylene sulphide
sulfone) // Polym. Degrad. Stabil. 2004. Vol. 83, No. 2. P. 229–235.
doi:10.1016/S0141-3910(03)00266-0
15. Tonbul, Y., Yurdakoc, K. Thermogravimetric investigation of the dehydration kinetics of KSF, K10 and Turkish bentonite // Turk. J. Chem. 2001. Vol. 25, No. 3. P. 333–339.
16. Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data // Nature. 1964. Vol. 201, No. 4914. P. 68–69.
17.
Kissinger, H. E. Reaction kinetics in differential thermal analysis // Anal.
Chem. 1957. Vol. 29, No. 11. P. 1702–1706.
doi:10.1021/ac60131a045
18.
Vyazovkin, S.,
Wight, C. A. Model-free and model-fitting
approaches to kinetic analysis of isothermal and nonisothermal data // Thermochim.
Acta. 1999.
Vol. 340–341. P. 53–68.
doi:10.1016/S0040-6031(99)00253-1
19.
Wang, X. L.,
Yang, K. K., Wang, Y. Z., Wu, B., Liu, Y.,
Yang, B. Thermogravimetric
analysis of the decomposition of poly(1,4-dioxan-2-one)/starch blends //
Polym. Degrad. Stabil. 2003. Vol. 81, No. 3. P. 415–421.
doi:10.1016/S0141-3910(03)00126-5
20.
Kök, M. V. Oil Shale: pyrolysis, combustion, and environment: A review //
Energy Sources. 2002. Vol. 24, No. 2. P. 135–143.