Oil Shale, 2007, Vol. 24, No. 3, pp. 434–449
UNUSUAL FEATURES OF THE MIDDLE DEVONIAN NARVA
FORMATION COVERING THE OIL SHALE BEARING ROCKS IN ESTONIA
A. KLEESMENT, A. SHOGENOVA, K. SHOGENOV
Mineral composition and properties of the Devonian carbonate rocks of Narva Regional Stage of NE Estonia, unconformably overlying the oil-shale bearing rocks of the Ordovician Kukruse Regional Stage, are discussed. Kerogen particles disintegrated from the kukersite-bearing Ordovician Viivikonna Formation due to erosion during the Late Silurian – Middle Devonian break in sedimentation and redeposited in lowermost layers of the Middle Devonian Vadja Formation. This allothigenic organic component specifically influenced the further diagenetic processes in the sediments. Star-like dolomite splays and needle-like crystals, chalcedony nodules, siderite and sulphide minerals of authigenic dolomite were formed. The presence of organic material and sulphur favoured for accumulation of total iron including FeO. When compared with coeval rocks from South Estonia, these rocks differ also by decrease in grain and bulk density.
REFERENCES
1.
Puura, V.,
Vaher, R., Tuuling, I. Pre-Devonian landscape of the Baltic Oil-Shale Basin,
NW of the Russian Platform. Uplift, Erosion and Stability: Perspectives on
long-term landscape development // Special Publication of London Geological
Society 162. 1999. P. 75–83.
2.
Valiukevièius, J. J.,
Kleesment, A. E., Kurik, E. J., Vaitekunene, G. K. Correlation and fossil remains of the
deposits of the Narva Stage // Biofacies and fauna of East Baltic
Silurian and Devonian sedimentation
basins / A. P. Brangulis (ed.). Riga, Zinatne, 1986. P.
73–86 [in Russian].
3.
Kleesment, A.-L.,
Kurik, E., Valiukevièius, J. On nomenklature of substages of the Narva Regional
Stage // Proc. Acad. Sci. Estonian SSR. Geol. 1987. Vol. 36, No.
4. P. 174–175 [in Russian].
4.
Valiukevièius, J. Acanthodian biostratigraphy and
interregional correlations of the Devonian of the Baltic States, Belarus,
Ukraine and Russia // Palaeozoic Vertebrate Biochronology and Global
marine/Non-Marine Correlations / A. Blieck, S. Turner (eds). Frankfurt a.
M.: Courier Forsch.-Inst. Senckenberg, 223, 2000. P. 271–289.
5.
Valiukevièius, J. Acanthodians and zonal stratigraphy of
Lower and Middle Devonian in East Baltic and
Byelorussia // Palaeontographica, Abt. A. 1998, 248. P. 1–53.
6.
Kleesment, A. Outcrops // Natural Monuments
13. Illuka, Mäetaguse, Iisaku, Alajõe / A. Miidel,
A. Raukas (eds.). Tallinn: Estonian Academy Publishers, 2004. P. 16–19 [in
Estonian].
7.
Kleesment, A.,
Mark-Kurik, E.
Devonian. Lower Devonian. Middle Devonian // Geology and Mineral Resources
of Estonia / A. Raukas, A. Teedumäe (eds.). Tallinn:
Estonian Academy Publishers, 1997. P. 107–121.
8.
Kleesment, A.,
Shogenova, A.
Lithology and evolution of Devonian carbonate and carbonate-cemented rocks in
Estonia // Proc. Acad. Sci.
Estonia. Geol. 2005. Vol. 54, No. 3,
P. 153–180.
9.
Shogenova, A.,
Kleesment, A.
Diagenetic influences on iron-bearing minerals in Devonian carbonate and
silicoclastic rocks of Estonia // Proc.
Acad. Sci. Estonia. Geol. 2006. Vol. 55,
No. 4, P. 269–295.
10.
Kleesment, A. Devonian // Ruhnu
(500) drill core. Estonian Geological Sections 5 / A. Põldvere
(ed.). Tallinn: Geological Survey of Estonia, 2003. P. 12.
11.
Kleesment, A. Devonian // Mehikoorma
(421) drill core. Estonian Geological Sections 6 / A. Põldvere
(ed.). Tallinn: Geological Survey of Estonia, 2005. P. 10–13.
12.
Shogenova, A., Shogenov, K., Donadini, F. Chemical composition and physical
properties of the rock // Kerguta (565) drill core. Estonian
geological sections 7 / A. Põldvere
(ed.). Tallinn: Geological Survey of Estonia, 2006. P. 19–26.
13.
Tucker, M. E.,
Kendall, A. C. The diagenesis and low-grade metamorphism of Devonian
styliolinid-rich pelagic carbonates from West Germany: possible analogues of
recent pteropod oozes // J. Sed. Petr. 1973. Vol. 43, No. 3. P.
672–687.
14.
Buszynski, C.,
Chafetz, H. S. Habit of bacterially induced precipitates of calcium carbonate and the
influence of medium vicosity on mineralogy // J. Sed. Petr. 1991.Vol.
61, No. 2. P. 336–233.
15.
James, N. P.,
Narbonne, G. M., Kyser, T. K. Late Neoproterozoic cap carbonates:
Mackenzia Mountains, northwestern Canada: precipitation and global glacial
mettdown // Canadian J. Earth Sci. 2001. Vol. 38. P. 1229–1262.
doi:10.1139/cjes-38-8-1229
16.
Fraiser, M. L.,
Corsetti, F. A. Neoproterozoic carbonate shrubs: interplay of microbial activity and
unusual enviromental conditions in post-snowball earth
oceans // Palaios. 2003. Vol. 18, No. 4. P. 378–387.
17.
Chafetz, H. S.,
Guidry, S. A. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial
vs. abiotic precipitation // Sed. Geol. 1999. Vol. 126, No. 1.
P. 57–74.
18.
Folk, R. L. Nannobacteria and the precipitation of
carbonate in unusual environments // Sed. Geol. 1999. Vol. 126, No.
1. P. 47–55.
19.
Peckmann, J.,
Paul, J., Thiel, V. Bacterially mediated formation of diagenetic
aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central
Germany) // Sed. Geol. 1999. Vol. 126. P. 205–222.
doi:10.1016/S0037-0738(99)00041-X
20.
Ma, Long,
Chafetz, H. S. Microbially mediated dolomite associated with the oil shales of the
lacustrine Green River Formation, Green River, Uinta, and Piceance Creek
basins // Abstracts of 37th Lunar and Planetary Science
Conference. Houston, USA, 2006.
21.
Chafetz H. S. Recognation of bacterially induced
mineral precipitates: examples from carbonate, silicate, and Mn- and Fe-rich
deposits // Abstracts of 37th Lunar and Planetary Science
Conference. Houston, USA, 2006.
22.
Gevirtz, J. L.,
Friedman, G. M. Deep-sea carbonate sediments of the Red Sea and their
implications of marine lithification // J. Sed. Petr. 1966. Vol. 36,
No. 1. P. 143–151.
23.
Jõeleht, A., Kukkonen, I. T. Physical properties of Vendian to
Devonian sedimentary rocks in Estonia // GFF. 2002, 124. P. 65–72.
24.
Prijatkin, A.,
Poljakov, E.
Petrophysical methods of rocks study. - Leningrad: Leningrad
University, 1983 [in Russian].
25.
Shogenova, A.,
Puura, V. Petrophysical changes caused by dolomitization and
leaching in fracture zones of lower Paleozoic carbonate rocks, North
Estonia // Nordic Petroleum Technology Series: One. Second Nordic
Symposium on Petrophysics, Fractured Reservoirs / Mike Middleton
(ed.). Saghellinga, Norway: Nordisk Energi-Forskningsprogram, 1997. P. 155–185.
26.
Kleesment, A. Devonian sedimentation
basin // Geology and Mineral Resources of
Estonia / A. Raukas, A. Teedumäe (eds.). Tallinn: Estonia
Academy Publishers, 1997. P. 205–208.
27.
Yurkova, R. M. The use of epigenetic interlayer
solution of some accessory minerals for establishing the time of formation of
oil deposits // Epigenesis and its mineral
indicators / A. G. Kossovskaya (ed.). Moskow: Nauka, 1971.
P. 154–166 [in Russian)].
28.
Laya, H. A.,
De La Pena, J. A., Benayas, J. Neoformed aragonite in clay soils on
Keuper materials from east-central Spain // European J. Soil Sci.
1992. Vol. 43, No. 3. P. 401–407.
doi:10.1111/j.1365-2389.1992.tb00146.x
29.
Peryt, T. M.,
Scholle, P. A. Regional setting and role of meteoric water in dolomite formation and
diagenesis in an evaporite basin: studies in the Zechstein (Permian) deposits
of Poland // Sedimentology. 1996. Vol. 43, No. 6. P. 1005–1023.
30.
Mägi, S.,
Pirrus, E.
Anthraconite and a giant concretion from Lasnamäe // Estonian Nature.
1978. No. 6. P. 392–394 [in Estonian].
31.
Schieber, J. Early diagenetic silica deposition in
algal cysts and spores: a source of sand and black shales? // J. Sed.
Res. 1996. Vol. 66, No. 1, P. 175–183.